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Some Applications of Bruhat–Tits Theory to
Harmonic Analysis on a Reductivep-adic Group

Stephen DeBacker

1. Introduction

Let k denote a field with nontrivial discrete valuation. We assume thatk is com-
plete with perfect residue fieldf. LetG denote the group ofk-rational points of a
reductive, connected, linear algebraic groupG defined overk and letg denote its
Lie algebra. LetB(G) denote the Bruhat–Tits building ofG.

The basic tools of harmonic analysis ong are invariant distributions and the
Fourier transform. In [1; 12] the formalism of Moy and Prasad [17; 18] is used to
develop a “uniform” way to describe both the support of invariant distributions
and how certain important spaces of functions behave with respect to the Fourier
transform. The purpose of this paper is to prove the group analogues of these re-
sults. As discussed below, these results are more difficult to obtain than their Lie
algebra counterparts.

We begin by studying a relationship between the structure ofG and the geom-
etry associated to the displacement function onB(G). Fix g ∈G. In Section 3.1
we associate tog a Levi subgroup,Mg. We then show that eitherg fixes a point in
B(G) or there is a line inB(G) on whichg acts by nontrivial translation, but not
both. (A line in a building is a 1-dimensional affine subspace of an apartment.)
This result (Corollary 3.1.5) uses the nonpositive curvature ofB(G), and it is the
basis for many of the results of the paper. Define thedisplacement functiondg on
B(G) by setting dg(x) equal to the distanceg movesx. We show that the set of
elements inB(G) where dg assumes its minimum value is nonempty. It follows
[7, Chap. II] that the subset ofB(G) where dg assumes its minimum value can be
characterized as either the set ofg-fixed points inB(G) or the union of lines in
B(G) on whichg acts by nontrivial translation. We then show that if` is a line on
which g acts by nontrivial translation, then the Levi subgroupMg is equal to the
Levi subgroup ofG naturally associated tò.

Supposer ≥ 0. We next obtain group analogues of the results ong of [12,
Sec. 1.6] (see also [1, Sec. 3.1]); these results are used to describe the support of
invariant distributions. We show that⋃

x∈B(G)
Gx,r =

⋂
x∈B(G)

Gx,r · U . (†)
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HereU denotes the set of unipotent elements, andGx,r is the Moy–Prasad filtra-
tion subgroup ofG defined in [17; 18]. The chief obstacle to obtaining these results
was that forG the “depth” at a pointx ∈B(G) can take only nonnegative values.
For the Lie algebra, ifX ∈ g andx ∈ B(G), then there exists anr ∈ R such that
X belongs to the Moy–Prasad filtration latticegx,r . However, forh ∈G andx ∈
B(G) we can speak about the “depth” ofh atx only if h belongs to the parahoric
subgroup associated tox. The key is to show that our problems can be reduced
to the “depth zero” (or parahoric) situation by using the nonpositive curvature of
B(G). Once this is accomplished, the proofs mirror the proofs for the Lie algebra.
We also show that the set defined by equation (†) behaves well with respect to par-
abolic descent. That is, for a parabolic subgroupP ofG with Levi decomposition
P = MN, we have

M ∩
( ⋃
x∈B(G)

Gx,r

)
=

⋃
x∈B(M)

Mx,r .

Under the assumption thatf is finite, we consider the interplay between repre-
sentations ofG, their depth, and functions onG. The main result in this section
is a group analogue of [1, Lemma 4.2.3]. We begin by redefining the depth of
a representation in a way that is independent of the Lie algebra. (This is neces-
sary because the usual definition [17; 18] requires thatgx,r/gx,r+ ∼= Gx,r/Gx,r+
for r > 0; Jiu-KangYu was the first to notice that this is not always true.) For this
definition of depth, we verify the usual facts about depth. For example, we show
that the depth of a smooth representation is rational and that parabolic induction
preserves depth. Finally, we study how the local constancy of a function onG

is related to the depths of the smooth irreducible representations occurring in the
function’s Plancherel support. For example, we show that a complex-valued, lo-
cally constant, compactly supported function ofG that has Plancherel support in
the smooth irreducible representations ofG that possess Iwahori-fixed vectors is
necessarily a finite sum of functions each of which is right-invariant with respect
to some Iwahori subgroup ofG.

Some of the results presented in Section 3 are well known. For example, under
the hypotheses thatf is finite andG is semisimple, variants of some of the results
in Section 3 occur in [14]. Since most of Section 3 was motivated by Allen Moy’s
suggestion that there exists a geometric interpretation for the displacement results
of [2; 16], it is not surprising that some of the results of Section 3 occur in [2; 16].
In any case, the proofs presented here are different and more general than those
that occur in these other sources; we require this extra generality.

I thank Philip Kutzko and Gopal Prasad for allowing me to use their proofs (of
Lemma 5.4.4 and of Lemmas 3.13, 3.2.1, and 3.4.2, respectively). I thank Robert
Kottwitz for his many helpful suggestions. In particular, one of his comments
evolved into Definition 5.3.1; this definition (and its Lie algebra analogue) has
greatly simplified our approach to various homogeneity problems. I thank Gopal
Prasad for his encouragement and many suggestions, particularly regarding Sec-
tion 3. I thank the referee for many helpful comments. This paper has benefited
from discussions with Jeff Adler, Jahwan Kim, Robert Kottwitz, Philip Kutzko,
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Allen Moy, Amritanshu Prasad, Gopal Prasad, Alan Roche, Paul J. Sally, Jr., and
Jiu-KangYu. It is a pleasure to thank all of these people.

2. Notation

2.1. Basic Notation

Letk denote a field with nontrivial discrete valuationν. We denote byν the unique
extension ofν to any algebraic extension ofk. We assume thatk is complete and
that the residue fieldf is perfect. Denote the ring of integers ofk by R and the
prime ideal by℘. Fix a uniformizing element$. Then℘ = $R andf = R/℘.
LetK denote a fixed maximal unramified extension ofk.

Let G be a connected, reductive, linear algebraic group defined overk. We let
G = G(k), the group ofk-rational points ofG. We denote byg the Lie algebra
of G. We letg = g(k), the vector space ofk-rational points ofg. We useDG to
denote the group ofk-rational points of the derived group ofG.

LetL be the minimal Galois extension ofK such thatG isL-split. As in [18],
we normalizeν by requiringν(L×) = Z.

If g, h ∈G, thengh = ghg−1. If S ⊂ G, we letGS denote the set{gs | g ∈G
ands ∈ S}. If h∈G then we writeGh for G{h}, theG-orbit of h.

