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A Sharp Estimate for the Weighted Hilbert
Transform via Bellman Functions
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1. Introduction

It has long been of interest to find sharp estimates for the norm for the Hilbert trans-
form and related operators itP (w). In this paper we look at the estimates of the
Hilbert transform in weighted spacés(w). Buckley [1] proved that the Hilbert
transform is bounded by the square of the classigatonstant of the weight. In

[8], Petermichl and Pott improved this estimate to tli2 Bower. Their result is

the best currently known but is probably not sharp. Here we consider a different
A, constant that seems more natural to the unit disk: the invatiaobnstant. The
invariantA, constant is defined using Poisson averages instead of box averages.

We obtain the sharp estimate for the weighted Hilbert transform in terms of in-
variantA, by the method of Bellman functions. We estimate the norm using duality
and then split the quantity to be estimated into four integrals, each of which can
be estimated using a Bellman function. Our proof follows the outline of the sharp
uniform estimates for dyadic martingales in [6] and [10].

The Hilbert transform can be considered the continuous analog of the dyadic
martingale transforms, and th&, invariant constant can be viewed as the con-
tinuous analog of the regular, constant. We also include a bilinear embedding
theorem of Sawyer type. A two-weighted version was used by Nazarov, Volberg,
and Treil [7], who referred to it as a bilinear Carleson embedding theorem. We
change the assumptions to fit the one-weighted situation; they are no longer nec-
essary but do allow for a concise statement. This change of conditions leads to a
different choice of variables in our Bellman function and a set of conditions that
is much simpler to check. In [7], the key assumption was boundedness of a cer-
tain positive operator on test functions. In our version, this assumption has been
replaced by estimates for three simple sums.

2. Definitions and Statements

We consider the spack?(w), wherew is a positiveL! function known as a
weight. Letn be normalized Lebesgue measurélbimhe norm off € L%(a)) is
(fT|f|2w dm)l/2 and is denoted by f||,. We are concerned with a special class
of weights calledd,. We sayw € A; if
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supw); (@) = Q2(w) < oo. (2.1)
I

Here the supremum is taken over all subdres T. The notationw); means the
average of the functiow over1.
In this paper, we will mostly use a different constant associated toeach,.
Define Q™(w) by
supo ()@ (z) = QFM(w), (2.2)

zeD

wherew (z) denotes the harmonic extensionaafthat is,
w(z) =/w(t)Pz(t)dm(t),

whereP, (1) = (1—|z|?)/]1— zt|%. Note that, in generaly~(z) andw(z) ! have
different meaningsw(z) denotes the extension of the reciprocalkofwhereas
w(z)7Lis the reciprocal of the extensiorQ‘Z“"(a)) is finite iff Q>(w) is finite. In

[4], the following exact sharp relationship between the two differentonstants
was proven:

c102(w) < OM(w) < c202(w)%

Because it involves only harmonic extensions, the invaﬂarttonstanQiZ”"(w)
considered in (2.2) is invariant under Mdbius transforms.

In what follows, H stands for Hilbert transform on the circle (In some texts,
the Hilbert transform is defined as the operator we denotd gy This transform
H acts on trigonometric polynomials as follows:

H(Zakei5k> = —i Zakeiek +1i Zakemk.
k>0 k<0
Let Hg be the operatoH + iPy, where Py: f +— f(0). Our main result is the
following.

Tueorem 2.1. H : L%(w) — L% () has operator norm|H| < cQMw).
wherec does not depend 0@ (w).

Observe that, in our notatioQiZ”"(a)) = SURcp w(2)w~(z). We will show sharp-
ness of this result in Section 5.

3. Proof of Theorem 2.1

Recall that, forf () a function oril', we usef (z) to denote its harmonic extension
to the disk. _
We have| Poll 12(w)— 12wy < V05" (@), since
IPo(HIZ = 1£(0)P0(0) < (| fPw) Q)0 (0)w(0) < OMw) fI12.

