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Some Applications of Bruhat-Tits Theory to
Harmonic Analysis on a Reductiyeadic Group

STEPHEN DEBACKER

1. Introduction

Let k denote a field with nontrivial discrete valuation. We assumekhsicom-

plete with perfect residue field Let G denote the group df-rational points of a
reductive, connected, linear algebraic gréaipefined ovek and letg denote its
Lie algebra. Lef3(G) denote the Bruhat-Tits building @f.

The basic tools of harmonic analysis grare invariant distributions and the
Fourier transform. In [1; 12] the formalism of Moy and Prasad [17; 18] is used to
develop a “uniform” way to describe both the support of invariant distributions
and how certain important spaces of functions behave with respect to the Fourier
transform. The purpose of this paper is to prove the group analogues of these re-
sults. As discussed below, these results are more difficult to obtain than their Lie
algebra counterparts.

We begin by studying a relationship between the structui@ ahd the geom-
etry associated to the displacement functiongw). Fix g € G. In Section 3.1
we associate tg a Levi subgroup),. We then show that eitherfixes a point in
B(G) or there is a line i3(G) on whichg acts by nontrivial translation, but not
both. (A line in a building is a 1-dimensional affine subspace of an apartment.)
This result (Corollary 3.1.5) uses the nonpositive curvaturg(@f), and it is the
basis for many of the results of the paper. Definedisplacement functiod, on
B(G) by setting d(x) equal to the distancg movesx. We show that the set of
elements in3(G) where d, assumes its minimum value is nonempty. It follows
[7, Chap. I1] that the subset &f(G) where d assumes its minimum value can be
characterized as either the setgafixed points in3(G) or the union of lines in
B(G) on whichg acts by nontrivial translation. We then show that i$ a line on
which g acts by nontrivial translation, then the Levi subgrodpis equal to the
Levi subgroup ofG naturally associated ta

Supposer > 0. We next obtain group analogues of the resultsgaof [12,

Sec. 1.6] (see also [1, Sec. 3.1]); these results are used to describe the support of
invariant distributions. We show that

U Gx,r: m Gx,r’u- (T)

xeB(G) xeB(G)
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Herel/ denotes the set of unipotent elements, &hd is the Moy—Prasad filtra-
tion subgroup of5 defined in [17; 18]. The chief obstacle to obtaining these results
was that forG the “depth” at a poink € 5(G) can take only nonnegative values.
For the Lie algebra, il € g andx € B(G), then there exists ane R such that

X belongs to the Moy—Prasad filtration lattige .. However, fork € G andx €

B(G) we can speak about the “depth” ofat x only if # belongs to the parahoric
subgroup associated 10 The key is to show that our problems can be reduced
to the “depth zero” (or parahoric) situation by using the nonpositive curvature of
B(G). Once this is accomplished, the proofs mirror the proofs for the Lie algebra.
We also show that the set defined by equation (1) behaves well with respect to par-
abolic descent. That s, for a parabolic subgréupf G with Levi decomposition

P = MN, we have
MN ( U Gx,,> = J M.
xeB(G) xeB(M)

Under the assumption thats finite, we consider the interplay between repre-
sentations of5, their depth, and functions ofi. The main result in this section
is a group analogue of [1, Lemma 4.2.3]. We begin by redefining the depth of
a representation in a way that is independent of the Lie algebra. (This is neces-
sary because the usual definition [17; 18] requires ghaVg. ,+ = G /Gy r+
for r > 0; Jiu-Kang Yu was the first to notice that this is not always true.) For this
definition of depth, we verify the usual facts about depth. For example, we show
that the depth of a smooth representation is rational and that parabolic induction
preserves depth. Finally, we study how the local constancy of a functiai on
is related to the depths of the smooth irreducible representations occurring in the
function’s Plancherel support. For example, we show that a complex-valued, lo-
cally constant, compactly supported functiont®that has Plancherel support in
the smooth irreducible representationgbthat possess Iwahori-fixed vectors is
necessarily a finite sum of functions each of which is right-invariant with respect
to some lwahori subgroup @f.

Some of the results presented in Section 3 are well known. For example, under
the hypotheses théis finite andG is semisimple, variants of some of the results
in Section 3 occur in [14]. Since most of Section 3 was motivated by Allen Moy’s
suggestion that there exists a geometric interpretation for the displacement results
of [2; 16], it is not surprising that some of the results of Section 3 occur in [2; 16].

In any case, the proofs presented here are different and more general than those
that occur in these other sources; we require this extra generality.

I thank Philip Kutzko and Gopal Prasad for allowing me to use their proofs (of
Lemma 5.4.4 and of Lemmas 3.13, 3.2.1, and 3.4.2, respectively). | thank Robert
Kottwitz for his many helpful suggestions. In particular, one of his comments
evolved into Definition 5.3.1; this definition (and its Lie algebra analogue) has
greatly simplified our approach to various homogeneity problems. | thank Gopal
Prasad for his encouragement and many suggestions, particularly regarding Sec-
tion 3. | thank the referee for many helpful comments. This paper has benefited
from discussions with Jeff Adler, Jahwan Kim, Robert Kottwitz, Philip Kutzko,
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Allen Moy, Amritanshu Prasad, Gopal Prasad, Alan Roche, Paul J. Sally, Jr., and
Jiu-KangYu. Itis a pleasure to thank all of these people.

2. Notation

2.1. Basic Notation

Letk denote a field with nontrivial discrete valuationWe denote by the unique
extension ofv to any algebraic extension éf We assume thdtis complete and
that the residue fieldl is perfect. Denote the ring of integersioby R and the
prime ideal by®. Fix a uniformizing elements. Then® = @wR andf = R/&.
Let K denote a fixed maximal unramified extensiorkof

Let G be a connected, reductive, linear algebraic group definedkovwde let
G = G(k), the group ofk-rational points ofG. We denote by the Lie algebra
of G. We letg = g(k), the vector space df-rational points ofg. We useDG to
denote the group df-rational points of the derived group &.