An elementh∈G is unipotentprovided that there exists aλ∈X k∗(G) such that
lim t→0

λ(t)h = 1. Let U denote the set of unipotent elements inG. It is more usual
to say that an element is unipotent if the Zariski closure of itsG-orbit contains 1.
Let U ′′ denote the set of elements inG that are unipotent in this sense. We letU ′
denote the set of elements inG that contain the identity in thep-adic closure of
theirG-orbit. It follows thatU ⊆ U ′ ⊆ U ′′. From [15] we have thatU = U ′′ if k
is perfect. From [1, Lemma 3.7.4] it follows that, ifk is perfect orf is finite, then
U = U ′.

If a groupH acts on a setS, thenSH denotes the set ofH -fixed points ofS.

2.2. Apartments, Buildings, and Associated Notation

LetB(G) = B(G, k)denote the (enlarged) Bruhat–Tits building ofG. LetB red(G)

denote the reduced Bruhat–Tits building ofG; that is,B red(G) = B(DG).
We let dist :B(G) × B(G) → R≥0 denote a (nontrivial)G-invariant distance

function as discussed in [22, Sec. 2.3]. Forx, y ∈B(G), let [x, y] denote the geo-
desic inB(G) from x to y and let(x, y] denote [x, y] \ {x}. We define(x, y) and
[x, y) similarly.

For ak-Levi subgroupM of G, we identifyB(M , k) in B(G, k). There is not a
canonical way to do this, but every natural embedding ofB(M , k) in B(G, k) has
the same image. For� ⊂ B(G), we let stabG(�) denote the stabilizer of� inG.

Given a maximalk-split torusSof G, we have the torusS = S(k) inG and the
corresponding apartmentA(S) = A(S, k) in B(G). We let〈·, ·〉 denote the exten-
sion of the perfect pairing betweenX ∗(S) andX ∗(S) to a pairing ofX ∗(S) ⊗ R
andX ∗(S)⊗ R.
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We let8(S) = 8(A) = 8(S, k) denote the set of roots ofG with respect tok
andS; we denote by9(S) = 9(A) = 9(S, k, ν) the set of affine roots ofG with
respect tok, S, andν. If ψ ∈9(A), thenψ̇ ∈8(A) denotes the gradient ofψ.

Forψ ∈9(A), letUψ denote the corresponding subgroup of the root groupUψ̇
(see[17, Sec. 2.4]).

2.3. The Moy–Prasad Filtrations ofG

In [17; 18], Allen Moy and Gopal Prasad associate to a pair(x, r) ∈B(G)× R≥0

a subgroupGx,r in G. Although they consider only finitef in [17; 18], there is no
difficulty in extending their definition to our situation (see [1, Sec. 2.2]). We will
not repeat the definition here. Recall thatGx,r+ :=⋃s>r Gx,s .

For x ∈ B(G), we will denote the parahoric subgroup attached tox by Gx
(= Gx,0), and we denote its pro-unipotent radicalGx,0+ byG+x . Note that both
Gx andG+x depend only on the facet ofB(G) to whichx belongs. IfF is a facet
in B(G) andx ∈ F, then we defineGF = Gx andG+F = G+x . Recall thatGx is a
subgroup of stabG(x).

For x ∈ B(G), the quotientGx/G+x is the group off-rational points of a con-
nected reductive groupGx defined overf.

2.4. Optimal Points

LetO denote a choice of optimal points inB(G) (see [12, Sec.1.4] or [1, Sec. 2.3]).
The setO is invariant under the action ofG onB(G) and has several other prop-
erties. For example, the set{r ∈ R≥0 | Gx,r 6= Gx,r+ , x ∈ O} is a discrete sub-
set ofQ. The elements of this set are calledoptimal numbers.Also, if (x, r) ∈
B(G)× R≥0, then there existy, z∈O such that

Gy,r+ ⊂ Gx,r+ ⊂ Gz,r+ .
This follows from [1, Cor. 2.3.3].

3. Points, Lines, and the Displacement Function

Supposeg ∈G. The displacement function is defined by dg(x) = dist(x, gx) for
x ∈ B(G), and it is continuous. Define d(g) := inf x∈B(G) dg(x) andB(g) :=
{x ∈ B(G) | dg(x) = d(g)}. In this section, we provide a geometric interpreta-
tion of d(g) andB(g). That this should be possible was first pointed out to me by
Allen Moy.

3.1. Lines in Apartments

Definition 3.1.1. IfA is an apartment inB(G), then a 1-dimensional affine sub-
space ofA will be called aline.

As in [19], we can associate to an elementg of G a parabolic subgroupPg of G
and a Levi subgroupMg of Pg, as follows.
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Definition 3.1.2. Supposeg ∈G. We define the subgroup

Pg := {h∈G | the sequence{gihg−i | i ∈N} is bounded}
of G. Note thatPg is the group ofk-rational points of a parabolic subgroupPg of
G defined overk [19]. Let P̄g = Pg−1. ThenP̄g is a parabolic oppositePg, and the
Levi subgroupMg := Pg ∩ P̄g is the group ofk-rational points of a Levi subgroup
M g of Pg defined overk.

The original statement and proof of Lemma 3.1.3 applied only to thoseg that be-
longed to a maximalk-torus ofG that split over a tamely ramified extension. The
proof here is due to Gopal Prasad.

Lemma 3.1.3. Supposeg ∈G. Then either

(1) there exists anx ∈B(G) such thatgx = x, or
(2) there exist an apartmentA in B(G) and a line` inA such thatg acts oǹ by

nontrivial translation.

Proof (G. Prasad). Supposeg ∈G. LetZ denote the group ofk-rational points of
the maximalk-split torus in the center ofM g. Then, according to [20], we have
B(Mg) = B(Z)×B red(Mg). The action ofg ∈Mg onB(Z) is given by translation.
Moreover, the image of the group〈g〉 in Mg/Z is a bounded group. Therefore,g
has a fixed point inB red(Mg). SinceB(Mg) ⊂ B(G), this proves the lemma.

Lemma 3.1.4. LetA be an apartment andw a point inB(G). Suppose that̀ is
a line inA and thatx1 andx2 are two distinct points oǹ such thatdist(x1, w) =
dist(x2, w). Then

(1) for all y ∈ (x1, x2) we havedist(y,w) < dist(x1, w), and
(2) for all y ∈ ` \ [x1, x2] we havedist(y,w) > dist(x1, w).

Proof. This is a consequence of the nonpositive sectional curvature ofB(G) (see
[22, Sec. 2.3]).

Corollary 3.1.5. Supposeg ∈ G. Exactly one of the following statements is
true.