Since||H|| < [|Holl + || Poll and Qi2”"(a)) > 1, it suffices to show thaf Hy| <
cOM(w). We estimat Holl 12 ()12 (@) by duality. Sinc& Hotf, g/t) = (Hof, g),
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itis enough to show thatHo £, g)| < cQ5Mw) (| f112+1Igl1% ) forall f € LE(w)

andg € L3(w™) (just user = /ligllo-1/ll fllo if £ # 0). It suffices to consider
real-valued and positive functiogsandg. Assuming positivity will both abbrevi-
ate notation and allow for a smaller domain of our Bellman functions. We polarize
the formula in [3, p. 236], which is a simple consequence of Green’s formula, and
obtain
1 1
[(Hof — Hof(0)(g —g(0)dm = 2—/(VHof)(Vg) log — dA(z).
T 7 Jp |zl
BecauseH f(0) = O, the left-hand side equaldyf, g). We have|VHyf| =
|Vf| by the Cauchy—Riemann equations, sirfce iHg f is holomorphic. There-
fore, 1 1
|(Hof, 8)| = Z—/IVfIIVgI log — dA(2). (3.3)
7T Jp |zl
Note that, forf real-valued|Vf| = 2|0f/dz|, where the latter denotes the deriv-
ative of the harmonic extension gf defined byof/9z = 1/2(3f/dx — idf/dy).
We will write f(z)’ for the holomorphic functiodf/dz.
We can now add and subtract terms to the integrand and then use the triangle
inequality to split the integral into the following four parts:

1
/ | f(2)'l1g(2)'|log — dA(z)
D |z

ool 1 L2
+ /D F(Dlg()] ‘;_11((?) ‘Z((Zz)) - ‘;(é’) Iog|71|dA(z)
+ [ 1@llgo) o ff(zz)) - ‘;_11((2 09 - dA (D)
+ /D FDIg()] ‘;__11((?) ‘:)((Zz)) |Og|—§|dA(z).

Readers who are familiar with [7] will immediately see the resemblance to the
four sums in the dyadic setting.

Equation (3.3) gives us some intuition as to why we can prove our result in a
manner very similar to [7]: the Hilbert transform can be estimated via an expres-
sion involving absolute values of derivatives of the harmonic extensions. These
are an obvious analog of dyadic martingale differences. The rest of the proof fol-
lows Bellman function methods. The first integral can be controlled in the same
way as done in [7]; in fact, the proofs are identical. For the second and third in-
tegral we need to proceed in two steps. Again, we want to use the same proof as
in [7], but in order to do so we must have an estimate for a certain Green’s poten-
tial function involving the weight. But there is a dyadic analog for this estimate,
which showed up in the proof for sharp bounds for the dyadic square function in
L?(w) and was proven by a Bellman function technique (see [5]). We will use the
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same Bellman function to obtain estimates for the Green’s potential. The fourth
integral requires what is known as a bilinear harmonic embedding theorem. It is
closely related to Sawyer’s embedding theorems with weights. But it is a bilinear
version of weighted embedding theorems and the most important ingredient of our
proof. It gives an efficient and relatively simple sufficient condition for our bilinear
estimate to hold. The use of this simpler sufficient condition for the bilinear em-
bedding theorem is quite different from the approach in [7]. We observed that one
can omit the most difficult part of [7] by inventing the aforementioned sufficient
conditions. We formulate a version with relatively simple embedding conditions,
again Green’s potentials. The appropriate Bellman function is constructed, and
we give an explicit expression for this function. We find the appropriate bounds
for the embedding conditions using Bellman functions found in [7] and [10].
Before we start to estimate the four integrals, we need the following lemma to
relate Laplacians to second differentials. This lemma is an elementary but crucial
key to translating dyadic Bellman function methods to the continuous setting.

LemMmA 3.1. If b(z) = B(h(2)), whereh = (f;);:C - R"andB: R" - R
with B and# sufficiently smooth, then
32f;

Ab(z) = 4(dzB(h(z))(%> ) <%> ) +4(VB)(h(z))(—_> . (34
9z J; \ 0z J; 0207 J;
In particular, if all f; are harmonic, then

af; af;
Ab(z) = 4(d23(h(z))(i> . (i) > (3.5)
9z J; \ 0z J;
Proof. The proofis by elementary computation, using harmonicity for (3.5). Also
note thatA = 43%/9z97. O

We will bound all integrals using Bellman functions. Each variable carries mean-
ing, usually harmonic extensions of functions or Green’s potentials for some fixed
z. The following variables show up frequently:

X = fP02), Y=g,

x = f(2), y = g(2),

r= afl(z), s = w(z).