Let L be the minimal Galois extension &f such thats is L-split. As in [18],
we normalizev by requiringv(L*) = Z.

If g,h € G, thensh = ghg™. If S C G, we let®S denote the seffs | g € G
ands € S}. If h € G then we write“h for ¢{h}, the G-orbit of h.

An element: € G is unipotentprovided that there existsiae X* (G) such that
lim,_.o*®h = 1. Let{ denote the set of unipotent elementsinlt is more usual
to say that an element is unipotent if the Zariski closure ofsiterbit contains 1.
Let /" denote the set of elementsdhthat are unipotent in this sense. Welgt
denote the set of elementsdnthat contain the identity in thg-adic closure of
their G-orbit. It follows thati/ C U’ C U”. From [15] we have thalY = U” if k
is perfect. From [1, Lemma 3.7.4] it follows that kifis perfect off is finite, then
u=u'.

If a group H acts on a sef, thenS* denotes the set df-fixed points ofs.

2.2. Apartments, Buildings, and Associated Notation

LetB(G) = B(G, k) denote the (enlarged) Bruhat-Tits buildinghfLet 3% G)
denote the reduced Bruhat-Tits building®f that is,3°%G) = B(DG).

We let dist: B(G) x B(G) — Rs( denote a (nontriviall-invariant distance
function as discussed in [22, Sec. 2.3]. koy € B(G), let[x, y] denote the geo-
desic inB(G) from x to y and let(x, y] denote , y] \ {x}. We define(x, y) and
[x, y) similarly.

For ak-Levi subgroupgM of G, we identify 5(M, k) in B(G, k). There is not a
canonical way to do this, but every natural embedding@¥, k) in B(G, k) has
the same image. F& C B(G), we let stalg; (2) denote the stabilizer g2 in G.

Given a maximak-split torusS of G, we have the toru§ = S(k) in G and the
corresponding apartmeut(S) = A(S, k) in B(G). We let(., -) denote the exten-
sion of the perfect pairing betweeti*(S) andX ,(S) to a pairing ofX*(S) ® R
andX.(S) ® R.
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We letd(S) = & (A) = O (S, k) denote the set of roots & with respect ta
andS; we denote by (S) = W(A) = V(S k, v) the set of affine roots d& with
respect tck, S, andv. If ¢ € W(A), theny € (A) denotes the gradient of.

Foryr € W(A), letU, denote the corresponding subgroup of the root gi@yp
(se€[17, Sec. 2.4]).

2.3. The Moy—Prasad Filtrations @f

In [17; 18], Allen Moy and Gopal Prasad associate to a fair) € B(G) x Rxg
a subgrougs, , in G. Although they consider only finitgin [17; 18], there is no
difficulty in extending their definition to our situation (see [1, Sec. 2.2]). We will
not repeat the definition here. Recall tidat,+ := | ,., Gx 5.

For x € B(G), we will denote the parahoric subgroup attached tby G,
(= G.,0), and we denote its pro-unipotent radi€al o+ by G;. Note that both
G, andG; depend only on the facet &f(G) to whichx belongs. IfF is a facet
in B(G) andx € F, then we defingGr = G, andG; = G;. Recall thatG, is a
subgroup of stap(x).

Forx € B(G), the quotientG, /G is the group off-rational points of a con-
nected reductive grou@, defined ovef.

2.4. Optimal Points

Let O denote a choice of optimal pointsH(G) (see [12, Sec. 1.4] or [1, Sec. 2.3)).
The setO is invariant under the action @ on B(G) and has several other prop-
erties. For example, the spte R>g | Gy, # G, ,+, x € O} is a discrete sub-
set of Q. The elements of this set are calledtimal numbersAlso, if (x,7) €
B(G) x R0, then there exisp, z € O such that

Gy, -+ C Gy p+ C Gy .
This follows from [1, Cor. 2.3.3].

3. Points, Lines, and the Displacement Function

Supposg € G. The displacement function is defined by(d) = dist(x, gx) for

x € B(G), and it is continuous. Define(g) := inf.cp) d(x) andB(g) =

{x € B(G) | dg(x) = d(g)}. In this section, we provide a geometric interpreta-
tion of d(g) and5(g). That this should be possible was first pointed out to me by
Allen Moy.

3.1. Lines in Apartments

DerINITION 3.1.1.  If Ais an apartmentiB8(G), then a 1-dimensional affine sub-
space of4 will be called aline.

As in [19], we can associate to an elemegrif G a parabolic subgroup, of G
and a Levi subgroup/, of P,, as follows.
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DErFINITION 3.1.2.  Supposg € G. We define the subgroup
P, = {h e G | the sequencgg’hg ™" | i € N} is bounded

of G. Note thatP, is the group ok-rational points of a parabolic subgrofp of
G defined ovek [19]. Let P, = P,*. ThenP, is a parabolic oppositg,, and the
Levi subgroupM, := P, N P, is the group ok-rational points of a Levi subgroup
M, of P, defined ovek.

The original statement and proof of Lemma 3.1.3 applied only to thdkat be-
longed to a maximak-torus ofG that split over a tamely ramified extension. The
proof here is due to Gopal Prasad.

LemMmaA 3.1.3. Suppose € G. Then either

(1) there exists an € B(G) such thatgx = x, or
(2) there exist an apartmed in B(G) and a lineZ in A such thafg acts on¢ by
nontrivial translation.

Proof (G. Prasad). Suppoge= G. Let Z denote the group df-rational points of
the maximalk-split torus in the center d¥1,. Then, according to [20], we have
B(M,) = B(Z) x B"%M,). The action o € M, on3(Z) is given by translation.
Moreover, the image of the group) in M,/Z is a bounded group. Thereforg,
has a fixed point inB’ed(Mg). SinceB(M,) C B(G), this proves the lemma.J

LemMma 3.1.4. Let A be an apartment and a point in3(G). Suppose that is
aline in A and thatx; andx; are two distinct points o such thatdist(x;, w) =
dist(x,, w). Then

(1) forall y € (x1, x2) we havedist(y, w) < dist(x;, w), and
(2) forall y € €\ [x1, x2] we havedist(y, w) > dist(x1, w).