(1) There exists anx ∈B(G) such thatgx = x.
(2) There exist an apartmentA in B(G) and a line` in A such thatg acts on`

by nontrivial translation.

Proof. Let A be an apartment inB(G) and` a line inA. Let x be a point in
B(G). Suppose thatg both fixesx and acts by nontrivial translation on`. Choose
y on ` andz ∈ (y, gy). We have thatz lies on` andgy ∈ (z, gz). We also have
dist(y, x) = dist(gy, x) and dist(z, x) = dist(gz, x). From Lemma 3.1.4 we con-
clude that dist(z, x) < dist(gy, x) and dist(gy, x) < dist(z, x), a contradiction.
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3.2. Some Results about Geodesics

We first show that the property of being a geodesic is a local one; this fact is used
without proof in [2; 14]. I thank Gopal Prasad for explaining the proof to me.

Lemma 3.2.1. Supposex, s, y, t ∈ B(G) such thats ∈ [x, y). If y ∈ [s, t ], then
y ∈ [x, t ].

Proof (G. Prasad). Letq ∈ [y, t ] be the point nearestt such that the geodesic
[x, q] containsy. Since this is a closed condition andy ∈ [y, t ], the pointq exists.
If q = t, then we are finished.

Supposeq 6= t. LetC be an alcove such thatq ∈ C̄ and(q, t ] ∩ C̄ 6= ∅. LetA
be an apartment inB(G) containing bothC and the pointx. Note that the geodesic
[x, q] lies inA.

Chooseq ′ ∈ (q, t ] ∩ C̄. Sinceq ′ ∈ [q, t ] and since [q, t ] lies in the geodesic
[y, t ] that lies in the geodesic [s, t ],we conclude thatq ′ ∈ [s, t ]. Thus, the geodesic
[s, q] lies in both [s, q ′ ] and [x, q]. Since geodesics inA are line segments and
since [s, q], [s, q ′ ], and [x, q] are geodesics inA, we conclude that the geodesic
[x, q ′ ] containsy. Sinceq ′ ∈ [y, t ] is nearert thanq is, we have a contradiction.

An induction argument yields the following corollary.

Corollary 3.2.2. Fix n ∈ N≥2. If x0, x1, . . . , xn are points inB(G) such that
xi belongs to the geodesic[xi−1, xi+1] for all 0 < i < n, thenxj belongs to the
geodesic[x0, xn] for all 0 ≤ j ≤ n.
Our final result of this subsection shows that an infinite geodesic is a line.

Lemma 3.2.3. If 0 is an infinite geodesic inB(G), that is, if

0 =
⋃
n∈N

[x−n, xn],

wherex±1, x±2, . . . in B(G) such that[x−n, xn] ⊂ [x−1−n, xn+1] for all n∈N and

min{dist(x1, xn),dist(x1, x−n)} → ∞,
then there exists an apartmentA in B(G) such that0 ⊂ A.
Proof. This is a special case of [8, Prop. 2.8.3].

Remark 3.2.4. If0 is an infinite geodesic in an apartmentA, then0 is a line
in A.

3.3. The Displacement Function

In [2; 16], many properties of the displacement function are derived. We will
need the following property; we provide a more direct proof than that given in [2,
Prop. 2.4].
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Lemma 3.3.1. Supposeg ∈ G. If y ∈ B(G) such thatdg(y) > d(g), then we
have

dg|(y,gy) < dg(y) = dg(gy).

Proof. We have

dg(y) = dist(y, gy) = dist(gy, g2y) = dg(gy).

Thus we need only establish the inequality dg|(y,gy) < dg(y).
Suppose there exists az∈ (y, gy) such that dg(z) ≥ dg(y). We will generate a

contradiction. From the triangle inequality we have

dg(y) = dist(y, gy) = dist(y, z)+ dist(z, gy) = dist(z, gy)+ dist(gy, gz)

≥ dist(z, gz) = dg(z).

If d g(z) > dg(y), then we conclude that dg(z) > dg(z), a contradiction.
If d g(z) = dg(y), then we conclude that

dist(z, gy)+ dist(gy, gz) = dist(z, gz).

This implies thatgmy lies on the geodesic [g(m−1)z, gmz] for all m ∈ Z. From
Corollary 3.2.2 we conclude that

y ∈ [g−ny, gny] ⊂ [g−(n+1)y, g(n+1)y]

and dist(g−ny, gny) = 2n · dg(y) for all n ∈N. Fix x ∈ B(G) such that dg(x) <
dg(y). We now argue as in the proof of [2, Prop. 2.4]. Two applications of the
triangle inequality yield

2n · dg(y) = dist(g−ny, gny)
≤ dist(g−ny, g−nx)+ dist(g−nx, gnx)+ dist(gnx, gny)

≤ 2 · dist(x, y)+ 2n · dg(x)
for all n∈N. We therefore conclude that

0< dg(y)− dg(x) ≤ dist(x, y)/n

for all n∈N, a contradiction.

Corollary 3.3.2. Supposeg ∈G. If A is an apartment inB(G) containing a
line ` on whichg acts by translation, thend(g) is equal to the distance thatg
translates any point oǹ.

For future reference, we record the following corollary.

Corollary 3.3.3. Supposeg ∈G. If there exists anx ∈B red(G) such thatgx =
x, then for ally ∈B red(G) we have

dg|(y,gy) < dg(y) = dg(gy).

Proof. The proof of Lemma 3.3.1 uses only the triangle inequality and the fact
that being a geodesic is a local property. These both remain valid forB red(G).
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3.4. A Geometric Interpretation ofd(g) andB(g)
The proofs and results of this subsection provide a geometric context for some of
the standard facts (see e.g. [14, Secs. 5, 6; 16, Secs. 5.5–5.7]) about d(g) andB(g).
Lemma 3.4.1. If g ∈G, thenB(g) 6= ∅.
Proof. From Lemma 3.1.3 we have that eitherg fixes a point inB(G) or there
exist an apartmentA and a line inA on whichg acts by nontrivial translation. If
g fixes a point, then d(g) = 0 andB(g) 6= ∅. If g acts by nontrivial translation on
a line` in an apartmentA, then it follows from Corollary 3.3.2 that every point
on` belongs toB(g).
The statement and proof of the next result are due to Gopal Prasad.

Lemma 3.4.2. If g ∈G then, for alln∈N, we haved(gn) = n · d(g).
Proof (G. Prasad). If d(g) = 0, then d(gn) = 0. If d(g) > 0, then from Lemma
3.1.3 there exist an apartmentA in B(G) and a line` in A on whichg acts by
translation. From Corollary 3.3.2, the distance by whichg translates any point
on ` is equal to d(g). Consequently, the group elementgn translates any point
on` by a distancen · d(g). From Corollary 3.3.2 we now conclude that d(gn) =
n · d(g).
After presenting a definition, we describeB(g) when d(g) 6= 0.