Recall thatf?w(z) denotes the harmonic extension of the prodgrtt)w (t).
If we assumef, g to be real and positive, then all variables will be positive. Fur-
thermore, using h(¢) P (t) dm(t) = [ h(t)w(t)Y?w(t)~Y2P,(t) dm(t) together
with the Cauchy—Schwarz inequality yields the following natural estimates:

1<rs<Q (ifwewrite Q for QMV(w)); (3.6)
x2<Xr and y?<VYs. (3.7)

These restrictions give a natural domain for our Bellman functions.
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3.1. The First Integral

Consider the following function of six real variables:

X2 y2
BX,x,r,Y,y,s) =X ——+4+Y — —.
r s

We get the following size estimate within the natural domai® of
0<B=<X+Y.

Direct computation of the second differential yields
2 2y2 2

N

dx dr dy ds

y N

(3.8)

Also consider the functioh: C — R, where

b(z) = B(h(2)) = B(f?w(2), f(2), 0 X2), g20(2), 8(2), ®(2)).

Then we obtain the following estimate ferAb(z) using (3.5) and (3.8):

2 2

_ab(e) = glLQL|[@ o7 @) 8217 [8(2) ()
o 2| f(2) o) w(z) [8(x) ()
216 /@8 [/ 0T@) [[g() @)
T Vol ) o) lg() o)
216/ @8I f) @ |8 @)
- Vo |f@ ol2)llgk) @]

To estimate the firstintegral, we use the previous estimate Ak (z) and Green’s
second identity

av du
/(uAv—vAu)dA:/ u— —v— | ds
Io) 90 on on

for the annulu® \ ¢D with ¢ arbitrarily small:

@ o X2)|lgx) w2 1
- - log — dA
/D'f @ Ty~ o s T w297 A
< cOMw)Y? / —Ab(2) |og|71|dA(z)
D .

:chZ”V(a))l/2<b(O)— f bdm)
T

< cOM)Y2UIF1I2 + gl ).

The last step uses that= 0 onT and that the size estimae < X + Y means
b©O) < I £1% + llgll .
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3.2. The Second and Third Integral

The second and the third integral are analogous, so let us only prove the estimate
for the second one.
We consider the function

B(r,s) = r(—4—Q2 —rs +40% + 1)
rs
from [5]. This function has the following properties:
1<rs<Q = 0< B(r.s) <cQ’
1<rs<Q = —d?B > Cs(dr).
Let us also consider the functien C — R, where
b(z) = B(h(2)) = B(o™(2), 0(2)),
0<b(2) < cQ%0 (),
—Ab(2) = co (D)o )

This function will help us to estimate the following Green'’s potential:

lo (&) 2w (£) dA)

1
G —1/2 :/I
(o T = [ 10975 5]

c/ —Ab()log
D

dA
Sz (E)I ©

(*) 1
® . fD AB(S_.(6)) log — dA(E)

€]
:c(b(z)—/bdm)
T

< Q0w Y(2),

wheresS, (§) = s a Mobius transform. The equality) follows from a change
of variablest +—> S_.(&). Hence we have proved that

G(lo™YPw)(z) < cOMw)?0(2)

and, analogously,
G(lo'Po™)(2) < cOMw)’w(2).

The reader should note the similarity between the estimate for the Green’s poten-
tial and its dyadic analog found in [5]:

T Z| Hlo ™| < cQa(w)*(w),.

IcJ
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Let us introduce a new variable,
G = G(lo™VPw)(2).

Now we are ready to steal the Bellman function used to prove weighted dyadic
embedding theorem from [7]. We let

%2 y2
BX,x,r,G,Y,y,s) =X ———+4+Y — —
( ¥5) r+G/Q? s
ProprosITION 3.2. The function
2
fw,x,y,2) =w — (3.9
y+z
is concave in the domaify > 0 andz > 0}.
Proof. The matrix
0 0 0 0
2 —2x —2x
y+z +22  (y+2)?
—d?f =
—2x 2x2 2x2
+2?2  0+2%  (y+2)8
—2x 2x2 2x2
O+2?2  O+2%  (y+2)°
is positive semidefinite. O

HenceB, as a sum of concave functions, is concave. Consider
b(z) = B(h(2)) = B(f?w(2), f(2), 0 1(2), G(lo " Pw)(2), %0 X(2), w(2)).