Proof. This is a consequence of the nonpositive sectional curvatusé@j (see
[22, Sec. 2.3]). O

CoroLLARY 3.1.5. Suppose € G. Exactly one of the following statements is
true.

(1) There exists am € B(G) such thatgx = x.
(2) There exist an apartmend in B(G) and a line¢ in A such thatg acts on¢
by nontrivial translation.

Proof. Let .4 be an apartment i8(G) and¢ a line in A. Let x be a point in
B(G). Suppose thag both fixesx and acts by nontrivial translation @n Choose
yon¢andz € (y, gy). We have that lies on¢ andgy € (z, gz). We also have
dist(y, x) = dist(gy, x) and distz, x) = dist(gz, x). From Lemma 3.1.4 we con-
clude that distz, x) < dist(gy, x) and distgy, x) < dist(z, x), a contradiction.
O
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3.2. Some Results about Geodesics

We first show that the property of being a geodesic is a local one; this fact is used
without proof in [2; 14]. | thank Gopal Prasad for explaining the proof to me.

LemMma 3.2.1. Suppose, s, y, t € B(G) such thats € [x, y). If y € [s,t], then
y€[x,1].

Proof (G. Prasad). Let € [y, t] be the point nearestsuch that the geodesic
[x, ¢g] containsy. Since this is a closed condition amék [ y, ¢], the pointg exists.
If ¢ = t, then we are finished.

Suppose; # t. Let C be an alcove such thate C and(q,t] N C # @. Let A
be an apartment iB(G) containing bothC and the poink. Note that the geodesic
[x, g]liesin A.

Chooseg’ € (¢,t] N C. Sinceq’ € [¢, t] and since §, 1] lies in the geodesic
[y, t]thatliesin the geodesie|¢], we conclude thaj’ € [s, t]. Thus, the geodesic
[s, q] lies in both s, ¢'] and [x, ¢]. Since geodesics il are line segments and
since f, 4], [s,¢'], and [x, g] are geodesics i, we conclude that the geodesic
[x, g’] containsy. Sinceq’ € [y, t] is nearer thang is, we have a contradiction.

O
An induction argument yields the following corollary.

CoroLLARY 3.2.2. Fix n € N.jp. If xq, x1, ..., x,, are points in3(G) such that
x; belongs to the geodesje;_1, x;11] for all 0 < i < n, thenx; belongs to the
geodesidxg, x,] forall 0 < j < n.

Our final result of this subsection shows that an infinite geodesic is a line.

LemMma 3.2.3. If T'is an infinite geodesic il8(G), that is, if

= U[x,n,xn],

neN
wherex i1, x4, ... In B(G) such thafx_,, x,] C [x_1_,, x,+1] forall n e Nand

min{dist(x1, x,,), dist(x1, x_,)} — oo,
then there exists an apartmedtin 5(G) such thatl" C A.
Proof. This is a special case of [8, Prop. 2.8.3]. O

ReEMARK 3.2.4. IfT" is an infinite geodesic in an apartme#t thenT is a line
in.A.

3.3. The Displacement Function

In [2; 16], many properties of the displacement function are derived. We will
need the following property; we provide a more direct proof than that given in [2,
Prop. 2.4].
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LeEmma 3.3.1. Suppose € G. If y € B(G) such thatd,(y) > d(g), then we
have
del(y,gn) < dg(y) = dglgy).

Proof. We have

d,(y) = dist(y, gy) = dist(gy. g2y) = d,(gy).

Thus we need only establish the inequality @ .., < dg().

Suppose there existsa& (y, gy) such that d(z) > d.(y). We will generate a
contradiction. From the triangle inequality we have

d,(y) = dist(y, gy) = dist(y, z) + dist(z, gy) = dist(z, gy) + dist(gy. gz)

> dist(z, gz) = dg(2).

If dg(2) > d,(y), then we conclude that,dz) > d,(z), a contradiction.

If dg(z) = dg(y), then we conclude that

dist(z, gy) + dist(gy, gz) = dist(z, gz).

This implies thatg™y lies on the geodesicg[” Yz, g”z] for all m € Z. From
Corollary 3.2.2 we conclude that

—(n+1 (n+1)

yelg™y, 8"yl Clg y, 8"yl

and distg™y, g"y) = 2n - dg(y) for all n € N. Fix x € B(G) such that ¢(x) <
d,(y). We now argue as in the proof of [2, Prop. 2.4]. Two applications of the
triangle inequality yield

2n - dg(y) =dist(g™"y, g"y)
<dist(g™"y, g7"x) + dist(g""x, g"x) + dist(g"x, g"y)
< 2-dist(x, y) + 2n - dy(x)
for all n € N. We therefore conclude that
0 < dg(y) — dg(x) < dist(x, y)/n

for all n € N, a contradiction. OJ

CoroLLARY 3.3.2. Suppose € G. If Ais an apartment i3(G) containing a
line £ on whichg acts by translation, thed(g) is equal to the distance that
translates any point oA.

For future reference, we record the following corollary.

CoroLLARY 3.3.3. Supposg € G. If there exists an € B°YG) such thagx =
x, then for ally € B"4G) we have

del(y,em < dg(¥) = dg(8Y)-

Proof. The proof of Lemma 3.3.1 uses only the triangle inequality and the fact
that being a geodesic is a local property. These both remain val@ft&G). O
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3.4. A Geometric Interpretation af(g) and B(g)

The proofs and results of this subsection provide a geometric context for some of
the standard facts (see e.qg. [14, Secs. 5, 6; 16, Secs. 5.5-5.7]) appandB(g).

Lemma 3.4.1. If g€ G, thenB(g) # 0.