Definition 3.4.3. Suppose that̀ is a line in an apartmentA in B(G). Let S
denote the maximalk-split torus inG corresponding toA. Let 8` denote those
k-rootsβ of Ssuch that, for any affine rootψ for which ψ̇ = β, we have that the
root hyperplane forψ is parallel (in the Euclidean spaceA) to the line`; that is,
8` is the set of roots that are perpendicular to the “direction of`” under the pair-
ing 〈·, ·〉. LetM` denote the Levi subgroup ofG generated byCG(S)(k) and the
root groupsUβ for β ∈8`.
Lemma 3.4.4. Supposeg ∈G such thatd(g) 6= 0.

(1) If x ∈ B(G) such thatdg(x) = d(g), then there exist an apartmentA and a
line ` in A such thatx lies on` andg acts by translation oǹ.

(2) If A is an apartment inB(G) and` is a line inA on whichg acts by transla-
tion, thenM` = Mg (see Definitions 3.1.2 and 3.4.3).

(3) If A is an apartment inB(G) and ` is a line inA on whichg acts by trans-
lation, thenA is an apartment inB(Mg) and the image of̀ in B red(Mg) is a
g-fixed point.

(4) If A1 (resp.,A2) is an apartment inB(G) and if `1 is a line inA1 (resp.,`2

is a line inA2) on whichg acts by translation, then there exists an apartment
A containing both̀ 1 and`2.

Remark 3.4.5. SinceB(g) 6= ∅, parts (1) and (4) follow from [7, Thm. II.6.8].
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Proof. (1) Supposex ∈B(G) such that dg(x) = d(g) 6= 0. For alln ∈N, it fol-
lows from the definition of d(g2n), the triangle inequality, and Lemma 3.4.2 that

d(g2n) ≤ dist(x, g2nx) = dist(g−nx, gnx)

≤
(n−1)∑
i=−n

dist(gix, g(i+1)x) = 2n · dg(x) = d(g2n).

Consequently, we must have

dist(g−nx, gnx) =
(n−1)∑
i=−n

dist(gix, g(i+1)x).

That is, for alln ∈N, the geodesic [g−nx, gnx] contains the pointsgix for −n ≤
i ≤ n. Consequently, we havex ∈ [g−nx, gnx] ⊂ [g(−1−n)x, g(n+1)x] for all n∈N
and dist(x, g−nx) = dist(x, gnx)→ ∞. By Lemma 3.2.3 there is an apartment
A and a linè in A such thatgix lies on` for all i ∈ Z. We conclude thatg acts
on` by nontrivial translation.

(2) SupposeA is an apartment inB(G) and` is a line inA on whichg acts by
nontrivial translation.

We first show thatM` ⊂ Mg. LetZ` denote the center ofM`. From [20, proof
of Lemme 2.4.16, esp. part (e)] we have thatg ∈M`. The image of̀ in B red(M`)

is ag-fixed point. Thus, the image of〈g〉 inM`/Z` is a bounded group. It follows
that, for allm∈M`, the sequences{gimg(−i)} and{g(−i)mgi} are bounded. That
is, we haveM` ⊂ Mg.

Let S be the maximalk-split torus ofG corresponding toA. SinceA is an
apartment inM` andM` ⊂ Mg, we haveS(k) ⊂ Mg. If M` $ Mg, then there
exists a rootα ∈8(S, k) such thatUα ⊂ Mg \M`. In this case, the set of points
on ` formed by looking at the intersection of` with all those hyperplanes inA
that correspond to affine roots of gradientα is infinite and discrete. Thus, there
existx, y ∈ ` andr ∈R such that(Mg)x,r 6= (Mg)y,r . However, the image of̀ in
B red(Mg) is either a point or a line. Sinceg has a fixed point inB red(Mg), from
Corollary 3.1.5 we conclude that the image of` inB red(Mg) is a point. This means
that for allx, y ∈ ` and for allr ∈R we have(Mg)x,r = (Mg)y,r , a contradiction.

(3) SupposeA is an apartment inB(G) and` is a line inA on whichg acts
by nontrivial translation. ThenA is an apartment inB(M`) and the image of̀ in
B red(M`) is ag-fixed point. The result now follows from (2).

(4) Now suppose we have two lines`1 in A1 and`2 in A2 as in the statement
of (4). By (3),A i is an apartment inB(Mg) and the image of̀ i in B red(Mg) is a
g-fixed point fori = 1,2. From [20] we haveB(Mg) = B red(Mg)×B(Z), where
Z is the group ofk-rational points of the maximalk-split torus in the center ofM g.

We conclude thatg acts oǹ 1 (resp.,̀ 2) via translation inB(Z). Thus, since there
is an apartment inB red(Mg) containing the images of̀1 and`2, we conclude that
there exists an apartmentA in B(Mg) containing both̀ 1 and`2.

Corollary 3.4.6. The setB(g) is convex.
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Proof. If d(g) = 0, this follows from the fact that the action ofG onB(G) takes
geodesics to geodesics. If d(g) > 0, this follows from Lemma 3.4.4.

Lemma 3.4.7. The functiond:G→ R is a locally constant function whose image
is a discrete subset ofR.

Proof. We first show that d is a locally constant function. Fixg in G andx ∈
B(g). LetH be the subgroup ofG that fixes [x, gx] pointwise. We have thatH
is an open subgroup ofG. It follows from Corollary 3.4.6 that, for allh ∈H and
all y ∈ [x, gx], we have

dgh(y) = dg(y) = d(g).

An application of Lemma 3.3.1 shows that d(gh) = d(g) for all h∈H.
We now show that the image of d is a discrete subset ofR. Fix a maximalk-split

torusS of G and an alcoveC in the apartmentA(S, k). Since d is a class func-
tion, it follows from the Bruhat decomposition [22, Sec. 3.3.1] that the image of d
is a subset of {

min
x∈C̄

dn(x) | n∈NG(S)(k)
}
,

which is a discrete subset ofR.

3.5. Two Questions of Allen Moy

In [16, Secs. 5.7, 5.10], Moy poses two questions regarding the setB(g). These
questions stem from the following result (see [16, Cors. 5.7(ii), 5.9]).

