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Families of Affine Planes:
The Existence of a Cylinder

SHULIM KALIMAN & MIKHAIL ZAIDENBERG

Introduction

Dolgachev and Weisfeiler [9, (3.8.5)] formulated the following.

CoNIJECTURE. Let f: X — § be aflat affine morphism of smooth schemes with
every fiberisomorphifover the residue fielgto an affine space. Thefiis locally
trivial in the Zariski topology.

Inthe characteristic-0 case, this conjecture is known to be true (under much weaker
assumptions) for morphisms of relative dimension 1 ([24; 23, Thm. 2]; see also
[30, Thm. 2] and [5; 6; 10]). Another proof based on the Rosenlicht—Chevalley—
Grothendieck theory of special algebraic groups [2; 37] was indicated by Danilov;
see [9]. The known partial positive results in higher relative dimensions (see e.qg.
[30; 38] and [4, (3.9)—(3.10)]) deal only with families over a 1-dimensional base
with 2-dimensional fibers, under an extra assumption that the generic fiber is the
affine plane as well. In this paper we show that the latter assumption holds over any
base. To simplify consideration, we restrict it to smooth, quasi-projective varieties
defined overC (actually, Theorem 0.1 remains true over any algebraically closed
field of characteristic 0).

We say that a familyf: X — S of quasi-projective varietiesontains a cylin-
der if, for some Zariski open subsé&t of S, there is a commutative diagram

£XSo) —f s sy xCk

whereg is an isomorphism. (In general, bycglinder overU we mean a Carte-
sian product/ x C* wherek > 0.)
Our main result is the following theorem.

THeEoREM 0.1. A smooth familyf : X — S with general fibers isomorphic 62
contains a cylindetSy x C2.
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See [14; 29; 31, 39] for statements of this type concerning affine surfaces with log-
arithmic Kodaira dimensior-co. We do not know if the theorem remains true in
higher relative dimensions.

A theorem of Sathaye ([38], which fixed a preliminary incomplete version in
[22]; cf. also [4, (3.9)-(3.10)]), together with Theorem 0.1, proves the following.

CororrLary 0.2. The Dolgachev—Weisfeiler conjecture is, indeed, true for fam-
ilies of affine planes over smooth curves.

Recall that, for an affine domaiR (overC) and a prime ideap of R, the resi-

due field ofR atp is K(p) := R,/(pR,), whereR, is the localization ofR atp.

Note that sometimes the assumption of the Dolgachev—Weisfeiler conjecture is
addressed in a more restrictive form, not only for closed poinsshaft for all its
points. Namely, one supposes the existence of isomorphisms

A ®g K(p) ~ K(m"  Vp e SpecR.

The next corollary shows that, at least for= 2, this additional assumption is
fulfilled automatically.

CoroLLARY 0.3. Let A be an affine domain oveR. If
A®r K(p) ~ K(p)# @)
for any maximal ideap of R, then this is so for every prime idepk SpecR.

Proof. DenoteS := SpecR andX := SpecA, and letf: X — S be the mor-
phism induced by the inclusioR < A. Note first that ifp = O is the zero ideal
and soK (p) is the fraction field ofR (i.e., for the generic point of), then con-
dition (1) is nothing but the existence of a cylinder HfFor a prime ideap €
SpecR, denoteS, = V(p) = SpecR? andX, = SpecA®? C X, whereRP :=
R/pandAP := A ®x RP. If M D p is a maximal ideal oR thenM, := MR*

is a maximal ideal oR", and any such ideal arises in that way. Our assumption
implies thatA® ®x» K(M,) ~ K(M,)[?, that is, the fibers ok, — S, over the
closed pointsV, € S, are isomorphic to the affine plane. In view of this observa-
tion, the existence of a cylinder ¢f, = f|x,: X, — S, provided by Theorem
0.1 simply means that (1) is fulfilled for the algebt& over R? with the zero ideal

p’ = 0 of the algebrak®. In turn, the latter means that (1) is fulfilled fpr O

On the other hand, Theorem 0.1 provides one of the principal ingredients in the
proof of the following statement (see [21, Lemifhg).

THEOREM [21]. A polynomialp on C2 with general fibers isomorphic 162 is
a variable of the polynomial algebr@®! (that is,C®! ~ C[ p]®). In particular,
all its fibers are isomorphic t62.