Proof. From Lemma 3.1.3 we have that eithefixes a point in3(G) or there
exist an apartmentl and a line in4 on whichg acts by nontrivial translation. If
g fixes a point, then ) = 0 andB(g) # 0. If g acts by nontrivial translation on
a line¢ in an apartment, then it follows from Corollary 3.3.2 that every point
on ¢ belongs ta3(g). O

The statement and proof of the next result are due to Gopal Prasad.
LEMMA 3.4.2. If g € G then, foralln € N, we haved(g”) = n - d(g).

Proof (G. Prasad). If dg) = 0, thendg”) = 0. Ifd(g) > O, then from Lemma
3.1.3 there exist an apartmedtin B(G) and a line¢ in A on which g acts by
translation. From Corollary 3.3.2, the distance by whictranslates any point
on ¢ is equal to dg). Consequently, the group elemegit translates any point
on¢{ by a distance: - d(g). From Corollary 3.3.2 we now conclude thated) =
n-d(g). O

After presenting a definition, we descriBé¢g) when d g) # 0.

DerFiNiTION 3.4.3.  Suppose thdtis a line in an apartmentl in B(G). Let S
denote the maximaid-split torus inG corresponding tod. Let &, denote those
k-roots B of Ssuch that, for any affine roat for whichy; = 8, we have that the
root hyperplane fot) is parallel (in the Euclidean spagb) to the line¢; that is,
d, is the set of roots that are perpendicular to the “directiof’afnder the pair-
ing (-, -). Let M, denote the Levi subgroup @f generated by ¢ (S)(k) and the
root groupsUz for g € @,.

LEmMA 3.4.4. Suppose € G such thatd(g) # 0.

(1) If x € B(G) such thatd,(x) = d(g), then there exist an apartment and a
line ¢ in A such thatr lies on¢ and g acts by translation or.

(2) If Aisanapartmenti3(G) and/ is aline in.A on whichg acts by transla-
tion, thenM, = M, (see Definitions 3.1.2 and 3.4.3

(3) If Aisan apartment i3(G) and¢ is a line in.A on whichg acts by trans-
lation, thenA is an apartment ir3(M,) and the image of in Bred(Mg) isa
g-fixed point.

(4) If Aj (resp.,A») is an apartment irB(G) and if £, is a line in A3 (resp.,¢;
is aline in.A,) on whichg acts by translation, then there exists an apartment
A containing both¢; and £,.

REMARK 3.4.5. Since3(g) # @, parts (1) and (4) follow from [7, Thm. 11.6.8].
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Proof. (1) Suppose € B(G) such that d(x) = d(g) # 0. For alln € N, it fol-
lows from the definition of dg?*), the triangle inequality, and Lemma 3.4.2 that

d(g?") < dist(x, g%"x) = dist(g"x, g"x)
(n=1)
< Z dist(g'x, g"x) = 2n - dy(x) = d(g?").

Consequently, we must have

(n—1)
dist(g7"x, g"x) = Z dist(g'x, g x).

i=—n

That is, for alln € N, the geodesicd"x, g"x] contains the pointg’x for —n <

i < n. Consequently, we havee [g~"x, g"x] C [¢"""x, g Vx]foralln e N
and distx, g7"x) = dist(x, g"x) — oo. By Lemma 3.2.3 there is an apartment
A and a linet in A such thatg’x lies on¢ for all i € Z. We conclude thag acts
on ¢ by nontrivial translation.

(2) Supposed is an apartment il5(G) and/ is a line in.A on whichg acts by
nontrivial translation.

We first show thatd, C M,. Let Z, denote the center dif,. From [20, proof
of Lemme 2.4.16, esp. part (€)] we have that M,. The image o in B"%M,)
is ag-fixed point. Thus, the image ¢¢) in M,/Z, is a bounded group. It follows
that, for allm € M,, the sequenceg’mg~"} and{g~"mg'} are bounded. That
is, we haveM, C M,.

Let S be the maximak-split torus of G corresponding ted. Since A is an
apartment inM, andM, C M,, we haveS(k) C M,. If M, g M,, then there
exists a rootr € ®(S, k) such that, ¢ M, \ M,. In this case, the set of points
on ¢ formed by looking at the intersection éfwith all those hyperplanes i
that correspond to affine roots of gradienis infinite and discrete. Thus, there
existx, y € £ andr € R such that(M,), , # (M,), .. However, the image of in
Brd(M,) is either a point or a line. Singghas a fixed point if3"4(M,), from
Corollary 3.1.5 we conclude that the image/ Bfe"(Mg) is a point. This means
that for allx, y € £ and for allr € R we have(M,)., , = (M,),, -, a contradiction.

(3) Supposed is an apartment i8(G) and¢ is a line in A on whichg acts
by nontrivial translation. Thenl is an apartment i#8(M,) and the image of in
B™®4(M,) is ag-fixed point. The result now follows from (2).

(4) Now suppose we have two linésin 4; and{, in A, as in the statement
of (4). By (3), A; is an apartment il8(M,) and the image of; in B““‘(Mg) isa
g-fixed point fori = 1, 2. From [20] we have3(M,) = Bfe"(Mg) x B(Z), where
Z is the group ok-rational points of the maximatsplit torus in the center ¥l ,.
We conclude thag acts or¢y (resp.£2) viatranslation inf3(Z). Thus, since there
is an apartment itﬁ?red(Mg) containing the images d@f and{,, we conclude that
there exists an apartmedtin 3(M,) containing bot¢, and{. O

CoroLLARY 3.4.6. The setB(g) is convex.
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Proof. If d(g) = O, this follows from the fact that the action of on B(G) takes
geodesics to geodesics. Ifg > 0, this follows from Lemma 3.4.4. O

Lemma 3.4.7. Thefunctiord: G — Ris alocally constant function whose image
is a discrete subset dR.

Proof. We first show that d is a locally constant function. kgiXxn G andx €
B(g). Let H be the subgroup of that fixes [, gx] pointwise. We have that/
is an open subgroup @f. It follows from Corollary 3.4.6 that, for alt € H and
all y € [x, gx], we have

den(y) = dg(y) = d(g).

