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1. Introduction

In 1917, J. Radon proved that a smooth function inR3 is completely determined
by its integrals over all the planes. This leads in a more general setting to con-
sideration of the so-calledk-plane transform. Letf be a smooth function inRn
and let 1≤ k < n be an integer. Denote byG(n, k) the set (called the Grassman-
nian manifold) of allk-dimensional subspaces (ork-planes) ofRn. Thek-plane
transform off is defined as

Tf(x, π) =
∫
π

f(x − y) dλk(y)
for x ∈Rn andπ ∈G(n, k), whereλk denotes the Lebesgue measure onπ. When
k = 1 this operator is usually namedX-ray transform; whenk = n − 1, Radon
transform. Such transformations have many practical and theoretical applications
(see e.g. the references in [S]).

The properties of thek-plane transform depend on the properties off. Here we
are concerned with a size estimate measured in terms of a mixed norm inequality,
namely,(∫

G(n,k)

(∫
π⊥
|Tf(x, π)|q dλn−k(x)

)r/q
dγn,k(π)

)1/r

≤ Cp,q,r‖f ‖p. (1.1)

Hereπ⊥ denotes the subspace orthogonal toπ andγn,k is the rotation-invariant
measure onG(n, k) (see [M, Chap. 3] for a construction ofγn,k and some of its
properties). When inequality(1.1)holds for somep, the definition of thek-plane
transform can be extended tof ∈Lp andTf(x, π) is finite for almost every trans-
late of almost everyk-plane.

A scaling argument replacingf(x) by f(λx) shows that(1.1) ispossible only if

n

p
− n− k

q
= k.

Moreover, checking the inequality against the characteristic function of a parallel-
epiped of sides 1× δ × · · · × δ, we can see that the condition
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n− k
r
≥ 1

p ′

is also necessary.
In [DO], theX-ray transform appears when applying to potential-type operators

a classical and useful tool in harmonic analysis, the method of rotations introduced
by Calderón and Zygmund in 1956 to study homogeneous singular integral oper-
ators. Mixed norm inequalities are again needed, but now the order of the norms
is reversed. For thek-plane transform, an inequality of this type would read as(∫

Rn

(∫
G(n,k)

|Tf(x, π)|r dγn,k(π)
)q/r

dx

)1/q

≤ Cp,q,r‖f ‖p. (1.2)

In this case, the scaling argument gives

n

p
− n
q
= k

as a necessary condition. Moreover, taking asf the characteristic function of the
unit ball, it follows that|Tf(x, π)| ∼ 1 for largex whenπ is in a subset ofG(n, k)
of a γn,k-measurec|x|k−n (use Lemma 3.11 of[M]). The integrability at infinity
of the left-hand side of (1.2) gives the restriction

n− k
r

>
n

q
= n

p
− k.

More restrictions (which are not of interest for us in this paper) appear when using
characteristic functions of parallelepipeds with some small sides. The casek = 1
was completely settled in the aforementioned paper.

When applied to the characteristic functionχE of a setE, TχE(x, π) gives the
k-dimensional Lebesgue measure of the intersection ofE with the translate ofπ
throughx. Besicovitch constructed a plane set of measure zero that contains a unit
segment in every direction, a construction that he later applied to solve the Kakeya
needle problem. The existence of such irregular sets for higher dimensions and
k-planes is an interesting question in geometric measure theory that has been only
partially answered (see [F, Chap. 7]). In particular, a Besicovitch-type set shows
that (1.1) must be false fork = 1 andq = ∞ because, for eachε > 0, we can
construct a set of measure smaller thanε for which the left-hand side of(1.1) is at
least 1.

