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1. Introduction

Let D be a bounded domain with Lipschitz boundaryRf, and lety be a fixed
pointin D. Then there is a solutioh, (x) to the Dirichlet problem

Au(x) =0 in D,
{ u(x) =—-n(x—y) onaD,
where .
log|x| if N=2,
n(x) = { _IxZY if N>3.

The functionGp (x, y) = n(x —y)+h,(x) is called theclassical(negativg Green
functionfor the Laplacian, with pole ag. It is harmonic inD\{y} and tends to
zero on the boundary; furthermore, it is symmetric.

Now let D be a bounded domain iG”. By PSH D) we denote the class of
plurisubharmonic (psh) functions an. The pluricomplex Green functiofor D
with pole atw is defined by

gp(z, w) = suplp(z) 1 ¢ € PSHD), ¢ <0, ¢(2) = loglz — w| + OD)}.

This definition was first given by Klimek [5]. It coincides with the classical
Green function in the complex plane. The functigs(-, w) is a negative plurisub-
harmonic function inD and has a logarithmic pole at. It is decreasing with re-
spect to holomorphic maps, which implies that it is biholomorphically invariant.
If D is hyperconvex, thegp(z, w) — 0 asz — 9D andgp is continuous on
D x D (cf. [3]). The pluricomplex Green function is symmetric for convex do-
mains [7], although it is not symmetric in general [1]. The pluricomplex Green
function plays a similar role in the pluripotential theory as the classical Green
function in the classical potential theory, so itis interesting to compare the two. In
the case whe is strongly pseudoconvex, Carlehed [2] proved that the following
holds for allz, w € D:

gp(z, w) 2n—4
o2 < C(D)|z —w .
Go(z. 1) (D) |
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In particular, the quotient is bounded. The purpose of this article is to extend this
result to certain weakly pseudoconvex domains. A bounded domaincalled
locally convexifiablef every p € aD has a neighborhooll, with the properties
that D NV, is biholomorphic to a convex domain. A bounded domain is cadied
cally convexifiable of finite type if it is locally convexifiable and of finite type

m. Our main result is the following theorem.

THeorREM 1. Let D be a bounded, locally convexifiable domain of finite type
in C". Then

gD(Zs w) _ 2(n—m)
Goeow) =CD)|z — w| . @

In particular, the quotient is boundednif> m.

Since any strongly pseudoconvex domain is a locally convexifiable domain of fi-
nite type 2, Theorem 1 generalizes the result of Carlehed.

However, this theorem does not hold in general whea m. We shall show
that the quotieng,/Gp is unbounded on the domain

D = {ZEC” . |Z1|2+ |Z2|m +---+ |Zn|m < 1}7

wherem > n is even.

2. An Estimate for the Pluricomplex Green Function

In this section we shall prove the following result, which plays an essential role in
proving the main theorem.

ProposiTION 2. Let D be a bounded, locally convexifiable domairdf. Sup-
pose that there exist positive numbers> g anda > 2 as well as arr > 0
such that, for every € aD, there is a holomorphic functioh, on D N B(p, r)
satisfying

cilz = pl* < 1= 1|hy(2)] < c2lz = pl? @

for suitable constants; > ¢; > 0 (independent op), whereB(p, r) denotes the
ball in C" that is centered ap with radiusr. Then there exists a constafit> 0
depending only om, 8, r, c1, ¢» such that

§8(z)8?
ez w) < DD W)
|Z _ w|2a

wheredp (z) denotes the Euclidean boundary distance.of

3)

For the sake of simplicity, we make the following assumption on the diameter of
D: diam(D) < 1 Inthis section, we shall denote layall the constants depending
only ong, B, r, c1, c2. We first prove several lemmas.

Lemma 3. For all z, w € D with 8 (w) < a|z — w|®, wherea = ¢1/(2%t¢y),
one has

—gp(z,w) <C p 4)
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Proof. Let us fixw for a moment. We take a boundary pointso thatsp (w) =
lw — b]. If §p(w) > r/2, then|z — w| > 85/%(w)/a¥* > C. By the trivial
estimate .

diam(D)

lz—w|’

we immediately get (4). Hence we may assuipéw) < r/2. We will first show
that

—gp(z, w) < log

85 (w)
|z —w|*
Sincelhz| <1lonD N B(, r), it follows that

—gpna,n(z, w) <C

®)

—8pnBai,n (2, W) < —galhy(2), hg(w))
1 o | (z) — ha(w)|?