We use equation (3.4) to estimate the part involviige, r, G, where the con-
cavity of B allows us to drop the part involving the second differential. We
need only consider partial derivatives in the “nonharmonic varialsie’Note
that —AG (oY ?w) = |0~V |?w. We use (3.5) and (3.8) for the part involving
Y, y,s. This yields

2

_ o f@QA=AG(lo7VPw)(2)) g(2)?|g(2) (@)
Ab@ 2 0 (0™H2)+ 07 2G(lo ™V Pw)(2)? w(2)|g(zx) w(2)
o o2 J@U@ Pe(0) RONHONRION
- (0™Hz2) + 072G (|0~ V|?w)(2))? w(z) | g(z) w(2)
- CQ_zf(z)le‘l(z)/lzw(z) 22?2  w@|’
B wY(z)? w(2) [ g(z)  w(z)
0 H2)'||g@)  w()

> cQ 7Y f(2)g(2)]

o) | g(z) ()

Now we use Green’s second identity, the fact that- 0 on T, and b(0) <
I £112 + ||g||§),1 to estimate the second integral:
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afl(z)’
w™Y(2)

g2 ()

1
- log— dA
0@ (o | 9] MA@

|z]

flf(z)llg(z)l‘
D

< chZ“V(a))/ —Ab(z) Iogi dA(2)
D |z
< cOM@) U f1I7 + 11817 -).

3.3. The Fourth Integral

We will apply the following harmonic bilinear embedding theorem. Its proof can
be found in Section 4.

LemMma 3.3. Leta(z) > Oand letw, v be two weights such that< w(z)v(z) <
Q forall zeDand

1
/D a(6)0(6)log = - dA) = Qu(2)

fDa(s)u(g) log dA) < Qu(z),

1
1S-(5)I

/Da(n)w(n)v(n) log dA(n) = Q.

[Ss ()]
Then, forf, g > 0e L?(T), we have

1
/H.)a(z)f(z)g(z) log T2l dA(2) < cQll fllu-2llgho-1-

We will apply Lemma 3.3 to the weights andv = ™ with QV(w) = Q and
(up to a normalization constant not depending®n

#(z) = () [lo™(2)|
() (z)

We need to find the estimates fof, N, andK. Consider the function

. 40 rs
B(s,r) —s(—; ) +4Q+1)

from [10]. This function has the following properties:
1<rs<Q = 0<B(r,s) <cQs,

dsdr
sro|

l<rs<Q = —d?B>Cs

Let us also consider the function C — R, where
b(z) = B(h(2)) = B(w(2), ® X(2)).
Then 0< b(z) < cQw(z) and
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|o(2)'[Jo™!(2)'|
()0 H(2)
This function will help us to estimate the following integral:

1
| dA —Ab |
/D 09 5~ 0O dA©) = ch (& log

—Ab(z) = 4Cw(z) =4Cw(z)a(z).

dA
1S:(&)] ©

1
_ fD AB(S_.(8))10g = dA(E)

€]
=c<b(z)—/bdm>
T

< cQw(z).
Similarly, we obtain

-1 -1
/D |S ($)|Ot(:§)w () dA(§) < cQw(2),

which gives the desired estimates for the outer integrald @nd N. We are left
to show the bound foK—namely, that

1
lo a @)@ w (€ dAE) < cQ.
/D Is @l
Consider the function
B(s,r) = 4\/6\/; —sr
from [7]. This function has the following properties:
l<rs<Q = 0=<B(r,s) <40,
1<rs<Q = —d?B > c|dsdr|.
Let us also consider the functiean C — R, where
b(z) = B(h(z2)) = B(@(2), 0™ X(2)).
Then 0< b(z) < c¢Q and
o (2) lo™(2)|
w(2)w(z)
This function will take care of the following integral:

1 -1
/D|09 |SZ(§)|06($)w(E)w (§)dA) < C/D—Ab(é) log

—Ab(z) > 4Co ()0 H(z) = 4Cw (D)o YD) a(z).

dA
[S2(&) ©

1
_ /D —AB(S_.(§)) log — dA(E)

€]
= c(b(z) - /dem>

<cQ.
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4. Bilinear Carleson Embedding Theorem

Recall that the Mobius transform is given By(&) = ;=

LemMma 4.1. Leta(z) > Oand letw, v be two weights such that< w(z)v(z) <
Q forall zeDand

/ (€0 (6)log o~ <s)| dA®) < 0w(2),

fD a(®)v(E) log dAE) < Qu(2),

1
1S ()]

/Dot(n)w(n)v(n) log dA() = Q.