Up to Theorem 0.1, this result was observed in [28, Prop. 4.3] and [38, Cor. on
p. 60] for polynomials with only smooth (or at least factorial [30]) fibers; now we
see that this condition is superfluous.
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Let us give a brief outline of the proof. It uses the following simple observation
(Lemma 3.2): Letf: V — S be aP"-family over a quasi-projective base, and let
D C V be an irreducible smooth divisor that meets every filer= f1(s) ~
P" (s € S) transversally along a hyperplane; then the faniiy D) over S is
locally trivial in the Zariski topology. Thus, to prove Theorem 0.1 it suffices to
complete a giverC2-family f: X — S obtaining aP2-family f: V — S with an
irreducible divisorD = V \ X as before. We start with an arbitrary relative com-
pletion f: V — S with an SNC (simple normal crossing) divisbr= V \ X, and
then we contract successively the superfluous irreducible compoResftd in
order to obtain a minimal relative SNC completion. Owing to a relative version of
the Castelnuovo—Enriques—Kodaira contraction theorem (Theorent3ca)) be
smoothly contracted if, for everye S, the irreducible component€’; ;);—1 .. »
of E; := E NV, are disjoint(—1)-curves in the surfac®;. That is,(C; ;)i=1 ... »
must correspond to a set@f1)-vertices of the weighted dual grapliD;) (where
D, := D NV,) that contains no pair of neighbors.

Combinatorially," does not change whenvaries in an appropriate Zariski
open subset/ € S. For a fixeds € U there is a natural monodromy represen-
tation 71(U) — AutT'(Dj) that acts transitively on the se€; ;)i—1 ... ., leav-
ing it invariant. We show (Proposition 2.2) that the dual grépbf an arbitrary
nonminimal SNC completion of? possesses an orbit of Alltthat consists of
(—=1-vertices and has no pair of neighbors. Thus, we can minifiby then
contracting it (via equivariant contractions) to a minimal linear chain known as a
Ramanujam—Morrow graph. By Theorem 3.2, this minimization can be realized
geometrically.

The advantage of a Ramanujam—Morrow grapis that (with one simple ex-
ception) the group AUt is trivial; henceforth, for any irreducible componenbf
D, the curveE; = E NV, isirreducible as well. Moreover, can be transformed
to a single-vertex graph via a sequence of blow-ups and blow-downs. Since the
monodromy action is trivial, these blow-ups and blow-downs can be done simul-
taneously ovet/, thus yielding the desired single-component SNC completion as
in Lemma 3.2, which completes the proof.

We are grateful to M. Brion, L. Bonavero, |. Dolgachev, H. Flenner, Sh. Ishii,
V. Lin, D. Markushevich, and P. Russell for their advice and references.

1. A Contraction Theorem

The main result of this section (Theorem 1.3) is a relative version of the classi-
cal Castelnuovo—Enriques—Kodaira contraction theorem. In the analytic setting it
follows from the Moishezon—Nakano—Fujiki theorem (see [1; 13; 26; 32; 34] and
especially [12, Rem. 3]), whereas in the projective setting it follows from the theo-
rem on contraction of extremal rays as given in [25, Thm. 3-2-1] (cf. also [3; 7; 20;
27]). Actually, the particular version that we need is much simpler, so we provide
a proof along the lines of the Castelnuovo—Enriques—Kodaira original approach
[26, Apx.; 17, Sec. 4.1, p. 154].
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As usual, the structure sheaf of an algebraic varlety denoted byDy. If L is
a line bundle onX and if Y is a subvariety o, thenOy (L) denotes the sheaf of
germs of section of. overY. We begin with the following lemma (cf. [15, Sec. 7.6;
35, Thm. 4.7]).

LEmMa 11. Letp: E — S be a smooth proper morphism of smooth quasi-
projective varieties with fiberg, := p~(s) (s € S). For a line bundleL on E
we denotel := Og(L) and L := Og,(L). Suppose that

(o) HY(E,;, L) =0forallseSandallg > 1.
Then, for any Zariski open affine subsgtc S and E, := p~1(So), we have

(a) HY(Es,, L) =0forall g > 1, and
(b) for every points € S, the restriction homomorphism

H%Es,, £) — HYE;, L)

is surjective furthermore,
(c) the sheafp, L is locally free and generated by a vector bun(Bay,&(L))
over S with fibersé(L), = HYE,, L), s € S.