The precise range of values ofp, q, r for which inequality(1.1)holds is known
only if k ≥ n/2; partial results have been proved fork < n/2, but improving
them seems to be a hard task (see [C] or the survey [Dr]; [W] contains a more
recent result fork = 1). The aim of our paper is to study inequalities(1.1) and
(1.2) for radial functions. On the one hand, we thus avoid sets and functions with
irregularities in many directions; on the other hand, the range of validity of all
the inequalities is larger when we consider radial functions. The only restriction
required in(1.1) is given by thescaling argument, and for (1.2) the restriction im-
posed by the characteristic function of the ball must be added. Our first theorem
states that both inequalities hold for the remainder values ofp, q, andr.



k-Plane Transforms and Related Operators on Radial Functions 267

Theorem 1. For radial functions, inequality(1.1)holds if and only if

1≤ r ≤ ∞, 1≤ p < n

k
,
n

p
− n− k

q
= k;

inequality(1.2)holds if and only if

1< p <
n

k
,
n

p
− n
q
= k, n− k

r
>
n

p
− k.

Actually, in [DO] the X-ray transform appeared as an element in a scale of
potential-type directional operators whose counterpart overk-planes would be

Tαf(x, π) =
∫
π

f(x − y)|y|α−k dλk(y)

for 0< α ≤ n. We are interested in mixed norm inequalities of type (1.2) forTα.

Theorem 2. For radial functions, inequality(1.2)holds forTα if and only if

1< p <
n

α
,
n

p
− n
q
= α, n− k

r
>
n

p
− k.

Representing the points(1/p,1/r) for which a positive result holds in Theorem 2
inside the unit square, they describe a trapezoid ifα < k and a triangle ifα ≥ k.

There is a natural Hardy–Littlewood maximal function associated with thek-
planes; it is defined as

Mf(x, π) = sup
R>0

1

Rk

∫
{y∈π :|y|<R}

|f(x − y)| dλk(y).

Whenk = 1, this operator corresponds to the directional maximal operator. Mixed
norms in the casesk = 1 andk = n−1 were studied in [CDR], with partial results
in the first case and complete results in the second. Directional maximal opera-
tors can be used to control a very interesting operator in harmonic analysis, the
Kakeya maximal operator (see Section 5). A positive answer to the conjecture on
mixed norm inequalities in the casek = 1 would solve the Kakeya operator prob-
lem, which is considered very hard. On the other hand,Mf(x, π) appears to be
a good substitute forTα(x, π) whenα = 0. We once again restrict ourselves to
radial functions and establish the following pointwise inequality, which is of inde-
pendent interest and provides helpful inequalities to prove Theorem 2.

Theorem 3. LetE be a radial set of finite measure inRn, and letχE be its char-
acteristic function. Then

MχE(x, π) ≤ CMHLχE(x)
k/n ∀x ∈Rn, π ∈G(n, k),

whereMHL denotes the usual Hardy–Littlewood maximal operator inRn. The
constantC depends only onn andk.

An immediate consequence of Theorem 3 is the following.
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Corollary 4. The operatorf 7→ supπ Mf(·, π) is bounded onLprad(Rn) if
p > n/k, and it is of restricted weak type forp = n/k.
Here, “restricted weak type” means that it satisfies a weak-type inequality when
restricted to characteristic functions (of radially symmetric sets, in our case). This
is equivalent to saying that the operator appliesL

n/k,1
rad intoLn/k,∞. (For the defini-

tion of these Lorentz spaces and the equivalence with the restricted weak type see
[SW], where the interpolation theorems used in this paper also appear.) Corol-
lary 4 for k = 1 was proved in [CHS] using a different approach. The method
we present here is simpler and extends better tok > 1. Notice that by using the
Cartesian product of the previously mentioned Besicovitch-type set in the plane
with the unit ball inRn−2, we obtain a counterexample to Corollary 4 for general
functions.

We denote byLprad the subspace ofLp formed by the radial functions, and we
use the notationA ∼ B to indicate that the quotientA/B is bounded above and
below by absolute positive constants depending only onk andn. The constantC
can vary even within a single chain of inequalities.

2. Proof of Theorem 1

Inequality(1.1)holds trivially whenp = 1, q = 1, andr = ∞, because forf ≥ 0
we have ∫

π⊥
Tf(x, π) dλn−k(x) = ‖f ‖1

using Fubini’s theorem. On the other hand, we have the identity (see [S])∫
Rn
g(x) dx =

∫
G(n,n−k)

∫
π⊥
|y|n−kg(y) dλk(y) dγn,n−k(π).