1
[Ss ()]
Then, forf, g > 0e L?(T), we have

1
fD @(2) f(2)8(2) 109 — dAG) = QI f sl

Proof. As before, itis more convenient to switch to Young's inequality. It suffices
to show that

/ (2) f(2)g(2) |OgﬁdA(z) < QU1+ lglZ0).

Let us consider the variables

X =2, x=f), r=uv),

Y=gk @), y=8(2). s=0(),
as well as the nonharmonic variables
M = /a(é)v(é) log —— s (E)I f amuvmo(n) log ——— B ( Y dA(n) dA(8),
v= 00 5 ey [, Hm e log s datn dac)
K = [ atnunem og - aaa).

We then have the following natural estimates:
l1<rs <0,
x2<Xr and y?2<VYs (byJensen’sinequality),
M < Q% and N < Q% (by combining assumptions),

K < Q (byassumption).
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Furthermore, we may assume that all variables are strictly posikive; x, y,
r, s are harmonic extensions of positive functions, an&’jiM, N the integrands
are strictly positive (forr = 0 there is nothing to prove). This suggests the domain

K={X,x,r,Y,y,s, M,N,K) : X, x,r,Y,y,s, M, N, K > 0,
1<rs< Qi x> < Xri y?<Ys; M < Q%r; N < 0%: K < Q}.
Let us consider the following function of nine (!) real variables:
B(X,x,r,Y,y,s, M, N, K)
=Bi(X,x,r, M)+ B>(Y,y,s,N)+ Bs(X,x,r, Y, y,s, K),

where
x2
Bi(X,x,rM)=X — —,
(X, x,r, M) T M0
y2
B,Y,y,s, N) =Y — ——
2(Y,y,5,N) ST NjO2

B3(X,x,r,Y,y,s, K)

20 oo 2 .
X 4y — X520 &/0O+yTr e yr—xg>0

rs—K2/Q2
andxs — yg > 0,
= 2 . 2 }.2
X+4+Y—ys otherwise, and- > =,
2
X+Y —x¥r otherwise, and"rj <.

As beforep(z), bi(z), b2(z), bs(z) are the corresponding functionsBnWe now
discuss the various properties Bf

Derivative estimates:

831 . 1 x2
oM ~ 402 r2’
2
B2 1y
ON — 402 2
%> 5% if KgQ%anszQj—;,
oK — |0 otherwise.

For the derivative estimate df;, note thatM < Q?r; useN < Q32s for B,.
The weaker derivative estimate f@3; (nonnegativity) holds everywhere and is
easy to check. Harder is the stronger estimate that we will only need for “small”
K, thatis,{K < Q- andK < Q3}. By exchangingr andy, we need only
consider the case?/r > y?/s. Let us point out thaiB; was taken from an early
version of [7], where it was written (up to normalization) in the following form:
B3(X,x,r,Y,y,s,K)=X+Y —supB(a, X,x,r,Y,y,s, K);
a>0

here
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x2 y2
Bla, X, x,r,Y,y,s,K)= +

r+a— s+al—
Q Q

Note thatg is continuously differentiable i for « > 0. Testing for critical points
yields

B x2K N y2K
da  (r+aK)? (as+K)?
and
ad —xK
N S
da xs —yK

provided this fraction is finite and different from 0. We see #h@tda changes
sign from positive to negative at= a,, := (yr —xK)/(xs — yK) if both numer-
ator and denominator are positive, so in this cAsgtains its maximum at this
point. If a,, is negative then the supremum is “attained” at @arOne can also
see that if bothyr — xK andxs — yK are negative then the extremum is a min-
imum, so again the supremum is attained at 6rWe found ourBs by letting

a = a, = (yr — xK)/(xs — yK) when bothyr — xK andxs — yK are positive
and by setting: = 0 ora = oo in all other cases.