An application of Lemma 3.3.1 shows thatett) = d(g) forall 2 € H.

We now show that the image of d is a discrete subsit dfix a maximak-split
torusS of G and an alcove in the apartmentA(S, k). Since d is a class func-
tion, it follows from the Bruhat decomposition [22, Sec. 3.3.1] that the image of d
is a subset of

{mind,(x) 1 n e No(S) (k) .

xeC

which is a discrete subset &. O

3.5. Two Questions of Allen Moy

In [16, Secs. 5.7, 5.10], Moy poses two questions regarding thB(ggt These
guestions stem from the following result (see [16, Cors. 5.7(ii), 5.9]).

LemmA 3.5.1. Supposeg € G.

(1) If h e G commutes witly, thenhB(g) C B(g).
(2) If g has a Jordan decompositign= su with u unipotent ands semisimple,
thend £ B(s)" C B(g) and@ # B(g)" C B(s).

HereB(s)" denotes tha-fixed points of3(s) and similarly forB(g)".

QuesTioN 3.5.2.  Supposee G is a semisimple element contained in the group
of k-rational points of some maximatsplit torus ofG. Is it true thatB(s) =
B(Cg(s))?

From Lemma 3.5.1 we know that the Levi subgrafip(s) acts on3(s). With

some restrictions ohandG, we can probably answer this question in the affirma-
tive (see e.g. [13, Cor. 4.4.2]). In general, however, the answer is no. For example,
suppose our field is the field, of 2-adic numbersS is a maximak-split torus in

SL,, ands € S(Z,) has distinct eigenvalues. In this case, we haveftiég (s))

is the apartment ilB(SL,(Q2)) corresponding t®. However, B(s) is strictly
larger thanB(Cs(s)) since, for each vertex of A(S, Q2), s must fix the three
edges adjacent ta This is a specific example of a general phenomenon discussed
in [22, Sec. 3.6.1].
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QuestioN 3.5.3. Ifg € G has Jordan decompositign= su with  unipotent
ands semisimple, then is it true th#(g)* = B(g)?

Unfortunately, the answer to this question is almost always no. Prasad was the
first to notice this—he looked at integral elements of,8L,) with nonintegral
Jordan decompositions. Here is a more concrete example. &1x- § such that

a #1 Letb = (a — a—?) and consider the elements

a a 0 a a —-a-w?t
g=|0 a? b-ot|, s=(0 a? bt |,
0O O a 0O O a
and
1 0 w»!
u=|10 1 O
00 1

in SL3(k). We haveg € SL3(R), but neithers noru belong to Slz(R). We also
haveg = su = us with u unipotent and semisimple.

4. Some Results for Moy—Prasad Filtrations ofG

4.1. The Main Results

DErFINITION 4.1.1.  Forr € R, define

G = |J G,

xeB(G)
Forr e R, we also defing, + := UxeB(G) G,,+. Note thatG,+ = | J,., G,.

DEFINITION 4.1.2.

e = U staly (x).

xeB(G)

When there is no possibility for confusion we will writefor 4. Note thati is
G-invariantand/ C G, C U forall r e R>o.

REMARk 4.1.3. Here is another definition gf(due to G. Prasad). The s¢ton-
sists of those € G for which (i) all of the eigenvalues of Ag) have modulus 1
and (ii) modulo the commutator subgroup®f g generates a bounded subgroup.
It follows thatil is closed (see also [21, Lemma 1]).

The following theorems state the main results of this section.

THEOREM 4.1.4.
(1) If r eRso, thenG, = ﬂzeg(c) G, -U.
(2) 4=.ep St (2) - 4.
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THEOREM 4.1.5. SupposeP is a parabolic subgroup off with a Levi decompo-
sition P = MN.

(1) If r eRso, thenM N G, = M,.

(2) M N =4y.

In the definition ofil, it is important to keep in mind tha8(G) is the enlarged
Bruhat-Tits building ofG.

4.2. Two Results about Parahoric Subgroups

Another version of the following lemma has been proved by Eugene Kushnirsky,
whose proof appears in [13, Lemma 4.5.1].

Lemma 4.2.1. If y e B(G) andg € Go N staly; (y), theng € G,.

Proof. There exists a € B(G) such thatg € G,. Let A be an apartment i3(G)
containingy andz.
Define
V={cA|geG.).

Becaus€/ is a closed and nonempty set, we can chooseV such that, for all
7/eV,

dist(x, y) < dist(z’, y).
If x = y then there is nothing to do, so we suppose thgt y and derive a contra-
diction. We letF be the first facet ind through which(x, y] passes as we move
fromx toy. Note thatr € F andF NV = ¢.

Sinceg fixes [x, y] N F, we have thag normalizesGy. Let g andG; denote
the images of andGy in the connected reductive gro@(§). SinceGr. is a par-
abolic subgroup o6, (f) andGr is normalized byg, we haveg € Gy (see [10,
Thm. 8.3.3; 5, Sec1.15-21.16]) Therefore,g € Gr. In other wordsF C V, a
contradiction. O

The next result concerns the structure of parahoric subgrou@s of

LEMMA 4.2.2. Suppose thaP is a parabolic subgroup of; with a Levi decom-
positionP = MN. Let N denote the unipotent radical of the parabolic subgroup
oppositeP = MN. If Sis a maximak-split torus of G such thatS(k) ¢ M then,
for all x € A(S, k), we have

Gy = Ny - N, - N, - My,

where M, is the parahoric subgroup a¥/ associated tor, N, = G, N N, and
N, =G, NN.

Proof. SinceS(k) C M, the image ofG, N P (resp.,G, "M, Gy NN, Gy N N)

in G,/G is the group of-rational points of a parabolic subgroBresp., a Levi
subgroupM of P, the unipotent radicdll of P, the unipotent radicall of the par-
abolic oppositd® = MN) of G, defined ovef. From [6, Prop. 6.25] we have that
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G,(f) = N(f) - N(§) - N(§) - M(§). SinceG; has the lwahori decompositi@gh =
(NNGF)-M7F-(NNGY), the lemma follows. O

4.3. A Proof of Theorem 4.1.4

Lemma 4.3.1 establishes Theorem 4.1.4(2). We note that, Sirmecell/ are G-
invariant, for allx € B(G) we have

H-staly(x) =staly(x) -4 and G, -U=U-G,.