The one-to-one correspondenceπ ∈ G(n, k) with π⊥ ∈ G(n, n − k) allows the
identification of these manifolds and their associated measures up to a constant
factor; this implies that∫

G(n,k)

Tf(x, π) dγn,k(π) = cIkf(x),

whereIk is the Riesz potential of orderk (i.e., the convolution operator with kernel
|x|k−n). From the well-known boundedness properties of this operator we deduce
that (1.2) holds forr = 1, 1 < p < n/k, andq given by the scaling relation. It
is also known that, forp = 1 andq = n/(n − k), a weak-type inequality holds.
This result will be useful in this proof of Theorem 1. We remark that both results
are true even if the functionf is not radial.

The rest of the proof is based on an endpoint critical estimate that is the same in
(1.1) and (1.2), namely, the casep = n/k, q = ∞, r = ∞. Although the inequal-
ity will not hold for every radial functionf, it holds whenf is the characteristic
function of a set. Then we need only prove the following.
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Lemma 5. LetE be a radially symmetric set inRn, and let5 be a translate of
a k-plane ofRn. Then there is a constant, depending only onk andn, such that

λk(E ∩5) ≤ C|E|k/n. (2.1)

Proof.

Casek = 1. Although this case was already proved in [DO], we include here its
elementary proof based on the following observation: the measure of the annulus
{x : r < |x| < r + ε} for a fixedε is an increasing function ofr.

Assumeλ1(E ∩ 5) = L. If 0 ∈ 5 then (by our observation) the measure of
E is minimum whenE ∩ 5 is a segment of lengthL centered at the origin, so
that |E| ≥ cLn. If d = dist(0,5) > 0, let x0 be the point in5 closest to the
origin. Only the part ofE outside the ball{x : |x| < d} intersects5 and, again in
this case, the minimum measure corresponds to the case of a segment of lengthL

centered atx0 and contained in5. Then |E| ≥ c[(d2 + (L/2)2)n/2 − d n] ∼
cmax(d n−2L2, Ln) ≥ cLn.

Casek ≥ 2. Using an approximation argument, we can assume without loss of
generality thatE is a finite union of open spherical annuli; that is,

E =
N⋃
j=0

{x : rj < |x| < rj + εj }, (2.2)

whererj + εj < rj+1 andεj ≤ rj if j ≥ 1 and where the term forj = 0 appears
only if r0 = 0. Then

|E| ∼ εn0 +
N∑
j=1

r n−1
j εj .

Let d = d(0,5). As in the casek = 1, we distinguish two possibilities:d = 0
andd > 0. Ford = 0, the left-hand side of (2.1) is

λk(E ∩5) ∼ εk0 +
N∑
j=1

r k−1
j εj .

Then we need to prove( N∑
j=1

r k−1
j εj

)n
≤ C

( N∑
j=1

r n−1
j εj

)k
. (2.3)

The left-hand side of (2.3) can be written as

N∑
j1, ...,jn=1

r k−1
j1

εj1r
k−1
j2

εj2 . . . r
k−1
jn

εjn ,

which in turn is bounded by 2n times∑
j1≤j2≤···≤jn

r k−1
j1

εj1r
k−1
j2

εj2 . . . r
k−1
jn

εjn .
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Using thatrj, εj ≤ rm if j < m, we can replace the factors corresponding to
the subscriptsj1, . . . , jn−k by r n−kjn−k+1

· · · r n−kjn
and so obtain part of the sum of the

right-hand side of (2.3).
Assume now thatd > 0. Only those parts ofE outside the ball{x : |x| < d} are

of interest now. Letj0 the smallestj for which {x : |x| > d, rj < |x| < rj + εj }
is not empty. Definesj andδj as follows:

d2 + s2
j = r 2

j , d2 + (sj + δj )2 = (rj + εj )2. (2.4)

(If rj0< d < rj0+ εj0 we definesj0 = 0.) ThenE∩5 is a union ofk-dimensional
spherical annuli of inner radiisj and widthδj, so that

λk(E ∩5) ∼
N∑

j=j0

max(s k−1
j δj, δ

k
j ).