2 71— hp(w)hy(2))?
1 1—ha()PD A= [hgw)]?)
—| 1
2 °g< T T @) = ha )2 )
- 1d- [ha ()P A— |hy(w)]?)
-2 |hip(2) — hg(w)|?
- 2(1— [hy ()N — Iha,(w)l)’
- [hip(2) — hg(w)|?
whereA is the unit disc inC. Notice that

1—hg(w)| < c285(w)

and
|hi(2) — ha(w)] > 1= |hap(2)| — A — [hg(w)])
> c1lz — | — colw — P
> c1(lz — w| — 8p(w)® — 280 (w)
> (1l — a"P)* — cra)|z — w|*
> (c127% — c2a)|z — w|*
> 127 Yz — w]”.
If 11— |ha(2)| < 2(1— |hg(w)]), then
AL~ |hy(w)))?
|ha(z) — hg(w)|2
55 (w)
|Z _ w|2a
8 (w)
T lz—wl

—8pnBas,n(z, w) <

<C

’

becauség(w) < alz — w|%. Otherwise, one has
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[hg(z) — hyp(w)| > 1—|hg(2)] — L= |hg(w)])
> 21— |ha(2))).
It follows that
4= lha)) _ Sp(w)
[hg(z) — hyp(w)l |z —w|*
The rest of the proof is standard. We fixw and set
. lz —w| if |z—w| <r/4,
| 4 otherwise.

—&pnBi,n(Z, W) <

Clearly, one haB(w, A) C B(w, r). Set

b= inf 7 , W),
{eDﬂaB(w,k)gDmB(u’r)(g )

log(2[¢ — w|/r)
V@ ==
Thenv is psh onD and satisfies
o(0) = { b < gpnp@w,n(& w) if [ —w| =2,
v(¢) =0> gpnp@,n(¢ w) if [¢—w|=r/2
Hence the function
gpnBw@,n (¢ w), teDNB(w,A),
u(g) = { max{v(¢), gonaw,n(¢, w)}, ¢ € DN B(w,r/2)\B(w, 1),
v($), ¢ € D\B(w, r/2)
is also psh inD and has a logarithmic poke. Observe that
5h(w)
|z —wl|*

u(z) > -C

because of (5). One also has

log(2 diam(D)/r) 85 (w)
e 2 I T

It follows that

gp(z, w) = u(z) — supu(f)

ceD
L Spw)
T lz—w|
The proof is complete.
LEmMmA 4. Forall z, we D,
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Proof. We fixz, w and sety = |z — w|, w' = w + (w — z)/y, andR = 1+ 2y.
Then|w — w’| =1andz € B(w/, R), since|z — w’| =1+ y < R. Without loss
of generality, we may assume that = 0. We make the following claim.

Cramm. There is a constar@’ > 0, depending only on, such that
—gBo.r) (¢ w) < C, (6)

ld:gso,r) (& w) < C'ly (1)
forall 1+ y/2 < |¢| <1+ y. Hered, denotes the derivative w.r4.
Remark.The explicit form ofgp o, ) (¢, w) shows that it is smooth off the diagonal.
Let us first observe that Lemma 4 follows from the claim. ketR — [0, 1] be
a C function satisfyingy =1 on(—o0,1/2] andy = 0 on [1 c0). We set

@) = x(gl =D/y)gsor (G w) if [l <1+y,
¢ =1o otherwise.
By a straightforward calculation, we obtain

30(0) = gro ») (& w)IIX((I1Z] —1/y)
+ 3gp0, 8 (&, W)AX((1C] — D/y) + dx((I¢] — 1/v)dgno, 1)(E w)

+ x((Ig] = D/y)33gp0, ) (C. w).