Recall that, for the derivative estimate Bf, only the case wherg attains its
maximum ata,, = (yr — xK)/(xs — yK) is relevant because we only need the
estimate for snlaIK—namer,K < Q% andK < QZ—;.

Let us writeK for K/Q. It was shown in an early version of [7] that, &f is
small, then

2 2

1
Blao, X, x,1, Y, y,5,K) > — + =2 for ap=>-. (4.10)
r 2 s xs
We will include the proof for the sake of completeness. Let us first observe that
2 2 2 2 2 2
s x——aKx—z and —2 > y——a‘le—z;
r+ak 1 r s+alK ~ s §
hence
2 2 2 2
Ba X, xrnY v k)= 42 —(aRE +aRL).  (@10)
r s r2 52
The part in parentheses for= ag = yr/xs is
2 2 2
Wt [ By _XWp Y (4.12)
xs 12  yr s2 rs 2s

where we use the assumptigh < yr/4x. Now we obtain the required estimate
from below forg ataqg:

X2 y2 g2 x2 12
Blao, X, x,1,Y,y,s, K)>—+———=—+——,
K 2s r 2s
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where we use (4.11) ferp together with (4.12). Thus, taking supremum in the first
variable yields

2 1y2
supfa, X, x,r, Y, y,5,K) > — + - —.
a>0 r 25

We now consider the parameter family of functions
B3(X,x,r,Y,y,5,K) =X+Y - B, X,x,r,Y,y,s, K).
In an early version of [7], the following derivative estimate was proved for skhall

r—xlg'

0B%
3 > 2 wherea, = 2 (4.13)
0K la=a, rs xs —yK
But Bs(X,x,r, Y, y,s, K) = B"(X,x,r,Y,y,s,K), SO
0B 0B da 9B
— = =+ —=
ok 0a |, 0K 0K lua,
Note that ) )
Ba
so_w
da a=a, da a=a,

sincep attains its maximum ia,,. Provided thak is small, we have the deriva-
tive estimate
0B3 c xy
_— =,
oK — Qs
We include the proof of (4.13). First observe that, according to (4.10), we have

2 2 2 2
X X 1

o2 T 2
r+anK s4+anK _r 25

This impliesy?/(s 4+ a;*K) > y%2s and hence > a;'K. But sincex?/r >
y?/s, (4.10) implies also that

2 2 2 2
X 1x
= + y4~zl+——.
r+a,K s+a,K s 2r
Thus, similarly we obtaim > a,, K. Consequently,
0B ax? a1ly? Xy

>2

K  (r+aK)?2 (s+aK)2  (r+aK)(s+alK)

Usingr > a,, K ands > a;'K yields (4.13).
Size: We have the following obvious size estimates Bpr
0<B1<X, 0<B2<Y, 0<B3<X+Y

Here 0 < Bs follows from the fact thatX — x%/(r + aK) > 0 andY — y%
(s +a~1K) > 0 for positivea.
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Concavity: Both B; and B, are of the form (3.2), so
—d’B;>0 and —d%B,>0.
Sinceg is convex for all parameters it follows that B3, as the infimum of a fam-
ily of concave functions, is also concave. To ukgin a Green’s formula it needs
to be sufficiently smooth. Fat < 1 we consider the séfs = {v(z) : z < 8},
wherev(z) = (X(2), x(2), r(2), Y(2), ¥(2), s(z), M(z), N(z), K(z)). Itis easy
to see that the sé s is a compact subset of the domdinof B. Let us picke(§)
to be the distance betwed; and the hyperplanes =0, x =0,»=0,Y =0,
y=0,5=0, M =0, N=0,andK = 0. We picke, to be aC*> approximate
identity in R® with radiuse(8)/2. By this we mean a smooth, radial, and nonneg-
ative bump function supported by a disk around 0 of radid$/2 and normalized
to f¢£(5) =1 We consider the convolutioﬁg = B3 * ¢.5). The resulting func-
tion is smooth inCs and has size, derivative, and concavity properties similar to
Bs. Itis easy to see that only the constants change by a factot2ofd the size
estimate and by/B in case of the derivative estimate for all choices$.ofhe de-
rivative estimate oB3 will only hold for smallerk, namely{K < Q% andK <
Q%}- In this sense,
—d?B > 0 in K;.