Proof. (a) Note that by [19, Progll1.9.2.c], £ is a flatOs-module. In virtue of
the assumption (0), for evesye S and everyy > 1 the natural homomorphism
Rip. L ®0; k(s) - HU(E,, L) =0

is an isomorphism, and the coherent shes, L is locally free [15, Thm. 4; 19,
Thm.I11.12.11.a, Ex. 11.5.8.c; 8, Prop. 11.3.7]; hekds) ~ C denotes the residue
field of a closed point € S. Thus we have

Rip, L=0 Vg=>1
The Leray spectral sequence gives now isomorphisms
HYE,L)>~ HYS, p:L) Vg=>1 (2)

[35, (5.16)]. For a Zariski open affine subsgtC S, by Serre’s vanishing theo-
rem [19, Thmlll.3.7] we have

H(So, px L) =0 Vg >1,

which together with (2) implies (a).
(b) SinceR'p, £ = 0, it follows that for every poink € So the homomorphism

p+ L ®oy, k(s) > HYE;, L) ©)

is surjective, whence it is an isomorphism [19, THih12.11]. On the other hand,
sincesy is affine we have an isomorphism

(P L)) 5o = HEs,, L), 4)
whereM ™ denotes th€s,-module generated by d#%(So, Os,)-moduleM [19,
Prop.111.8.5]. Now (3) and (4) yield (b).
(c) By (0) we havei(s) := dimHYE,, L;) = x(E,, L), where the Euler
characteristic is locally constant agh[15, Thm. 5; 8, Prop. 11.3.8]. Now the
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isomorphismin (2) and [19, Ex. 11.5.8.c] imply that £ is a locally free sheaf with
0 L~ Og(E(L)), whereg(L), = HYE,, L,), s € S. The proof is completed.

O
CoroLLARY 1.2. The statements of Lemma 1.1 remain true if one replaces the
assumptior{o) by any one of the following two.

(o) Foreverys €S, the line bundlel| g, — Kg, on the fiberE, is ample, where
K, is the canonical bundle ofj.

(0”) For everys € S and for each irreducible compone@tof the fiberE,, C ~
P"(n>1andL|c >~ O) withl > 0.

Indeed, by the Kodaira—Nakano vanishing theorem, any one of the conditions (o
and (d') implies (0)[17, Sec. 1.2, p. 154].

THEOREM 1.3. Letw:V — S be a smooth proper morphism of smooth quasi-
projective varieties, and lef C V be an irreducible smooth divis@proper over

S) that meets every fibéf, = 71(s) (s € §) transversally. LeE, := V,NE =
U™, Cs,: be the decomposition into irreducible componeotsiered arbitrarily

for everys € S).

(a) Assume that, for evesye Sandeach =1,...,m, C;; ~ P" (n > 1) with
the conormal bundlec, /JC ~ Opn(D), WhereJc is the ideal sheaf of
Csiin V. (In otherwords by Kodaira’s contraction theorem [26] we assume
that each irreducible compone@it ; can be contracted in the fib&f into a
smooth point.)Then there is a commutative diagram

VT/

whereW is a smooth quasi-projective variety, is a smooth morphism, and
¢ is anS-contraction of the divisoE on V onto a smooth subvariety ¢ W
étale overs.

(b) Let E’ be another smooth divisor oW (proper overS) that meets every
fibey Vs (s € §) and the divisorE transversally, and leE, := E' NV, =
U;’;l C; ; be the decomposition into irreducible components. Assume that,
for everys € S and for every pait, j such thaiC, ; N C;,j # (), this intersec-
tion becomes a hyperplane under an isomorphidm~ P” as in(a). Then
@(E") is a divisor onW (proper overS) whose singularities are at worst
transversal intersection@long A) of several smooth branches.

Proof. (a) We may assume in the sequel that the faseconnected. Fix a very
ample line bundlg? on V. For an arbitrary pointg € S, letting L = mH with m
sufficiently big, we may assume that the line bund|g — Ky, on the fiberV;,
oversg is ample; hence, by the Kodaira vanishing theorem [E&&ec. 1.2]), we
haveH4(V;,, L,,) = 0 forallg > 1 (herel; := Oy, (L)). SinceL is a flatOs-
module, by the semi-continuity theorem [19, Thim.12.8] it follows that
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HYV,, L) =0 Vg =1 (5)

for every points in a neighborhood of the pointsg. Thus, formg large enough
andL = Lo := moH, (5) holds for every point € S.