Neglecting the semipositive terp((|¢] — 1)/y)85gB(O,R)(§, w), we thus obtain
the inequality

1

_ c” _
300(5) = ——5 30| (8)
4

from (6) and (7) for a suitable constafit > 0 depending only on.
Now letZ be a boundary point, so thé$(z) = |z — Z|. We set

@z = maxX{|hz| — 1, —n}
for sufficiently small positive constamt Theng: is a well-defined psh function
on D with the estimate
cild =21 < —9:(0) < calt — 217,

where the constants are still denoteddayc, for the sake of simplicity. Let us
denote o ) )

Yz(8) = —2¢, (= () + ¢ — 2.
One hasy: < 0onD, ¥:(Z) = 0, andddy: > 39|¢|2 in the sense of distribu-

tions because > 2. Therefore, by (8), the functio®C"/y?)v: + o is negative
and psh inD with a logarithmic polew. Hence

1

—gp(z, w) < —71/12(@ —0(2)

2
8Dﬂ/a(Z)
lz — w2
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LEmMMA 5. Leta be as in Lemma 3. The@d) also holds for allz, w € D with
8bw) = alz — w|*.

Proof. Using the fact thaD is locally convexifiable as well as a standard com-
pactness argument, we argue as follows. There existsO (independent op
aD) such that every € 9D has a neighborhooy, with the properties thab NV,

is biholomorphic to a convex domain aiinN B(p, r’) C D N V,. Without loss

of generality, we may assume that= r'. It follows thatgpny, is symmetric. By
Lemma 4, for alkz, w € D N B(p, r) we have that

—8pnB(p.n(2, W) < —gpnv, (2, w) = —gpnv, (W, 2)
2B/a
1) w
< —gp(w,2) = c22) Z
|z —w|

Repeating the arguments as in the proof of Lemma 3, one has

2B/a

8
—gn(zw) = 22

|z — w]

from which (4) immediately follows becauﬁé(w) >alz—w|*andae > 2. O
Proof of Proposition 2.Combining Lemma 3 with Lemma 5, we see that

5P

—gp(z, w) < Cﬂ

lz —w|*
holds forallz, w € D. We will follow the argument of Carlehed [2]. Whép(z) >
%lz — w|, the proof follows immediately becauﬁé(z)/lz —w|* > C. It suf-
fices to prove the proposition for the caggz) < %|z —w|. Lety, Z be as before.
Observe that
(1) ze DN B(Z, y/2), sincedp(z) < y/4; and
(2) w¢ DN B(z,y/2), since

lw—z| > |w—z| —|z—7Z|

= |z —w| —dp(z)

v

%Iz —w| > y/2
If £ e DNAB(Z, y/2), then
¢ —w|>|z—w|—|z—-¢]

>lz—wl—(z—2z|+ 1 =2z
= y/4

Let ¢; be taken as before. Clearly, one has

L@ _alk - a

ya - ya - 20¢

forall ¢ € D N dB(Z, y/2). Therefore, the inequality
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SHw) z(0)
lz —wl* y*

holds there. The same inequality holds trivially fore 9D N B(Z, y/2), since
gp (¢, w) = Othere; hence it holds for ajle 3(D N B(z, y/2)). Sincegp (¢, w) is
a maximal plurisubharmonic function ¢fin D N B(Z, y/2) and sincep; is also
psh there, the inequality holds truefnn B(z, y/2). In particular,

85285 w)

|z —wl
The proof is complete. O

gD(gv U)) = C

gn(z,w) > -C

Proof of the Claim.Because the pluricomplex Green function is biholomorphi-
cally invariant, we may assume that= (¢, 0, ..., 0) with r > 0. Furthermore,
we can takeR = 1 under the dilatior — ¢/R. Thent = 1/R > 1/3 and%y <
1—1t <2y sinceR < 3. By [2] one has
11— g
It —¢12+q(1—1?)
1 A-1ZPHA-1?)
= —log(1
2 g< - It — ¢4 +q1—1?)
_l a-gpa-
T 20—+ q—1?)’
wheres = (¢4¢%,....¢%") € R* andg = q(¢) = |2+ -+ + [¢2"]2 If
|t — ¢Y > y/4, then

1
—gB0,0(¢, w) = > log

It — M+ q1—1?) > y?/16.
Otherwise,
g =1¢1>—1¢'P
> (1 +v/2° =t +v/4°
> (y/2)
>y/6
forallr +y/2 < |¢| <t + y. Itfollows that
It =P +qA—1) > q—1%) > 3qy > y¥9.