As before, we plug in our variables and call the resulting funoﬁ'@ﬂz). The sum
b1+ by + bl is denoted by’. This function is defined oD only, so we estimate
our integral on a slightly smaller region first and then pass to the limit. We divide
8D into three parts:

A= {zem  K(z) > 8V E) }

181 (2)

f(z)w(z)}

Ao = {ZGSD K(z) = Q0 182(2)
Az =08D\ (A1U Ay).

If ze Aq, then
B
—Aby(z) > a—A;(—AM)
1 f(2)?
402 v(z)?
1 f(z)? g(2)v(z)
% 202 vz VDL g0

1
= @a(z)f(z)g(z).

=

a(2)v(z)K(z)

Similarly, if z € A, then

1
—Abs(z) > @a(z)f(z)g(z)-
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If z€ Az, then
—Ab(z2) > %(—AK)
— oK
RAPACI{CI)
~ Qw@u(z)

= éa(z)f(z)g(z)-

Since—Aby 2, —Ab% > 0 on all ofsD, we have all together

—cQAD’(2) = a(2) f(2)8(2).
with ¢ not depending 0od. We are now ready to run the Green’s formula trick:

a(z)w(z2)v(z)

| z]

:cQ(B“(O)— f l;‘s(t)dm)
8T

< QU121+ 118l ).
Passing to the limi§ — 1~ delivers the desired estimate. O

1 ~ 1
/ 0(2) f(2)g(2)log = dA(2) < cQ / AR log L dAc)
sD |z] D

5. Sharpness of the Result

In this section, we demonstrate tr@g“’(w) is indeed the best possible bound for
the Hilbert transform. First, we will create an examplelo(see [2]).
The definition ofA, onR is very similar to that ofT: We sayw € A, (OnR) if

sup); (@™ = 05 (@) < oo, (5.14)
1

where the supremum is taken over all intervaia R.
Define 05 "™ (w) by

supw(2)oX(z) = 05 ™(w), (5.15)
zeR2
wherew (z) denotes the harmonic extensiorwobnto the upper half-plane. (Note
thatw(z) = w(x, y) = Py * w(x), whereP,(x) = cy/(1x|? + y?) and(x, y) €
R2))
In this section, we will use the symbel to denote comparable size; that is,
u ~ v if there exist positive constants C such thatu < v < Cu.
Letv = |x|%. Such weights are called power weights, and a simple calculation
shows thab € A, (onR) iff « € (—1, 1) and that
1
R
e
For power weights it is known thaQﬂf’i”"(v) ~ 1/(1 — «?) also, and thus
05™w) ~ 0%(v) (see [4, Chap. 3]). We now use power weights to demonstrate
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that the main theorem is sharp. Lsebe a fixed number K0, 1), and letv(x) =
%1% and £, (x) = |x* Yy, Then Q3 ™ (vy) ~ I/s and|| 112, | = 1/s.
Let H denote the Hilbert transform dR. Then, forx > 2,
1 ysfl 1 1 1 1
Hfs(x) = dy ~ — v dy = —,
o X—Yy X Jo SX
sinceZ > i > 2 forx > 2 andy €0, 1]. Therefore,

o0
2 -3
f [Hfslvs ~ s
2

and so .
-3/2 -1 ,inv
IH fllo, = 572 ~ s fillo, ~ Q™ Wl filly, -

Here we see that the first power of the constant is sharp if we lat— 0.
To transform this example to one @h we use the Mo6bius transformation that
maps the real line to the circlé; . Specifically, let

Jhix) = 1 h(i—x)
V= mirn \irx )

Then 9 1
i z—
J %)=/ k )
(2) \/_Z+1 (iz+i>
Let 3,(z) = UV(zlll) Recall that theA, j,, constant is invariant under Mdbius

transforms and thqul;’i”"(vs) = Q‘Z”V(ﬁ_v). A calculation shows that is an isom-

etry from L2.(3) to L2 (v). Furthermore (cf. [9]),

H=cl1J.
Letg(z) = J1f. We have

1Hglls, ~ 177 HIgls, = IH Sl < Q3™ @I fll, = cOF@,)lIglls, -
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