Since the divisofE is irreducible, the monodromy of the smooth famy: :
E — S acts transitively on the set of irreducible componejds;}!., of the
fiber E; (s € S). Hence all these components (regarded as cycl&s) aire alge-
braically (and then also numerically) equivalent. Thus- degLo|c, ;) does not
depend on, i. Consider the (Cartier) divisois; := Lo+ jE = moH + jEonV
(j €Z). Under our assumption&’ ; ~ P" and [Cs,i]|CX7i ~ Opn(-1)), for every
seSandeacti =1,...,m we haveL;|c,, =~ Op:(l) With :=k — j, SO

Hq(Esa(Lj)s)Zo Vg >1 vj =0,...,k. (6)
Now the same argument as in the proof of the Castelnuovo—Enriques—Kodaira the-
orem [26, Apx.; 17, p. 477] shows that:
(i) foreveryj =0,..., k and for every € S, the restriction map

HOV,., (L));) — HYE;, (L)),)

is surjective;

(ii) the linear systemL,|y,| of divisors onV; is base point free; and

(ii) the associated morphis,: V, — P"1 = P(HO(V,, (L),)*) (with /4 :
hO(V;, (L1),)) yields a contraction of the irreducible compone@ts (i
1, ..., m) of the divisorE; C V; into m distinct smooth points.

For the convenience of readers we sketch this argument. Forjeach ..., k,
consider the short exact sequence of sheaves

0— Oy, (Lj—1) = Oy, (Lj) - Og(L;j) -0
and the corresponding long exact cohomology sequence
0— HOV;, (Lj-1)s) = H(Vs, (L))
— HUE,, (L)) = H'(V;, (Lj—)s) = -« (7)

It follows from (6) and (7) that, for every > 1, the natural homomorphisms

H(Vy, (Lo)s) = HUV;, (L1)s) — -+ = HU(V;, (Ly)s)
are surjective, and so by (5) all these groups vanish; in particular,

HUVs, (Ly-1)5) = HU(Vs, (Li)s) =0 Vg =1, VseS. (8)

Now (7) implies (i).

Since the line bundl&|v,\ g, >~ Lolv,\ &, is very ample, the restrictiopy |y, g,
gives an embedding. Furthermore, the restricfighg, is a trivial bundle and so
(i) and (iii) easily follow.

By Lemmal.1(c), (8) implies that the dimensian:= h°(V,, (L;),) is constant
on S and thatt(Ly) = (U,cs H%(V;, (L4)s) — S) is a rankk vector bundle on
S. Thus,

1V —>PELDY, ¢ly, = e,
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is clearly a proper morphism onto a closed subvarl®ty= ¢(V) of (the total
space of) the projective bund&(L;)*); actually it consists of contracting the
divisor E C V onto a smooth subvariety c W étale (andn-sheeted) oves
under the projection’ := pr|w, where pr:P(&(L;)*) — S is the standard pro-
jection. By [19, Prop. 117.10()], P(§(L«)*) is a quasi-projective variety, whence
soisW.

The morphismp: V\ E — W\ A — P"lis an embedding (indeed, so is the
morphism given by the line bundie|y\ g >~ Lolv\g). HenceW \ A is a smooth
variety. To show that the variety itself is smooth, we proceed locally using
local trivializations of the vector bundig L;). Fix a points € S together with an
affine neighborhoody of s in S and an indexg € {1, ..., m}. Since by (i) the
restriction mapH°(V;, (Li_1);) — HOE;, (L;_1),) is surjective, we can find
n+1sectiong; o, ..., & € HOV,, (Li_1)) that are linearly independent when
restricted to sections dfk,l|cwo ~ Opx(1). Fix also a sectiom of the line bun-
dle [E] over V that vanishes oiE, another oney, 1 € HOV,, (Ly),) that does
not vanish orC; ;,, and a basis;, ; (j = 1,..., h) of HO(V,, (L1)). Shrinking
the neighborhood (if necessary) we may assume that = o;|y,, whereo; €
HO%Vsy, £1) (j = 1,..., k) (see Lemmd.1(b))and, for any point’ € Sy, the
restrictionso; |y, € HOVy, (Lx)s) (j =1, ..., h) still form a basis. Decompos-
ing the sections, 1, (nolv,) - &.1 € H%(V;, (Lx)s) ( =0, ..., n) by the basis ;