Hence (6) is valid because1|¢| <1—t — y/2 < 2y. By the Cauchy—Schwarz
inequality, one has

tldg) |t = cYldeY + 5 H1ck ek | — 1)
d , < =
ld; 880,15 w)| = s =2+ gA—12)
1 Ji+@n-DA-1?)
Tl V=P qA-1?)
S @7
14
whereCq > 0 is a constant depending only anThe proof is complete. O
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3. Proof of Theorem 1

We recall at first some basic facts for convex domains of finite type. Asdume
{p(z) < 0} to be a bounded convex domain of finite typevith a defining func-
tion p. Let us make precise the finite-type hypothesis: For ga€ldD and each
complex lineL in the complex tangent spaceatthere is a unit directiom in L
such that

m

>_IDip(p)] #0.

i=2

Here D! p(p) denotes theéth directional derivative op at p. On the other hand,
if L is transverse then of courdg®, (p) # O for somev. By continuity and com-
pactness we can write the finite-type assumption as follows: If

i+J

-p(p+ M)z, pE€ID, |v|=1

W) = o

then
> laij(p.v)| = e(D) > 0.

1<i+j<m

The following deep result was proved by Diederich and Fornaess.

THEOREM [4]. Letn, be the normal unit vector téD at the boundary poinp,
and letv be a complex tangential unit vector. Then there exists a holomorphic
supporting functiors, (z) at p with the estimate

Re K e
ReS, () = == — Z(IMu? =&Y 3 Jay(p.v)lirl*
k=2 i+j=k

if we writez = p + un, +Av with A, u € C. Here K, ¢ > 0 are constants inde-
pendent ofp, v.

For eachp € 0D, we define, = ¢%. Then
cilz = pI" < 1= 1hp(2)] < calz = p

for suitable constanis;, ¢ > 0.
Now we begin to prove our theorem. By hypothesis, the fundijgast defined
exists locally. By Proposition 2, one has

8p(2)ép(w)

—&p(z, w) =< C(D) o
|Z _ w| m

)

Let us recall some estimates of the classical Green function for bounded domains
of CY ! boundary inC" with n > 2 (cf. [2; 8]):

C(D) . op(z2) ép(w)
—Gp(z,w) > m if |z —w| < max{ D2 s D2 }, (10)
ey = C(py 2@ max{ (2) 6D(w>}_ "
|z — w|? 2 2
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We proceed with the proof by examining two cases as follows.

(1) When|z — w| < max{ép(z)/2, $p(w)/2}, we use inequality (10) together
with the trivial estimate

diam(D
—gp(z,w) <log ﬁ.
|z — wi
(2) When|z — w| > max{dp(z)/2, 5p(w)/2}, we use (9) and (11).
Thus, the proof of the main theorem is complete. O
4. An Example

Let us consider the domain
D={zeC" |zl + |zal" 4+ -+ |za|" <1},

wherem > n is even. ClearlyD is a convex domain of finite type. Let0 < 7 <
1 be any positive numberand 8t = {z€C" 1 z1=t, 23 =24 =+ =2, =
0}. ThenD N H, is a disc with radiugl — r2)¥". Letw = w(t) = (¢, 0, ..., 0)
and

z=z(t) = (t,30—1?¥™ 0,...,0).

Thensp(z) =~ §p(w) ~ 1— t. By definition of the pluricomplex Green function,
one has
gp(z, w) = gpnu,(z, w)
ga(1/2,0)
= —log2

We use a similar estimate for the classical Green function (cf. [2; 6]):

dp(z)ép(w)

—Gp(z,w) < C(D) iz

| —
Hence

@ w) )l

Gp(z,w) — 8p(z)dp (w)
> C(D)(l— I)Z(n/m—l)
— 00

ast — 1, because < m.
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