From the definition ofsj andδj we have

2sj δj + δ2
j ≤ 3rj εj, sj, δj ≤ Crj

and consequently max(s k−1
j δj, δ

k
j ) ≤ Cr k−1

j εj sincek ≥ 2.
This ends the proof of the lemma.

Fix π ∈ G(n, k). Then the operatorf 7→ Tf(·, π) is bounded fromL1(Rn) to
L1(π⊥),as mentioned before, and from the Lorentz spaceL

n/k,1
rad (Rn) intoL∞(π⊥)

by Lemma 5. Then, using real interpolation for Lorentz spaces (see [SW]), we
deduce that the operator is bounded fromLprad to Lq with p andq related by the
scaling condition. Since the bounds are independent ofπ, we deduce the first part
of Theorem 1 forr = ∞ and hence for allr.

To handle the second part of Theorem 1, we fixr (1< r < ∞) and letE be a
radially symmetric set of finite measure. Using Lemma 5 then yields∫

G(n,k)

(TχE(x, π))
r dγn,k(π)

≤ sup
π∈G(n,k)

(TχE(x, π))
r−1
∫
G(n,k)

TχE(x, π) dγn,k(π)

≤ C|E|(r−1)k/nIkχE(x).

Using now the weak(1, n/(n − k)) inequality for the Riesz potentialIk, we de-
duce that∣∣∣∣{x :

∫
G(n,k)

(TχE(x, π))
r dγn,k(π) > t r

}∣∣∣∣ ≤ Ct− rn
n−k |E|1+ kr

n−k . (2.5)

This is a weak-type inequality for the operator that sendsf to(∫
G(n,k)

(Tf(x, π))r dγn,k(π)

)1/r

(restricted to characteristic functions). Ifp0 andq0 are given by(n − k)/r =
(n/p0)− k = n/q0, then (2.5) means that the operator is bounded fromL

p0,1
rad into

Lq0,∞. Since it is also bounded fromLn/k,1rad toL∞, we can again use real interpo-
lation to deduce for eachr the result stated in Theorem 1.

We remark that our proof also gives endpoint results in Lorentz spaces.
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3. Proof of Theorem 3

Givena, b such that 0< a < b <∞, denote byAa,b the annulus{x : a < |x| <
b}. Define the maximal function on annuli centered at the origin as

Af(x) = sup
x∈Aa,b

1

|Aa,b|
∫
Aa,b

|f(y)| dy.

Given a setD ⊂ Rn, we define its annular extension as

A[D] = {x ∈Rn : |x| = |y| for somey ∈D}.
We begin the proof of Theorem 3 by proving that, given ak-ballB lying on a trans-
late of ak-plane5 and a radially symmetric setE in Rn, there exists a constant
C depending only onk andn such that

λk(B ∩ E)
λk(B)

≤ C
( |A[B] ∩ E|
|A[B]|

)k/n
. (3.1)

From this we deduce at once the pointwise inequality

sup
π∈G(n,k)

MχE(x, π) ≤ C(AχE(x))k/n.

Theorem 3 will be a consequence of the following claim: Iff is a radial function,
then

MHLf(x) ∼ Af(x). (3.2)

Proof of (3.1) for k = 1. In this caseB is a line segment whose length we de-
note byL; let λ1(B ∩ E) = `. Then the left-hand side of (3.1) is̀/L. We use
the geometric observation already stated in the proof of Theorem 1 that the mini-
mum measure ofA[B] ∩ E corresponds to the case whenB ∩ E is a segment (of
length` and contained inB) that is as close to the origin as possible.

Assume first that 0∈5 and letd(0, B) = r. If r ≤ L, then|A[B]| ∼ Ln and
|A[B]∩E| ≥ cmax(r n−1`, `n) ≥ c`n so that (3.1) holds. Ifr > L, then|A[B]| ∼
r n−1L and|A[B] ∩ E| ∼ r n−1`. Since`/L ≤ 1, (3.1) holds.