LEMMA 4.3.1.
U= [ staty(z)- 4.

zeB(G)

Proof. That the left-hand side is included in the right-hand side is clear. We now
turn our attention to the opposite inclusion.

We will argue by contradiction. Suppose that (1 x5, Stals (z) - U does
not fix a point inB(G). From Lemma 3.1.3 there must exist an apartméind
aline in A such thaig acts on¢ by (nontrivial) translation.

There exists a facdt in A such thatF N ¢ is open in¢. SinceG acts “simpli-
cially” on B(G), there exist an open subsgt of £ andx € F’ such thatF’ c F
and staly(y) = stah; (x) for all y € F’. By hypothesis, there exist elements
stal; (x) andu € 4 such thatg = uh. Let w € B(G) be a fixed point ofi. Then,
forallye F’,

dist(w, y) = dist(w, uy) = dist(w, uhy) = dist(w, gy).
This contradicts Lemma 3.1.4. O

LEmMA 4.3.2.
Go= () G.-U.
zeB(G)

Proof. “>" Suppose thap ﬂzeB(G) G, -U. From Lemma 4.3.1, the element
must fix a pointc € 5(G). By hypothesis, there exigte G, andu € U such that
g = uh. Sinceg andh fix x, so must:. But then Lemma 4.2.1 says that G,.

“C” We need to show that, C U - G, for x, y € B(G). Let A be an apart-
ment inB(G) containing bothx andy; let S be the correspondinksplit torus.
Let M = Cs(S)(k). Let P be a minimal parabolic with a Levi decomposition
MN so that the (spherical) chamberXt(S) ® R determined bV is invariant
under translation by the vectoy — x).

Let N be the unipotent radical of the parabolic oppogite- MN. From Lem-
ma 4.2.2G, = N, - N - N, - M, and similarly forG,. Because of the way we
choseM andN, we haveM, = M, andN, C N,. Consequently, ig € G, then
there exisuy, ny € Ny, 71 € N, andm € M, such that

g=mni-n-np-m
="p.n1-np-m
e U-G,. O
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By [1, Lemma 3.7.20], Lemma 4.3.2 implies Theorem 4.1.4(1) in the case when
r > 0. Thus, we have established Theorem 4.1.4.

4.4. Parabolic Descent

In this subsection we prove Theorem 4.1.5. Supposettlima parabolic subgroup
of G with a Levi decompositio? = MN.

LEMMA 4.4.1. SUNM = Uy,.

Proof. The right-hand side is clearly contained in the left-hand side.

To show the opposite inclusion, we suppose there iganil N M such that
m ¢ U, and derive a contradiction. Sinee¢ ii,,, Lemma 3.1.3 tells us that there
exist an apartmentl in B(M) and a linef in A such thatn acts on¢ by a non-
trivial translation. Thereforen acts nontrivially or¢ and fixes a point ilB(G),
which contradicts Corollary 3.1.5. O

LEMMA 4.4.2. GoNM = M.

Proof. The right-hand side is clearly a subset of the left-hand side.
From Lemma 4.4.1 we have thapy N M C i,,. However, sinceG, N M =
M, forall x e B(M), Lemma 4.2.1 tells us thaig N Uy, C Mp. OJ

From [1, Lemma 3.7.25], Lemma 4.4.2 implies Theorem 4.1.5(1) in the case when
r > 0. Thus, we have established Theorem 4.1.5.

5. Some Results Concerning Representations 6f

In this section we wish to transfer many of the ideas of [1, Sec. 4] (see also [12,
Chap. 2]) fromg to G. After introducing some additional notation (which will be
used throughout the remainder of this paper), we consider the interplay between
representations af, their depth, and functions o@.

5.1. Notation

We place further restrictions updnwe assume thdtis a finite field. Letdg de-
note a Haar measure @n

LetH = HY = C>(G) denote the space of complex-valued, compactly sup-
ported, locally constant functions a@». For a compact open subgroup of G,
let C.(G/H) C H denote the set of thosg € H such thatf(gh) = f(g) for
allhe H. If H' is a compact open subgroup 6fcontainingH, thenC(H'/H)
denotes the set of thogee C.(G/H ) with supportinH’'.

Suppose thatr, V) is afinite-length, admissible, complex representatiof .of
For f € H, we define the operator-valued Fourier transfornydfy f := = (f).
Heren (f) € End: (V) is the finite-rank operator defined by

(v i= /G Fle)m(g)vdg
forveV.
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Let P be a parabolic subgroup @ with a Levi decompositionP = MN.
Then, for a smooth irreducible representatiof M, we denote by Inflo the
finite-length admissible representation@ibbtained by normalized induction.

5.2. The Depth of a Representation

In this subsection we define the depth of a smooth representation and collect some
facts about depth. The definition of depth given here is slightly different from that
given by Moy and Prasad in [17]; the reliance ghas been removed from their
definition. The proofs of this subsection follow, to a large extent, tho§E/p18].

LemMA 5.2.1. Suppose thatr, V) is a smooth representation 6f. Then there
exists arr () € Q with the following properties.

(1) If (x,r)eB(G) x R>g such thatv %« is nontrivial, thernv > r (7).
(2) There exists & € B(G) such thatV %@ is nontrivial.

Proof. Since the set of optimal numbers is a discrete subs@t(eée Section 2.4),
we can letr (;r) be the least nonnegative optimal number for which there exists an
optimal pointz such that

V Garert £ {0},

Supposéx, r) € B(G) x R such thal’ %+ is nontrivial. Then there exists an
optimal pointy such that
Gy, + C Gy p+.

Thus{0} # V %+ c V%.*  which implies that > r(x). O
Thanks to Lemma 5.2.1, the following definition makes sense.