Lemma 3.5.1. Supposeg ∈G.
(1) If h∈G commutes withg, thenhB(g) ⊂ B(g).
(2) If g has a Jordan decompositiong = su with u unipotent ands semisimple,

then∅ 6= B(s)u ⊂ B(g) and∅ 6= B(g)u ⊂ B(s).
HereB(s)u denotes theu-fixed points ofB(s) and similarly forB(g)u.

Question 3.5.2. Supposes ∈G is a semisimple element contained in the group
of k-rational points of some maximalk-split torus ofG. Is it true thatB(s) =
B(CG(s))?

From Lemma 3.5.1 we know that the Levi subgroupCG(s) acts onB(s). With
some restrictions onk andG,we can probably answer this question in the affirma-
tive (see e.g. [13, Cor. 4.4.2]). In general, however, the answer is no. For example,
suppose our field is the fieldQ2 of 2-adic numbers,S is a maximalk-split torus in
SL2, ands ∈S(Z2) has distinct eigenvalues. In this case, we have thatB(CG(s))
is the apartment inB(SL2(Q2)) corresponding toS. However,B(s) is strictly
larger thanB(CG(s)) since, for each vertexv of A(S,Q2), s must fix the three
edges adjacent tov. This is a specific example of a general phenomenon discussed
in [22, Sec. 3.6.1].
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Question 3.5.3. If g ∈ G has Jordan decompositiong = su with u unipotent
ands semisimple, then is it true thatB(g)u = B(g)?
Unfortunately, the answer to this question is almost always no. Prasad was the
first to notice this—he looked at integral elements of SLn(Qp) with nonintegral
Jordan decompositions. Here is a more concrete example. Fixa ∈1+℘ such that
a 6= 1. Let b = (a − a−2) and consider the elements

g =
 a a 0

0 a−2 b ·$−1

0 0 a

, s =
 a a −a ·$−1

0 a−2 b ·$−1

0 0 a

,
and

u =
 1 0 $−1

0 1 0
0 0 1


in SL3(k). We haveg ∈ SL3(R), but neithers noru belong to SL3(R). We also
haveg = su = us with u unipotent ands semisimple.

4. Some Results for Moy–Prasad Filtrations ofG

4.1. The Main Results

Definition 4.1.1. Forr ∈R≥0, define

Gr :=
⋃

x∈B(G)
Gx,r .

For r ∈R≥0, we also defineGr+ :=⋃x∈B(G) Gx,r+ . Note thatGr+ =⋃s>r Gs.

Definition 4.1.2.
UG :=

⋃
x∈B(G)

stabG(x).

When there is no possibility for confusion we will writeU for UG. Note thatU is
G-invariant andU ⊂ Gr ⊂ U for all r ∈R≥0.

Remark 4.1.3. Here is another definition ofU (due to G. Prasad). The setU con-
sists of thoseg ∈G for which (i) all of the eigenvalues of Ad(g) have modulus 1
and (ii) modulo the commutator subgroup ofG, g generates a bounded subgroup.
It follows thatU is closed (see also [21, Lemma 1]).

The following theorems state the main results of this section.

Theorem 4.1.4.

(1) If r ∈R≥0, thenGr =⋂z∈B(G) Gz,r · U .
(2) U =⋂z∈B(G) stabG(z) · U.
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Theorem 4.1.5. SupposeP is a parabolic subgroup ofG with a Levi decompo-
sitionP = MN.
(1) If r ∈R≥0, thenM ∩Gr = Mr.

(2) M ∩ U = UM.

In the definition ofU, it is important to keep in mind thatB(G) is the enlarged
Bruhat–Tits building ofG.

4.2. Two Results about Parahoric Subgroups

Another version of the following lemma has been proved by Eugene Kushnirsky,
whose proof appears in [13, Lemma 4.5.1].

Lemma 4.2.1. If y ∈B(G) andg ∈G0 ∩ stabG(y), theng ∈Gy.
Proof. There exists az ∈B(G) such thatg ∈Gz. LetA be an apartment inB(G)
containingy andz.

Define
V = {z ′ ∈A | g ∈Gz ′ }.

BecauseV is a closed and nonempty set, we can choosex ∈V such that, for all
z ′ ∈V,

dist(x, y) ≤ dist(z ′, y).

If x = y then there is nothing to do, so we suppose thatx 6= y and derive a contra-
diction. We letF be the first facet inA through which(x, y] passes as we move
from x to y. Note thatx ∈ F̄ andF ∩ V = ∅.

Sinceg fixes [x, y] ∩ F, we have thatg normalizesGF . Let ḡ andGF denote
the images ofg andGF in the connected reductive groupGx(f). SinceGF is a par-
abolic subgroup ofGx(f) andGF is normalized byḡ, we haveḡ ∈ GF (see [10,
Thm. 8.3.3; 5, Secs.21.15–21.16]).Therefore,g ∈GF . In other words,F ⊂ V, a
contradiction.

The next result concerns the structure of parahoric subgroups ofG.

Lemma 4.2.2. Suppose thatP is a parabolic subgroup ofG with a Levi decom-
positionP = MN. Let N̄ denote the unipotent radical of the parabolic subgroup
oppositeP = MN. If S is a maximalk-split torus ofG such thatS(k) ⊂ M then,
for all x ∈A(S, k), we have

Gx = Nx · N̄x ·Nx ·Mx,

whereMx is the parahoric subgroup ofM associated tox, Nx = Gx ∩ N, and
N̄x = Gx ∩ N̄.
Proof. SinceS(k) ⊂ M, the image ofGx ∩ P (resp.,Gx ∩M, Gx ∩N, Gx ∩ N̄ )
inGx/G+x is the group off-rational points of a parabolic subgroupP (resp., a Levi
subgroupM of P, the unipotent radicalN of P, the unipotent radical̄N of the par-
abolic oppositeP = MN) of Gx defined overf. From [6, Prop. 6.25] we have that
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Gx(f) = N(f) · N̄(f) ·N(f) ·M(f). SinceG+x has the Iwahori decompositionG+x =
(N̄ ∩G+x ) ·M+x · (N ∩G+x ), the lemma follows.

4.3. A Proof of Theorem 4.1.4

Lemma 4.3.1 establishes Theorem 4.1.4(2). We note that, sinceU andU areG-
invariant, for allx ∈B(G) we have

U · stabG(x) = stabG(x) · U and Gx · U = U ·Gx.
Lemma 4.3.1.

U =
⋂

z∈B(G)
stabG(z) · U.

Proof. That the left-hand side is included in the right-hand side is clear. We now
turn our attention to the opposite inclusion.

We will argue by contradiction. Suppose thatg ∈ ⋂z∈B(G) stabG(z) · U does
not fix a point inB(G). From Lemma 3.1.3 there must exist an apartmentA and
a line` in A such thatg acts oǹ by (nontrivial) translation.