Let nowd = d(0,5) > 0 and letx0 be the point in5 closest to the origin; let
D = d(x0, B). If L,D ≤ d, then|A[B]| ∼ d n−2Lmax(D,L) and|A[B] ∩E| ≥
cd n−2`max(D, `); if D ≤ d andL > d, then|A[B]| ∼ Ln and|A[B] ∩ E| ≥
cmax(d n−2`2, `n) ≥ c`n. If D > d andL ≤ D, then |A[B]| ∼ Dn−2L2 and
|A[B] ∩ E| ≥ cDn−2`2; finally, if D > d andL > D, then|A[B]| ∼ Ln and
|A[B] ∩ E| ≥ cmax(Dn−2`2, `n) ≥ c`n. In all cases, (3.1) holds.

Proof of (3.1) for k ≥ 2. Let B be the ball of centercB and radiusR contained
in 5. Thenλk(B) ∼ Rk. As in the proof of Lemma 5, we assume thatE can be
written as a union of spherical annuli similar to (2.2). We again distinguish several
cases.

Assume first that 0∈ 5. If |cB | ≤ 2R then |A[B]| ∼ Rn, λk(E ∩ B) ≤
C
∑ ′

j r
k−1
j εj, and|A[B] ∩ E| ∼ ∑ ′

j r
n−1
j εj . (The symbol

∑ ′
j means that only

those values ofj for which the annulus of indexj intersectsB are taken into ac-
count; the first and the last values can be adjusted to coincide with the inner and
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outer radii ofA[B].) A term of typeεk0 andεn0 (respectively) corresponding to
j = 0 could appear in each sum. Inequality (3.1) is then a consequence of inequal-
ity (2.3).

If |cB | > 2R then we have|A[B]| ∼ |cB |n−1R, λk(E ∩ B) ∼∑ ′j Rk−1εj, and
|A[B] ∩ E| ∼∑ ′j |cB |n−1εj . Since

∑ ′
j εj ≤ 2R, (3.1) holds.

Let nowd = d(0,5) > 0 and letx0 be the point in5 such thatd(0, x0) = d.
Definesj andδj as in (2.4). Thenλk(E ∩ B) ∼ ∑ ′

j max(s k−1
j δj, δ

k
j ). Since for

rj ≥ 2d we havesj ∼ rj andδj ∼ εj, whenB ⊂ {x : |x| ≥ 2d} the situation is
reduced to the preceding one.

WriteD = d(x0, cB). If D ≥ 4d andR ≤ D/2, thenB ⊂ {x : |x| ≥ 2d} and
the result is proved. LetD ≥ 4d andR > D/2. Then|A[B]| ∼ Rn, so that (3.1)
holds if (∑

j

′
max(s k−1

j δj, δ
k
j )

)n
≤ C

(∑
j

′
r n−1
j εj

)k
.

This inequality follows from max(s k−1
j δj, δ

k
j ) ≤ Cr k−1

j εj and (2.3), as in Lemma 5.
A similar proof applies whenD ≤ 4d andR > d because in this case again
|A[B]| ∼ Rn.

We are now left with the caseD ≤ 4d andR < d, for which |A[B]| =
C[(d2 + (D + R)2)n/2 − (d2 + (D − R)2)n/2] ≤ Cdn−2 max(DR,R2). If R ≤
D/2 thenλk(E∩B) ≤ CRk−1∑ ′

j δj and|A[B]∩E| ∼ d n−1∑ ′
j εj . The required

inequality is now (∑ ′
j δj

R

)n
≤ C

(
d
∑ ′

j εj

DR

)k
;

but in this situationsj ≥ D/2 andrj ≤ 10d
(
in both cases for the terms in

∑ ′ )
,

so thatδj ≤ 20dD−1εj ; together with
∑ ′

j δj ≤ 2R, this gives the inequality. If
R > D/2 then we need(∑ ′

j max(s k−1
j δj, δ

k
j )

Rk

)n
≤ C

(
d
∑ ′

j εj

R2

)k
,

which is a consequence ofsj, δj ≤ cR andsj δj, δ2
j ≤ 3rj εj ≤ 30dεj .