DEFINITION 5.2.2.  Suppose thdtr, V) is a smooth representation 6f. The
depthp () of 7 is the least nonnegative real number for which there existsean
B(G) such that %« is nontrivial.

REMARK 5.2.3. The depth of a smooth representation is an optimal number; in
particular, it is rational.

LeEmMA 5.2.4. SupposeP is a parabolic subgroup of; with a Levi decomposi-
tion P = MN. Suppose thaio, W) is an irreducible smooth representationMt
If (7, V) is an irreducible subquotient dhdg(a), thenp(w) = p(o).

Proof. For notational ease, we assume for this proof that our induction is not nor-
malized. Because the modular character is unramified (i.e., it has depth zero), this
does not affect the statement of the lemma.

Without loss of generality, we may assume thas an irreducible supercuspi-
dal representation. We may also assume thita subrepresentation of Ifitb)
(see e.g. [11, Thm. 6.3.7]).

Fix an alcoveC in B(M) c B(G). Let xg € C be a special point fo.
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We first show thap () > p(0). Since(r, V) has depthp(r), there exist a
y € C and a nonzero functiogi: G — W such that:

1) fev;
(2) fm-n-g) =o(m)f(g)forallme M, ne N, andg € G; and
(3) f(g-n')= f(g) forall g e G andh’ € Gy, ,(m)+.

SinceG = PG,, (Iwasawa decomposition) antl # 0, there exists ai € Gy,
such that 0% f(h) € W. Sincehxg = xo € B(M) andxg € hC, from [1, Lemma
2.4.1] there exists an € G,, N N such thatthC c B(M). Now, for allm €
Mnhy_’p(”)*’ =MnN Gnhy’p(”)‘i’ we have

o(m)f(hy=om ™ -m-n)f(h)=f(n'-m-n-h)
= f(h- (""" m)).

1

BUt" " m € " Myt = My piyt © Gy pimyts SOG(m) f(R) = f(h).
Thusp (o) < p(m).

We now show thap () < p(o). There exists & € B(M) C B(G) such that
WMy.»@" is nontrivial. Frobenius reciprocity states that

Homg (V, Ind$ o) = Homy, (Vy, o).
Therefore, there exisif-submodules$V; c Vy such that the sequence
O—- W, - W —0—0

is exact. Since taking/, ,(,)+-fixed vectors is exact, we hay@} # W, v»«*
vMr@" From work of Jacquet and Harish-Chandra (see [11, Thm. 3.3.3]) we
have that/ ©»»©" maps ontd/}"»»«*, which is nontrivial. Thug () < p(0).

UJ
We now state a corollary that results from repeating the proof of Lemma 5.2.4 with
appropriate changes. Recall thatifis an alcove in3(G), thenG ¢ denotes the
associated Iwahori subgroup.

CoROLLARY 5.2.5. SupposeP is a parabolic subgroup of; with a Levi decom-
position P = MN. Suppose thato, W) is an irreducible smooth representation
of M and thatC is an alcove in3(M). Supposé&r, V) is an irreducible subquo-
tient of Ind$o. Then

wMe £ 10} if and only if V¢¢ £ {0}.

See [4] for a complete treatment of admissible representations with nontrivial
Iwahori-fixed vectors.

LemMma 5.2.6. Fixr > 0. If (7, V) is a smooth representation ¢f such that
every irreducible subquotient afr, V') has depth, then(z, V') has depth-.
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Proof. Sincep(w) < r, we must show that () > r.

Chooses € R for which there exists an € B(G) such thatv Cx.s* # {0}.
Choosev € V %.s* and letW = (G - v). SinceW is finitely generated, there exists
a subrepresentatioi; g W such that

O—->Wi— W—> WW;—>0

is an exact sequence 6fmodules and the quotieit/ W1 is irreducible. Because
takingG, -+ fixed vectors is exact, we hay@// Wy) =" £ {0} (otherwiseW; =
W). Thuss > r, which implies thato () > r. O

CoROLLARY 5.2.7. SupposeP is a parabolic subgroup o6 with a Levi de-
compositionP = MN. If o is an irreducible smooth representation &f then
p(Ind(0)) = p(0).

5.3. An Interesting Space of Functions

Fix r € R>o. Suppose thap is a parabolic subgroup @ with a Levi decompo-
sition P = MN. Letxo € B(M) be a special point foG.

DEeFINITION 5.3.1.

HE = Y CG/G.,).

xeB(G)

We interpret the sum on the right in the following way.fie H, = HC, then we
can write f as a finite suny = Y, f; with f; € C.(G/G,, ;) andy; € B(G).

DerFINITION 5.3.2.  Forf e HC, we definefp € HM by

fo(m) = 842(m) / dn [ fCommy) dh
N JGy,
forme M.

Heredn is a Haar measure aM, dh is the normalized Haar measure @g,, and
§p is the modular function foP.

5.4. Functions and Representations

In the following subsections we wish to make a precise statement about the

Plancherel support of functions #,. We also want to show that the map fréh

to 1M defined in Definition 5.3.2 takek, into %Y. These results were originally

pursued because of their relevance to certain homogeneity problems. | thank Alan

Roche for his extremely helpful comments on an earlier version of this subsection.
Fix r € R>o. LetR(G) denote the category of smooth complex representations

of G. We recall the basic facts about the Bernstein decompositidt( 6% (see [9]

for a fuller recollection). The Bernstein decomposition allows us to viRit&)

as a direct product of full subcategories:
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RG) = [ ».
seB

The Bernstein spectrufd consists of equivalence classés ] whereL is a Levi
subgroup ofG ando is an irreducible, supercuspidal, smooth representati@n of
(Apair (L', o) belongs to the equivalence clags p] if and only if there exisg €
G and an unramified charactgrof L suchthatL’ = L and$c’' = o @ x.) If s =
[L, o] € B, thenR* consists of those smooth representationaf G for which
each irreducible subquotientsfoccurs as a subquotient of Ifir ® x ) for some
unramified charactey of L and some paraboli® with Levi L. It follows from
Lemma 5.2.4 and Lemma 5.2.6 that every objeck&f°] has deptho (o).