There exists a facetF in A such thatF ∩ ` is open in`. SinceG acts “simpli-
cially” on B(G), there exist an open subsetF ′ of ` andx ∈ F ′ such thatF ′ ⊂ F
and stabG(y) = stabG(x) for all y ∈ F ′. By hypothesis, there exist elementsh ∈
stabG(x) andu ∈U such thatg = uh. Letw ∈B(G) be a fixed point ofu. Then,
for all y ∈F ′,

dist(w, y) = dist(w, uy) = dist(w, uhy) = dist(w, gy).

This contradicts Lemma 3.1.4.

Lemma 4.3.2.
G0 =

⋂
z∈B(G)

Gz · U .

Proof. “⊃” Suppose thatg ∈⋂z∈B(G) Gz · U . From Lemma 4.3.1, the elementg
must fix a pointx ∈B(G). By hypothesis, there existh ∈Gx andu ∈ U such that
g = uh. Sinceg andh fix x, so mustu. But then Lemma 4.2.1 says thatu∈Gx.

“⊂” We need to show thatGx ⊂ U · Gy for x, y ∈ B(G). Let A be an apart-
ment inB(G) containing bothx andy; let S be the correspondingk-split torus.
Let M = CG(S)(k). Let P be a minimal parabolic with a Levi decomposition
MN so that the (spherical) chamber inX k∗(S) ⊗ R determined byN is invariant
under translation by the vector(y − x).

Let N̄ be the unipotent radical of the parabolic oppositeP = MN. From Lem-
ma 4.2.2,Gx = Nx · N̄x · Nx ·Mx and similarly forGy. Because of the way we
choseM andN, we haveMx = My andNx ⊂ Ny. Consequently, ifg ∈Gx then
there existn1, n2 ∈Nx, n̄∈ N̄x, andm∈Mx such that

g = n1 · n̄ · n2 ·m
= n1n̄ · n1 · n2 ·m
∈ U ·Gy.
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By [1, Lemma 3.7.20], Lemma 4.3.2 implies Theorem 4.1.4(1) in the case when
r > 0. Thus, we have established Theorem 4.1.4.

4.4. Parabolic Descent

In this subsection we prove Theorem 4.1.5. Suppose thatP is a parabolic subgroup
of G with a Levi decompositionP = MN.
Lemma 4.4.1. U ∩M = UM.

Proof. The right-hand side is clearly contained in the left-hand side.
To show the opposite inclusion, we suppose there is anm ∈ U ∩M such that

m /∈UM and derive a contradiction. Sincem /∈UM, Lemma 3.1.3 tells us that there
exist an apartmentA in B(M) and a linè in A such thatm acts oǹ by a non-
trivial translation. Therefore,m acts nontrivially oǹ and fixes a point inB(G),
which contradicts Corollary 3.1.5.

Lemma 4.4.2. G0 ∩M = M0.

Proof. The right-hand side is clearly a subset of the left-hand side.
From Lemma 4.4.1 we have thatG0 ∩M ⊂ UM. However, sinceGx ∩M =

Mx for all x ∈B(M), Lemma 4.2.1 tells us thatG0 ∩ UM ⊂ M0.

From [1, Lemma 3.7.25], Lemma 4.4.2 implies Theorem 4.1.5(1) in the case when
r > 0. Thus, we have established Theorem 4.1.5.

5. Some Results Concerning Representations ofG

In this section we wish to transfer many of the ideas of [1, Sec. 4] (see also [12,
Chap. 2]) fromg toG. After introducing some additional notation (which will be
used throughout the remainder of this paper), we consider the interplay between
representations ofG, their depth, and functions onG.

5.1. Notation

We place further restrictions uponk: we assume thatf is a finite field. Letdg de-
note a Haar measure onG.

LetH = HG = C∞c (G) denote the space of complex-valued, compactly sup-
ported, locally constant functions onG. For a compact open subgroupH of G,
let Cc(G/H ) ⊂ H denote the set of thosef ∈ H such thatf(gh) = f(g) for
all h∈H. If H ′ is a compact open subgroup ofG containingH, thenC(H ′/H )
denotes the set of thosef ∈Cc(G/H ) with support inH ′.

Suppose that(π,V ) is a finite-length, admissible, complex representation ofG.

Forf ∈H, we define the operator-valued Fourier transform off by f̂ := π(f ).
Hereπ(f )∈EndC(V ) is the finite-rank operator defined by

π(f )v :=
∫
G

f(g)π(g)v dg

for v ∈V.
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Let P be a parabolic subgroup ofG with a Levi decompositionP = MN.

Then, for a smooth irreducible representationσ of M, we denote by IndGP σ the
finite-length admissible representation ofG obtained by normalized induction.

5.2. The Depth of a Representation

In this subsection we define the depth of a smooth representation and collect some
facts about depth. The definition of depth given here is slightly different from that
given by Moy and Prasad in [17]; the reliance ong has been removed from their
definition. The proofs of this subsection follow, to a large extent, those of[17, 18].

Lemma 5.2.1. Suppose that(π,V ) is a smooth representation ofG. Then there
exists anr(π)∈Q with the following properties.

(1) If (x, r)∈B(G)× R≥0 such thatV Gx,r+ is nontrivial, thenr ≥ r(π).
(2) There exists ay ∈B(G) such thatV Gy,r(π)+ is nontrivial.

Proof. Since the set of optimal numbers is a discrete subset ofQ (see Section 2.4),
we can letr(π) be the least nonnegative optimal number for which there exists an
optimal pointz such that

V
Gz,r(π)+ 6= {0}.

Suppose(x, r)∈B(G)×R≥0 such thatV Gx,r+ is nontrivial. Then there exists an
optimal pointy such that

Gy,r+ ⊂ Gx,r+ .
Thus{0} 6= V Gx,r+ ⊂ V Gy,r+ , which implies thatr ≥ r(π).
Thanks to Lemma 5.2.1, the following definition makes sense.

Definition 5.2.2. Suppose that(π,V ) is a smooth representation ofG. The
depthρ(π) of π is the least nonnegative real number for which there exists anx ∈
B(G) such thatV Gx,ρ(π)+ is nontrivial.

Remark 5.2.3. The depth of a smooth representation is an optimal number; in
particular, it is rational.

Lemma 5.2.4. SupposeP is a parabolic subgroup ofG with a Levi decomposi-
tionP = MN. Suppose that(σ,W ) is an irreducible smooth representation ofM.
If (π,V ) is an irreducible subquotient ofIndGP(σ), thenρ(π) = ρ(σ).
Proof. For notational ease, we assume for this proof that our induction is not nor-
malized. Because the modular character is unramified (i.e., it has depth zero), this
does not affect the statement of the lemma.