Proof of (3.2). We prove first that there exists someC1 such thatMHLf(x) ≤
C1Af(x). LetB be the ball centered atx with radiusR. Let a = max(0, |x|−R)
andb = |x| + R. Our aim is to show that

1

|B|
∫
B

|f | ≤ C 1

|Aa,b|
∫
Aa,b

|f |. (3.3)

If |x| ≤ 2R, then|Aa,b| ∼ Rn andB ⊂ Aa,b so that (3.3) holds. If|x| > 2R,
then|Aa,b| ∼ |x|n−1R; rotating the ballB with respect to the origin, we can get a
numberN1 of disjoint balls insideAa,b. Geometric considerations show that it is
possible to chooseN1 ≥ c1(|x|/R)n−1 for somec1 independent of|x| andR; since
f is radial, the integral on all the rotated balls is the same and again (3.3) holds.
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We consider now the reverse inequality; that is, suppose there exists aC2 such
thatAf(x) ≤ C2MHLf(x). Let Aa,b be an annulus such thatx ∈ Aa,b and de-
fineR = b− a. If a ≤ b/2, then|Aa,b| ∼ bn ∼ Rn andAa,b ⊂ B(x,4R) so that
the converse of (3.3) holds withB = B(x,4R). If a > b/2, then|Aa,b| ∼ bn−1R.

LetB = B(x,2R); we can coverAa,b with N2 balls obtained by rotation ofB in
such a way thatN2 ≤ c2(|x|/R)n−1. Again, the fact that the integral off on all of
these balls is the same gives the converse of (3.3).

4. Proof of Theorem 2

The proof of Theorem 2 fork ≥ 2 is similar to the proof given in [DO] fork = 1.
Here we sketch its main lines.

Lemma 6. Assume thatf is nonnegative.

(i) Let 0< β < α < γ ≤ n; then

Tαf(x, π) ≤ Tβf(x, π)1−sTγ f(x, π)s, α = (1− s)β + sγ.
(ii) Let 0< α < γ ≤ n. Then there exists a constantC depending only onα, γ,

andk such that

Tαf(x, π) ≤ CMf(x, π)1−α/γTγ f(x, π)α/γ .
Proof. Both inequalities are proved in a similar way. Write

Tαf(x, π) =
∫
|y|<R
+
∫
|y|≥R

f(x − y)|y|α−k dλk(y).

Use the elementary boundsRα−βTβf(x, π) andRα−γTγ f(x, π), respectively,
and chooseR so that both bounds have the same size; this yields (i).

For (ii), use instead the boundCRαMf(x, π) for the first integral. It can
be obtained decomposing the integration domain into annuli{y : 2−k−1R ≤
|y| < 2−kR} for k = 0,1,2, . . . and then using on each annulus the bound
(2−kR)αMf(x, π).

Proof of Theorem 2 forα > k. Using part (i) of Lemma 6 (withβ = k and
γ = n) together with Lemma 5, we have

TαχE(x, π)
n−k
α−k ≤ TkχE(x, π) n−αα−k TnχE(x, π) ≤ |E| n−αα−k · kn TnχE(x, π).

From here the boundedness fromLn/α,1rad toL∞(L(n−k)/(α−k)) is immediate, and the
end of the proof is as in the second part of Theorem 1.

Proof of Theorem 2 forα < k. Use inequality (ii) of Lemma 6 withf = χE
(which impliesMχE(x, π) ≤ 1) and γ = k, together with Lemma 5, to get
TαχE(x, π) ≤ C|E|α/n.

Use now the same inequality with Lemma 5 to obtain

TαχE(x, π) ≤ CMχE(x, π)1−α/k|E|α/n,



274 J. Duoandikoetxea, V. Naibo, & O. Oruetxebarria

which together with Corollary 4 implies the boundedness ofTα from L
n/k,1
rad to

Ln/(k−α),∞(L∞). The weak estimates for the values of 1/p and 1/r over the line
joining the points(1,1) and(k/n,0) are obtained as before. For fixedr, real in-
terpolation between Lorentz spaces gives Theorem 2.