(j =1 ..., h), we may extend them to sections, say.o, ..., &, € H°(Vs,, L1)
decomposed by the systeme HO%Vs,, L) (j =1, ..., h) with the same coef-
ficients. Then the ratios

z{,::@,...,z;:zg—" 9)
n n
can be pushed down to regular functions (say) . ., z, in a neighborhood of the
pointc; ;, :== ¢(Cs,;y) € A in W that give a local coordinate system on the fiber
W, with center at the point; ;, (cf. [26, Apx.; 17, p. 477]). Clearly, they still give
a local coordinate system on the fib& around the poing; ;, := ¢(Cy.;,) € A
close enough tey ;,. Thusif(xy, ..., x,) (withr := dim¢ ) is a local coordinate
system at the point € S, then(xy, ..., x,, zo, ..., 2,) define a local coordinate
system or#V with center at the point; ;,; the projectiont’ in these local coordi-
nates is given as

(X1, ooy Xpy 20y eoes Zn) > (X1, .00y X)),
This proves (a).
(b) Let M be an algebraic vector bundle on an algebraic vatietgnd letZ, L’
be two transversal vector subbundles\fso thatM /(LN L") ~ L/(LNL") &
L/(LNL"). Thenwe haveM/L ~ L'/(LNL'). LettingM := TV |gng, L =
TE|gng, andL’ = TE'|gng/, @and using our previous observation, we obtain an
isomorphism of the normal bundles

NEngyer = Ngyy. (10)

By assumption, for every € S and for every pai(i, j) with C;; N C{ ; # 0, we
have(Cy;, Cs,; N C;’j) ~ (P", P" Y andNc, v, =~ Opn(-1), so it follows from
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(10) thatNc, , nCl /E, = =~ Opr-1(=1). This allows us to apply the arguments of (a)

(which are valid also for = 0), replacing the pai¢V, E) by the paif E’, ENE").
Hence the restrictiog| g is anSo-contraction of the divisoENE’ on E’. The im-
agep(E’) is a divisor inW proper ovelSy that has only smooth branches (in fact,
forn > 2 the image itself is smooth because then, assumindthiatsmooth, for
anyi € {1, ..., m} we haveC;; N C;Vj = ¢ for at most one value of). Since for
everys € S the fiberE; := E’NV; is a smooth divisor irV; andy, = ¢y, : V; —
W is the blowing up with the (finite) smooth centér := A N W, it follows
that the intersection of local branches of the (reduced) divigfér,) C W, at any
point of A; is transversal. Therefore, the branches of the divig@’) c W that
contain the cented also transversally meet each other as well as every fiher
(s € So). Now the proof is completed. O

2. Combinatorial Constructions

2.1. TERMINOLOGY AND NOTATION. Letn:V — S be a family of quasi-
projective varietiesShrinking the baseneans passing to a new famity,,-1.y:
7~ YU) — U, whereU is a Zariski open subset ¢f usually we keep the same
notation before and after shrinking the base.

By a smooth family of quasi-projective varietie® mean a smooth surjective
morphismf: X — § of smooth quasi-projective varieties; hereafter the Isaise
presumed to be irreducible. Note that any quasi-projective family with a smooth
total space can be made smooth by shrinking the base.

We say that a familyf: V — S is arelative completiorof f: X — Sif fis
a proper morphism¥ C V is a Zariski open dense subset, ghe= f|. It is of
simple normal crossingor simply SNC)typeif D := V \ X is a simple normal
crossing divisor orV. If the family f: V — S is smooth and if each fiber, :=
fXs), s € S, meets the divisoD transversally along an SNC divis@, =
DNV C V,, then we say thatV, D) is arelative SNC completioaf X. Clearly,
any smooth relative completion with an SNC divigdrcan be reduced to a rela-
tive SNC completion by shrinking the base.

Let f: X — S be a smooth family with all fibers isomorphic @7, and let
f:V — S be its relative SNC completion. Then, for every paine S, the
“boundary divisor”D; is arational tree(on the smooth rational projective surface
Vy). The latter means that each irreducible comporgntof D, is a smooth ra-
tional curve, and theveighted dual graplisay,T'y) of Dy is a tree (see e.g. [40,
Sec. 2]).