Without loss of generality, we may assume thatσ is an irreducible supercuspi-
dal representation. We may also assume thatπ is a subrepresentation of IndGP(σ)
(see e.g. [11, Thm. 6.3.7]).

Fix an alcoveC in B(M) ⊂ B(G). Let x0 ∈ C̄ be a special point forG.
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We first show thatρ(π) ≥ ρ(σ). Since(π,V ) has depthρ(π), there exist a
y ∈ C̄ and a nonzero functionf : G→ W such that:

(1) f ∈V ;
(2) f(m · n · g) = σ(m)f(g) for all m∈M, n∈N, andg ∈G; and
(3) f(g · h′) = f(g) for all g ∈G andh′ ∈Gy,ρ(π)+ .
SinceG = PGx0 (Iwasawa decomposition) andf 6= 0, there exists anh ∈ Gx0

such that 06= f(h) ∈W. Sincehx0 = x0 ∈B(M) andx0 ∈ hC̄, from [1, Lemma
2.4.1] there exists ann ∈ Gx0 ∩ N such thatnhC̄ ⊂ B(M). Now, for all m ∈
Mnhy,ρ(π)+ = M ∩Gnhy,ρ(π)+ we have

σ(m)f(h) = σ(n−1 ·m · n)f(h) = f(n−1 ·m · n · h)
= f(h · (h−1n−1

m)).

But h
−1n−1

m ∈ h−1n−1
Mnhy,ρ(π)+ = My,ρ(π)+ ⊂ Gy,ρ(π)+ , so σ(m)f(h) = f(h).

Thusρ(σ) ≤ ρ(π).
We now show thatρ(π) ≤ ρ(σ). There exists ay ∈ B(M) ⊂ B(G) such that

WMy,ρ(σ)
+

is nontrivial. Frobenius reciprocity states that

HomG(V, IndGP σ) = HomM(VN, σ).

Therefore, there existM-submodulesWi ⊂ VN such that the sequence

0→ W2→ W1→ σ → 0

is exact. Since takingMy,ρ(σ)+ -fixed vectors is exact, we have{0} 6= WMy,ρ(σ)+
1 ⊂

VMy,ρ(σ)
+

N . From work of Jacquet and Harish-Chandra (see [11, Thm. 3.3.3]) we
have thatV Gy,ρ(σ)

+
maps ontoVMy,ρ(σ)+

N , which is nontrivial. Thusρ(π) ≤ ρ(σ).

We now state a corollary that results from repeating the proof of Lemma 5.2.4 with
appropriate changes. Recall that ifC is an alcove inB(G), thenGC denotes the
associated Iwahori subgroup.

Corollary 5.2.5. SupposeP is a parabolic subgroup ofG with a Levi decom-
positionP = MN. Suppose that(σ,W ) is an irreducible smooth representation
ofM and thatC is an alcove inB(M). Suppose(π,V ) is an irreducible subquo-
tient of IndGP σ. Then

WMC 6= {0} if and only if V GC 6= {0}.

See [4] for a complete treatment of admissible representations with nontrivial
Iwahori-fixed vectors.

Lemma 5.2.6. Fix r ≥ 0. If (π,V ) is a smooth representation ofG such that
every irreducible subquotient of(π,V ) has depthr, then(π,V ) has depthr.
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Proof. Sinceρ(π) ≤ r, we must show thatρ(π) ≥ r.
Chooses ∈ R≥0 for which there exists anx ∈ B(G) such thatV Gx,s+ 6= {0}.

Choosev ∈V Gx,s+ and letW = 〈G · v〉. SinceW is finitely generated, there exists
a subrepresentationW1$ W such that

0→ W1→ W → W/W1→ 0

is an exact sequence ofG-modules and the quotientW/W1 is irreducible. Because
takingGx,s+ fixed vectors is exact, we have(W/W1)

Gx,s+ 6= {0} (otherwise,W1=
W). Thuss ≥ r, which implies thatρ(π) ≥ r.
Corollary 5.2.7. SupposeP is a parabolic subgroup ofG with a Levi de-
compositionP = MN. If σ is an irreducible smooth representation ofM, then
ρ(Ind(σ)) = ρ(σ).

5.3. An Interesting Space of Functions

Fix r ∈R≥0. Suppose thatP is a parabolic subgroup ofG with a Levi decompo-
sitionP = MN. Let x0 ∈B(M) be a special point forG.

Definition 5.3.1.
HG
r :=

∑
x∈B(G)

Cc(G/Gx,r ).

We interpret the sum on the right in the following way. Iff ∈Hr = HG
r , then we

can writef as a finite sumf =∑ i fi with fi ∈Cc(G/Gyi,r ) andyi ∈B(G).
Definition 5.3.2. Forf ∈HG, we definefP ∈HM by

fP (m) = δ1/2
P (m)

∫
N

dn

∫
Gx0

f(h(mn)) dh

for m∈M.
Heredn is a Haar measure onN, dh is the normalized Haar measure onGx0, and
δP is the modular function forP.

5.4. Functions and Representations

In the following subsections we wish to make a precise statement about the
Plancherel support of functions inHr . We also want to show that the map fromH
toHM defined in Definition 5.3.2 takesHr intoHMr . These results were originally
pursued because of their relevance to certain homogeneity problems. I thank Alan
Roche for his extremely helpful comments on an earlier version of this subsection.

Fix r ∈R≥0. Let R(G) denote the category of smooth complex representations
ofG.We recall the basic facts about the Bernstein decomposition ofR(G) (see [9]
for a fuller recollection). The Bernstein decomposition allows us to writeR(G)
as a direct product of full subcategories:
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R(G) =
∏
s∈B

Rs.

The Bernstein spectrumB consists of equivalence classes [L, σ] whereL is a Levi
subgroup ofG andσ is an irreducible, supercuspidal, smooth representation ofL.

(A pair (L′, σ ′) belongs to the equivalence class [L, σ] if and only if there existg ∈
G and an unramified characterχ of L such thatgL′ = L andgσ ′ = σ ⊗χ.) If s =
[L, σ] ∈B, thenRs consists of those smooth representationsπ of G for which
each irreducible subquotient ofπ occurs as a subquotient of IndGP(σ ⊗χ) for some
unramified characterχ of L and some parabolicP with Levi L. It follows from
Lemma 5.2.4 and Lemma 5.2.6 that every object ofR[L,σ] has depthρ(σ).