5. Some Consequences of Theorem 3

The pointwise inequality of Theorem 3 leads to some interesting consequences for
several operators acting on radial functions.

Let D be a set inRn, star-shaped with respect to the origin and with positive
finite measure. IfD is described in polar coordinates asD \ {0} = {(ρ, u) ∈
(0,∞)× S n−1 : 0 < ρ < R(u)}, then the measure ofD is n−1

∫
S n−1R(u)

n dσ(u)

(heredσ denotes the Lebesgue measure on the unit sphere). Then we have∫
D

|f(x − y)| dy =
∫
S n−1

∫ R(u)

0
|f(x − ρu)|ρn−1dρ dσ(u)

≤
∫
S n−1

R(u)nMf(x, u) dσ(u) ≤ n|D| sup
u∈S n−1

Mf(x, u).

Fork = 1, G(n,1) can be identified with a half-sphere and the measuredγn,1 with
the Lebesgue measure on it. Define the maximal operatorM as follows:

Mf(x) = sup
D

1

|D|
∫
D

|f(x − y)| dy,

where the supremum is taken over all setsD that are star-shaped with respect to
the origin and with positive measure. IfE is a radially symmetric set then using
Theorem 3 and our previous calculation yields

MχE(x) ≤ CnMHLχE(x)
1/n.

Corollary 7. The maximal functionM is bounded onLprad(Rn) for all p > n

and is of restricted weak-type(n, n).

In particular, the Kakeya maximal operator defined as the supremum of averages
of f over all parallelepipeds of sidesh × h × · · · × h × Nh (h > 0 variable,N
fixed) is smaller thanM, so it is bounded onLprad(Rn) for p > n with a constant
that is independent ofN. This result was obtained in [CHS]. For general functions,
the best possible result is a logarithmic growth onN (known only forn = 2).

A weighted version of Corollary 4 is also possible.

Corollary 8. The operatorf 7→ supπ Mf(·, π) is bounded fromLprad(w) to
Lp(w) if p > n/k and ifw is in the Muckenhoupt classApk/n and is of restricted
weak type forp = n/k withA1 weights.

As usual,Ap denotes the class of weights for which the Hardy–Littlewood max-
imal operator is bounded onLp(w) (theLp space with respect to the measure
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w(x) dx) if p > 1 or satisfies a weak-type(1,1)inequality ifp = 1. For a descrip-
tion of these classes of weights and their main properties, see [GR].

Proof of Corollary 8.From the boundedness ofMHL and the pointwise inequality,
we deduce that the operator defined in the statement is bounded fromL

q,1
rad(w) to

Lq(w) whenw ∈Aqk/n. By interpolation withL∞ we deduce that, ifp > q and
w ∈Aqk/n, then the operator is bounded onLprad(w). But the union of the classes
Aqk/n for all q < p givesApk/n.

The second part of the statement is immediate.

Notice that the same weighted result withk = 1 can be stated for the operatorM
considered in Corollary 7.

Finally, we give an application to a rough maximal operator with variable ker-
nel. Let� be a function defined onRn × S n−1 and define the rough maximal
function associated to� as

M�f(x) = sup
R>0

1

Rn

∫
|y|<R
|�(x, y ′)f(x − y)| dy,

wherey ′ denotes the projection ofy overSn−1 and where

sup
x

∫
S n−1
|�(x, u)| dσ(u) = A(�) <∞.

Using polar coordinates as before, we have

M�f(x) ≤ CnA(�) sup
u∈S n−1

Mf(x, u).

Corollary 9. The operatorM� is bounded fromLprad(w) toLp(w) for p > n

andw ∈Ap/n, and it is of restricted weak type(n, n) for w ∈A1.

When� is independent ofx, the unweightedLp boundedness is easy to prove
(for all p > 1 and for generalf ). But even in such a case the weighted inequali-
ties given in Corollary 9, when we restrict the operator to radial functions, are not
always true if we consider general functions.
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