Letv € I’y be amat most linean—1)-vertexof I’y (i.e., the valence af is at most
2 and the weight of is —1). The Castelnuovo contraction of the corresponding
irreducible(—1)-component oD, leads again to an SNC completioW, D!) of
X, =~ C2. The dual graph"/ of D/ is obtained fronT by theblowing downw.
The inverse operation on graphs is calldd@ving up.This blowing up (blowing
down) is callednner if v is a linear vertex of’y andouter if v is terminal. The
graphTy is calledminimal if no contraction is possible; in this case, it is linear
[36]. All minimal linear graphs corresponding to minimal SNC completiongof
are described in [33] and [36]; we call them tRamanujam—-Morrow graphs.
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Assume thatf: (V, D) — S as described previously is a proper and smooth
SNC family, and fix a base poinp € S. There exists a smooth horizontal con-
nection onV that is tangent along the boundary SNC divigb(indeed, it can be
patched from local smooth connections tangent albngsing a smooth partition
of unity onV). This provides us with geometric monodromy representation

w: mw1(S, so) — Diff (Vs,, Dyq).

We denote by the same letterthe induceccombinatorial monodromy represen-
tation 1(S, so) — AutT,.

For a vertexv € Ty, let O(v) be itsp-orbit. Clearly, two vertices, v’ € Ty,
belong to the same orbit if and only if, for a certain irreducible compoert
E(v) of the boundary divisoD c V, the corresponding irreducible components
C(v) andC(v’) of the curveD,, C V,, are contained ilE,, := E N V;, (note that
this fact is stable under shrinking the base). The next important lemma follows
easily from Theorem 1.3.

LemMA 2.1. In the notation just described, letbe the most lineat—1)-vertex
of the graphl’y,. Assume that the orb®(v) C Ty, of v does not contain a pair of
neighbors inl'y,. Then( possibly after shrinking the bagthere is a relative blow-
ing down of the irreducible componeB{v) of the divisorD that gives again a
relative SNC completion of the famify. X — S.

2.2. EQUIVARIANT CONTRACTIONS. From now on we consider a smooth SNC
completion ofC2 by an SNC divisor (sayDo) with a weighted dual graph.
Denote byO(v) the orbit of a vertex of I under the action oft of the full auto-
morphism group AuF. If v is an at most linea¢—1)-vertex such that its orbit
O(v) does not contain a pair of neighbordinthen all the vertices i@ (v) can be
simultaneously contracted; we call thiseguivariant contractiorfor anequivari-
ant blowing dowi The main result of this section is the following proposition.

ProrosiTioN 2.2. A graphT as described previously can be contracted to a
Ramanujam—Morrow graph by means of equivariant contractions.

The proof is accomplished via Lemmas 2.3 and 2.4.

LeEMMA 2.3. Letv; andv, be at most linea—1)-vertices of " that are neigh-
bors and belong to the same orlfite., v, € O(vy)). Draw I' as follows

-1 -1 N
F]_ FZ
V1 V2

Then the following statements hold.

(@) a(Ty) = I for anyo € AutT with a(v;) = v;, i, j € {1, 2}. Moreover,
O(v1) = {vi, v2}, and there is only one paifv,, v,} satisfying the assump-
tions of the lemma.

(b) If w eIy is an at most lineaK—1)-vertex of I, then the orbitO(w) does not
contain a pair of neighbors ifr.
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Proof. (a) Denote by Bi(v;) (resp., Br(v;)) the left-hand (resp., right-hand)
branch ofl" at v;; thus Bf(vy) = I'y and Br.(v,) = I',. Since card B(vy) =
cardBy(vy) + 1, for anya € Autl” with «(v;) = vy, we havea(Br;(vy)) =
Br,(v2), whencex(I'y) = I'y, a(vo) = vy, anda () = I'y.

In particular, card’y = cardl',. Therefore, ifg € AutT is such thaiB(vy) =
vy thenB(T1) = I'y, whenceB(v,) = v, andS(I'2) = TI'p. This proves the first
statement of (a).