With respect to the right regular representation,H is a smooth representation of
G. Therefore, from the Bernstein decomposition of the categoryR(G), we can
writeH =⊕sHs. EachHs is aG-stable subspace ofH.

Since irreducible depth-zero representations may or may not have nontrivial
Iwahori-fixed vectors, we introduce some notation to distinguish these two cases.

Definition 5.4.1. Fors ∈ R>0, let 5s = 5G
s denote the set of equivalence

classes of irreducible smooth representations ofG of depth strictly less thans. Let
50 = 5G

0 denote the set of equivalence classes of irreducible smooth representa-
tions ofG possessing nontrivial Iwahori-fixed vectors.

Thus, ifs ∈R≥0 and(π,V ) is a representative for a class in5s, thenV is gener-
ated (as aG-representation) by aGx,s-fixed vector for somex ∈B(G).

Let s be a point in the Bernstein spectrum and let Irr(Rs) denote the set of
equivalence classes of irreducible objects inRs. From Lemma 5.2.4 and Corol-
lary 5.2.5, we have that either5r ∩ Irr(Rs) is trivial or Irr(Rs) ⊂ 5r. The fol-
lowing definitions therefore make sense.

Definition 5.4.2.
Br := {s∈B | Irr(Rs) ⊂ 5r};

H ′r :=
⊕
s∈Br

Hs.

We will require one more definition before proving the main result of this subsec-
tion.

Definition 5.4.3. Supposef ∈H. We will say that supp(f̂ ) ⊂ 50 if f̂ (π) =
0 for all irreducible smooth representationsπ that do not possess a nontrivial
Iwahori-fixed vector. Fors ∈R>0 we will say that supp(f̂ ) ⊂ 5s if f̂ (π) = 0 for
all irreducible smooth representationsπ with ρ(π) ≥ s.
In the following lemma, the second equality is valid for any subset of the Bern-
stein spectrum.

Lemma 5.4.4. Hr = {f ∈H | supp(f̂ ) ⊂ 5r} = H ′r .
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Proof (P. Kutzko). From the definitions it follows thatHr ⊂ {f ∈H | supp(f̂ ) ⊂
5r}.

We now show that{f ∈H | supp(f̂ ) ⊂ 5r} ⊂ H ′r . Supposef ∈H such that
supp(f̂ ) ⊂ 5r. Sincef ∈H =⊕sHs,we can writef =∑s f

s with f s ∈Hs.

Fix t ∈B such thatf t 6= 0. It will be enough to show thatt ∈Br . Sincef t 6=
0, by [3, Prop. 2.12] there exists a smooth irreducible representation(π,V ) such
thatπ(f t) 6= 0. Note that(π,V ) is a nondegenerateHt-module, so it occurs as
a quotient ofHt; this implies that(π,V ) is an object inRt. Since fors 6= t we
have that(π,V ) is not an object inRs, we conclude that

π(f )w = π(f t)w

for all w ∈ V. Therefore,π(f ) is nonzero. It follows that(π,V ) represents an
equivalence class in5r and thust∈Br .

Finally, we show thatH ′r ⊂ Hr . As aG-representation, the equivalence class
of each irreducible subquotient ofH ′r lies in5r, and each such representative is
therefore generated (as aG-representation) by aGx,r -fixed vector for somex ∈
B(G). We claim thatH ′r is generated (as aG-representation) by a collection of
such vectors. Indeed, suppose this is not the case. Then there exists a set of idem-
potentsE ⊂ H such that

(1)
∑

e∈EHeH ′r 6= H ′r and
(2) for each irreducible subquotientX of H ′r , there exists ane ′ ∈ E such that
He ′X = X.

Since
∑

e∈EHeH ′r 6= H ′r , we can produceG-modulesW1 andW2 such that∑
e∈E
HeH ′r ⊂W2 $W1⊂ H ′r

with W1/W2 irreducible. But there exists ane ′ ∈ E such thatHe ′(W1/W2) =
(W1/W2). HenceHe ′W1+ W2 = W1, which implies thatW1 = W2, a contra-
diction.

BecauseH ′r is generated by a collection ofGx,r -fixed vectors, we haveH ′r ⊂Hr .

5.5. Two Consequences for Harmonic Analysis

Supposer ≥ 0. The function spaceHr plays an important role in harmonic analy-
sis. It is desirable to have an understanding of how the spaceHr behaves under
parabolic descent and the degree to whichHr depends onr.

The following lemma is the group analogue of [1, Rem. 4.2.10]. SupposeP is
a parabolic subgroup ofG with a Levi decompositionP = MN.
Lemma 5.5.1. Suppose thatσ is an irreducible smooth representation ofM. If
(IndGP(σ))(f ) = 0, thenσ(fP ) = 0.

Proof. This can be obtained from a minor modification of the computations found
in [23, pp. 233–234].
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Lemma 5.5.2. For r ≥ 0, the mapf 7→ fP takesHG
r intoHMr .

Proof. Supposef ∈ HG
r . By Lemma 5.4.4, it will be sufficient to show that

supp(f̂P ) ⊂ 5M
r . Supposeσ is an irreducible smooth representation ofM such

that the equivalence class ofσ is not an element of5M
r . From Lemma 5.2.4, Corol-

lary 5.2.5, and Lemma 5.4.4 we have(IndGP(σ))(f ) = 0. The lemma now follows
from Lemma 5.5.1.

To investigate the degree to whichHr depends onr, we introduce the space

Hr+ :=
∑

x∈B(G)
Cc(G/Gx,r+).

We interpret this sum as in Definition 5.3.1.
Note that ifπ is a positive-depth irreducible smooth representation ofG, then

ρ(π) = r if and only if resHr
π = 0 and resHr+ π 6= 0. (Here resHr

π means the
restriction ofπ to the space of functionsHr .)

Lemma 5.5.3. Fix s > 0. There exists anε ∈ (0, s] such that, for allr ∈ (s−ε, s),
we have

Hr+ = Hs .

Proof. Chooseε ∈ (0, s] such that the set(s − ε, s) does not intersect the set of
optimal numbers. Fixr, t ∈ (s − ε, s) with t < r. We have

H t ⊂ Hr+ ⊂ Hs .

Note that, ifπ is a smooth representation ofG, then (by Remark 5.2.3) we have
thatρ(π) ≥ s if and only if ρ(π) ≥ t. ThusH t = Hs by Lemma 5.4.4.

The following corollary follows from the proof of Lemma 5.5.3.

Corollary 5.5.4. Fix r ≥ 0. We have

Hr+ = {f ∈H | f̂ (π) = 0 for all smooth irreducible

representationsπ of G such thatρ(π) > r}.
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