With respect to the right regular representatitiris a smooth representation of
G. Therefore, from the Bernstein decomposition of the cate@di§), we can
write H = @, H*. Each#* is aG-stable subspace @{.

Since irreducible depth-zero representations may or may not have nontrivial
Iwahori-fixed vectors, we introduce some notation to distinguish these two cases.

DEFINITION 5.4.1. Fors € R.o, let IT; = I1¢ denote the set of equivalence
classes of irreducible smooth representations of depth strictly less than Let

I = 11§ denote the set of equivalence classes of irreducible smooth representa-
tions of G possessing nontrivial lwahori-fixed vectors.

Thus, ifs € R-o and(m, V) is a representative for a classlihy, thenV is gener-
ated (as &-representation) by &, ,-fixed vector for some € 5(G).

Let s be a point in the Bernstein spectrum and letRf) denote the set of
equivalence classes of irreducible object$if. From Lemma 5.2.4 and Corol-
lary 5.2.5, we have that eith&t, N Irr(2R°) is trivial or Irr(JR°) C I1,. The fol-
lowing definitions therefore make sense.

DEFINITION 5.4.2.
B, ={s€B | Irr(R°) CI1,};

M, = P H°.
5B,

We will require one more definition before proving the main result of this subsec-
tion.

DEFINITION 5.4.3.  Suppos¢ € H. We will say that suppf) C g if f(r) =

0 for all irreducible smooth representationsthat do not possess a nontrivial
Iwahori-fixed vector. Fos € R..o we will say that suppf) c I, if f(r) = 0 for
all irreducible smooth representatiomsvith p () > s.

In the following lemma, the second equality is valid for any subset of the Bern-
stein spectrum.

LEMMA 5.4.4. H, = {f eH | suppf) C I1,} = H_.
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Proof (P. Kutzko). From the definitions it follows that, c {f € H | suppf) C
,}).

We now show thatf € H | supp(f) C I,} C H,. Supposef € H such that
suppf) C I,. Sincef e H = @, H®, we canwritef = Y__ £ with £% e H°.
Fix t € B such thatft # 0. It will be enough to show thate 9B,. Since f' #
0, by [3, Prop. 2.12] there exists a smooth irreducible representétiovi) such
thatm (f*) # 0. Note that(zr, V) is a nondegeneraftet-module, so it occurs as
a quotient ofH*; this implies that(r, V) is an object irfR*. Since fors # t we
have that(z, V) is not an object ifR®, we conclude that

w(HHw =m(fHw

for all w € V. Therefore,w (f) is nonzero. It follows thats, V) represents an
equivalence class ifi, and thug € %5, ..

Finally, we show tha#{, C #,. As aG-representation, the equivalence class
of each irreducible subquotient &, lies inI1,, and each such representative is
therefore generated (asGarepresentation) by &, .-fixed vector for some €
B(G). We claim that?{/ is generated (as @-representation) by a collection of
such vectors. Indeed, suppose this is not the case. Then there exists a set of idem-
potentst C H such that

(1) Y.cpHeH; #H, and
(2) for each irreducible subquotient of /., there exists ar’ € E such that
He'X = X.

Since) , . Hel, # ., we can produc&-modulesw; andW, such that

Z’He’H; c W, ; Wi C ’H;
ecE
with W1/ W irreducible. But there exists asi € E such thatHe (W1/ W) =
(W1/W3). HenceHe' Wy + W, = Wy, which implies thatW; = W,, a contra-
diction.
Becausé{ | is generated by a collection 6f, .-fixed vectors, we havl| C H,.
O
5.5. Two Consequences for Harmonic Analysis

Suppose > 0. The function spac@{, plays an important role in harmonic analy-
sis. It is desirable to have an understanding of how the spadeehaves under
parabolic descent and the degree to whithdepends om.

The following lemma is the group analogue of [1, Rem. 4.2.10]. Suppoise
a parabolic subgroup @ with a Levi decompositiol® = MN.

LemMA 5.5.1. Suppose that is an irreducible smooth representation &f. If
(Ind§(0))(f) = 0, theno (fp) = 0.

Proof. This can be obtained from a minor modification of the computations found
in [23, pp. 233-234]. O
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LemMA 5.5.2. Forr > 0, the mapf — fp takesH S into HY.

Proof. Supposef € HS¢. By Lemma 5.4.4, it will be sufficient to show that
supp{ﬁ) C M. Supposer is an irreducible smooth representationiéfsuch
that the equivalence class®fs notan element dil”. From Lemma5.2.4, Corol-
lary 5.2.5, and Lemma 5.4.4 we haMed,‘}(o))(f) = 0. The lemma now follows
from Lemma 5.5.1. O

To investigate the degree to whigh. depends om, we introduce the space

Hyei= Y Ce(G/Gyrpo).
xeB(G)

We interpret this sum as in Definition 5.3.1.

Note that ifz is a positive-depth irreducible smooth representatio@ ofhen
p(m) =rifandonlyifres,, = =0andres, , = # 0. (Here reg;, = means the
restriction ofr to the space of functiorg, .)

LeEMMA 5.5.3. Fixs > 0. There existsan € (0, s] suchthat, foralr € (s —e¢, s),
we have
H,+ = Hs.

Proof. Chooses € (0, s] such that the sats — ¢, s) does not intersect the set of
optimal numbers. Fix, r € (s — ¢, s) with ¢t < r. We have

H, CH,+ C Hs.

Note that, ifr is a smooth representation 6f then (by Remark 5.2.3) we have
thatp () > sifand only if p(7) > ¢t. ThusH, = H, by Lemma 5.4.4. O

The following corollary follows from the proof of Lemma 5.5.3.

CoROLLARY 5.5.4. Fixr > 0. We have

H,+ ={f €H | f(x) = 0 for all smooth irreducible
representationsr of G such thatp () > r}.
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