Let (v}, v5) be another pair of at most lineé+1)-neighbors of” that belong to
the same orbit. As we have seen, both the edges§] and [v1, v5] of I' divide
I into two parts of equal cardinality, which is only possibleuf,[vs] = [v], v5].
Thus the paif(vy, vo) is unique. It follows thatO(vi) = {vi, v2}, which proves
(a). It also follows thaD (w) N O(v1) = @, which proves (b). O

LemMma 2.4. Suppose that the gragdhis not minimal. Thei has an at most lin-
ear (—1)-vertexw such that the orbiD(w) does not contain a pair of neighbors.

Proof. Let (v1, v2) be a pair of at most linegr1)-neighbors of" that belong to
the same orbit. Clearly; # {v1, v»} and sal” contains a fragment

— -1 -1 -2 -2 a
I, \ .. N r}
‘ vi vz V3 v v

where eithen # —2 orvisabranchvertex df. Contracting the chaitvy, vs, ...,
v,), we obtain the graph

r—2 a+1
I I,
V1 v

where the vertex cannot be further contracted. Assume thiatoes not contain

at most linea—1)-vertices other than, andv,. Then, after this contraction, the
resulting graph is minimal (i.e., a Ramanujam—Morrow graph). We show that this
is impossible. Indeed, otherwisewould be a linear graph admitting an automor-
phisma € AutT" that interchanges; andv, (resp.,I'; andI';). After the contrac-

tion as before, the image ©fwould contain one of the following fragments:

a -2 r—2a+
O “e O O PN (r Z 3)’
a(v) a(va) v v

a 0 a+1

r=2.

a(v) v v
But a Ramanujam—Morrow graph can have only one positively weighted vertex,
and a neighbor of this vertex has zero weight. Hemce —1 in the first frag-
ment just displayed, which contradicts the minimality assumption. Furthermore,
the only fragments of a Ramanujam—Morrow graph of length 3 including a zero
vertex in the middle are of the form

n 0 —n-1

O
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wheren > 0 [11, Sec. 3.5; 33; 36]. Thus, neither fragment is possible. By virtue
of Lemma 2.3, this concludes the proof. O

Proposition 2.2 and Lemma 2.1 yield the following.

CoroLLARY 2.5. Asbefore, leff: X — S be asmooth family of quasi-projective
varieties with all fibers isomorphic t62, and letf: V — S be its relative SNC
completion. Then the boundary divisbr= V \ X (possibly after shrinking the
basg can be contracted providing a new relative SNC complefi6H: v ™n —

S, where for eachs € S the dual graphl'™" of the boundary divisoD™" :=
vmin\ X, is a Ramanujam—Morrow graph.

We shall need the following lemma from [11].

LemMma 2.6 [11, Lemma 3.7]. Let " be a Ramanujam—Morrow graph. Thén
can be transformed, by a sequence of inner blowing ups and blowing downs, into
one of the following graphs

1 0 n 0 £t-1 -1
o o——o0 (n#-1) o——o——o0 (k=1. (*)

3. Proof of Theorem 0.1
The next proposition is the key point in the proof of Theorem 0.1.

ProrosiTioN 3.1. Let the assumptions of Corollary 2.5 be fulfiled. Then the
family f: X — S (possibly after shrinking the basadmits a relative SNC com-
pletion f: V — S such that, for every € S, the boundary divisoD, := V; \ X,

is irreducible(and so is isomorphic tB*).

Proof. Let a relative SNC completiotV ™", D™") be as in Corollary 2.5. Note
that, for any Ramanujam—Morrow graphexcept the following,

0 0
o0——o0

we have Aul” = {id}. Let us deal with this exceptional case first. The edge of this
graph (invariant under automorphisms) corresponds to a sectiors{say,D™"
over S (hereX is just the set of double points of the divisD™™). We can blow
up V™n along ¥ and then (possibly after shrinking the base) blow down (accord-
ing to Lemma 2.1) the proper transform(s) of (the irreducible component3 tf)
arrive at a new relative SNC completion with only irreducible boundary divisors
in fibers, as required.

In all other cases, the absence of nontrivial automorphisms implies that:

1. each irreducible componeat of the boundary divisoD ™" meets every fiber
me along an irreducible curve; ;; and
2. the intersection (if non-empty) of two such componeénis:= E; N E; (i #
j) is a (smooth) section.
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These two properties are stable under blowing up with center at a section that is
the intersection of two components of the boundary divisor, as well as under blow-
ing down of a component of the boundary divisor that corresponds to an at most
linear (—1)-vertex (it is defined correctly oves by virtue of Lemma 2.1).

The preceding observation and Lemma 2.6 imply that a relative SNC completion
(vmin_pminy can be transformed (possibly after shrinking the base) into another
one with the dual graphy, as in ¢). If we finally arrive at a relative SNC com-
pletion with the dual graph = I, as in the third case o#] and then blow down
the (—1)-curve in every fiber, we obtain a relative SNC completion with the dual
graph as in the second case . (In particular, we may assume that the singular
locus X of the boundary divisoD is a section.

If n = 0 then we deal with the exceptional case, which is already settled.

If n > 0 then we can proceed as before, performing first an inner relative blow-
ing up with center ak and then an outer relative blowing down. After a sequence
of n such “elementary transformations” we obtain a relative SNC completion with
n = 0 and so can finish the proof as before.

Finally, consider the case whete< —2. In this case we have Alit = {id},
so the combinatorial monodromy of the famify. D — S is trivial. Hence the
divisor D consists of two smooth irreducible components ($ayand C;) with
CZy=0andC2 =n < —2foreveryses.

Suppose that there exists a secthof f|c,: Co — S disjoint with ¥ :=
Co N Cy. The kinds of elementary transformations appropriate in our case are
blowing up with center a&’ and then blowing down the proper transform@f
(by Theorem 1.3, this is possible after shrinking the base). Perforimsogh ele-
mentary transformations (which requires, at each step, the existence of a section
as before), we arrive again at a relative SNC completion of the second type with
n = 0, and so we are done. Thus it only remains to prove the following statement.

Cramv. After shrinking the base appropriately, one can find a sectibrof
fleo: Co — S disjoint withX := Co N Cy.

Proof. Letting in Lemma LIE = Co andL = [C41]|g (so thatL|g, = Llc,, =
Op1(1) for everys € S) and shrinking the basg to make it affine, by Corollary
1.2(b) we conclude that, for every point S, the restriction map

HY%E, L) — HY%E,, L£,) ~ HYP?, Op1(D))

is surjective. Thus for any poinkg € S andzg € Cy,0 \ Cs, 1 there exists a sec-
tiono € HYE, £) with 6*(0) - Cy,.0 = z0. The divisor:’ := o*(0) on E = Cy
(linearly equivalent t&) passes through the poirg and meets every fibet, =
Cs.0 (s € S) transversally at one point. Clearly,:= f(ZNX) #sgis a Zariski
closed proper subset of the baseThe restrictions of the sectionsandX’ onto
the Zariski open subsét, := S\ Z of S are disjoint, as required. This proves the
claim. O

Now the proof of Proposition 3.1 is completed. O
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Given Corollary 2.5 and Proposition 3.1, the proof of Theorem 0.1 is reduced to
the following simple lemma. It is well known that any smooth family with fibers
isomorphic to a projective space is locally trivial in the étale topology (and so is a
smooth Severi—Brauer variety) [18, Thm. 1.8.2]. It is locally trivial in the Zariski
topology if and only if this family (or, equivalently, its dual) admits local sections;
Lemma 3.2 provides a proof along the lines in [18, II, Sec. 0].

LEmMA 3.2. Let f: V — S be a proper smooth family over a quasi-projective
base with all fibers isomorphic 8", and let D be an irreducible smooth divi-
sor onV that meets every fiber, (s € S) transversally, withD, ~ P"~! and
Np, v, = Opx(1). Then the familyV, D) is locally trivial in the Zariski topology.

Proof. Fix an arbitrary poinkg € S. Shrinking the basé to an affine neighbor-
hood of the poinkg and letting (in Lemma.1) E = V andL = [D], by Corollary
1.2 we will have that the restriction map

HYE, L) — HYE,, Ly,) = HYP", Op:()

is surjective. Fix sections, ..., o, € H(E, £) such that their restrictions to the
fiber E,, are linearly independent ameg(0) = D. Shrinking the base further, we

may suppose that, for every fibgg (s € S), the restrictionsr|g,, ..., 0,|g, are
linearly independent as well. Then the morphism

91V —>SxP", zr— (f(2), (00 : ... :0,(2))).
yields a desired trivialization oves. O

Added in proof:After this paper appeared as an MPI-preprint, we were kindly in-
formed by P. Russell that he had found a different proof of our main result.
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