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1. Introduction

In 1917, J. Radon proved that a smooth functiofiRfnis completely determined

by its integrals over all the planes. This leads in a more general setting to con-
sideration of the so-callekliplane transform. Lef be a smooth function iiR”

and let 1< k < n be an integer. Denote by (n, k) the set (called the Grassman-
nian manifold) of allk-dimensional subspaces (biplanes) ofR”. The k-plane
transform off is defined as

Tf(x,m) = / fx —y)ydri(y)

b

forx e R" andrw € G(n, k), wherei; denotes the Lebesgue measureroliVhen
k = 1 this operator is usually namég-ray transform; whemt = n — 1, Radon
transform. Such transformations have many practical and theoretical applications
(see e.g. the references in [S]).

The properties of the-plane transform depend on the propertieg.dflere we
are concerned with a size estimate measured in terms of a mixed norm inequality,
namely,

r/q r
(/G( k)(/JTf(X,?T)Wd)»nk(X)) dJ/n,k(ﬂ)> < Cporllfll,. (L1

Herer+ denotes the subspace orthogonaktandy, ; is the rotation-invariant
measure oG (n, k) (see [M, Chap. 3] for a construction gf , and some of its
properties). When inequalifft.1) holds for somep, the definition of the-plane
transform can be extended foe L? andTf(x, r) is finite for almost every trans-
late of almost every-plane.

A scaling argument replacinfi(x) by f(i1x) shows thafl.1) ispossible only if

n n—k

p q
Moreover, checking the inequality against the characteristic function of a parallel-
epiped of sides k¥ § x --- x §, we can see that the condition

=k.
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n—k

r

1
>
=
is also necessary.

In [DO], the X-ray transform appears when applying to potential-type operators
a classical and useful tool in harmonic analysis, the method of rotations introduced
by Calderéon and Zygmund in 1956 to study homogeneous singular integral oper-

ators. Mixed norm inequalities are again needed, but now the order of the norms
is reversed. For the-plane transform, an inequality of this type would read as

q/r 1/q
</(/G( k)le(x,n)I’dyn,k(n)) dx) <Cparlfllp. @.2)

In this case, the scaling argument gives

n n
———=k
P g
as a necessary condition. Moreover, takingfabe characteristic function of the
unit ball, it follows that| Tf (x, 7)| ~ 1for largex when is in a subset of; (n, k)
of ay, x-measure:|x|*~" (use Lemma 3.11 ofM]). The integrability at infinity
of the left-hand side of (1.2) gives the restriction
n—k n n
>—=——k.
r q p
More restrictions (which are not of interest for us in this paper) appear when using
characteristic functions of parallelepipeds with some small sides. Thecade
was completely settled in the aforementioned paper.

When applied to the characteristic functigp of a setE, Txg(x, 7) gives the
k-dimensional Lebesgue measure of the intersectiaf with the translate ofr
throughx. Besicovitch constructed a plane set of measure zero that contains a unit
segment in every direction, a construction that he later applied to solve the Kakeya
needle problem. The existence of such irregular sets for higher dimensions and
k-planes is an interesting question in geometric measure theory that has been only
partially answered (see [F, Chap. 7]). In particular, a Besicovitch-type set shows
that (1.1) must be false fok = 1 andg = oo because, for each > 0, we can
construct a set of measure smaller tldor which the left-hand side dfL.1) is at
least 1.

The precise range of values pf ¢, r for which inequality(1.1) holds is known
only if k > n/2; partial results have been proved for< n/2, but improving
them seems to be a hard task (see [C] or the survey [Dr]; [W] contains a more
recent result fok = 1). The aim of our paper is to study inequaliti@isl) and
(1.2) for radial functions. On the one hand, we thus avoid sets and functions with
irregularities in many directions; on the other hand, the range of validity of all
the inequalities is larger when we consider radial functions. The only restriction
required in(1.1) is given by thescaling argument, and for (1.2) the restriction im-
posed by the characteristic function of the ball must be added. Our first theorem
states that both inequalities hold for the remainder valugs ¢f andr.
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THEOREM 1.  For radial functions, inequalityl1.1) holds if and only if

—k
l<r<oo, l<p<_, Z-2"F_p
k™ p q

inequality(1.2) holds if and only if

n n n n—=k n
l<p<-—-, ———=k,
k" p ¢q r P

Actually, in [DO] the X-ray transform appeared as an element in a scale of
potential-type directional operators whose counterpart by@anes would be

Tof(x,m) = / f =PIy dr(y)
for 0 < o < n. We are interested in mixed norm inequalities of type (1.2)Ifor

THEOREM 2. For radial functions, inequality1.2) holds for7, if and only if

n n n n—=k n
l<p<—-, ———-=uq, > — —k.
@ p q r p

Representing the point/p, 1/r) for which a positive result holds in Theorem 2
inside the unit square, they describe a trapezaid+f k and a triangle itx > k.

There is a natural Hardy-Littlewood maximal function associated wittkthe
planes; it is defined as

1
Mf (e, m) = Sup; / £ = DA ().
R>0 {yem:|y|<R}

Whenk = 1, this operator corresponds to the directional maximal operator. Mixed
norms in the cases= 1 andk = n — 1 were studied in [CDR], with partial results

in the first case and complete results in the second. Directional maximal opera-
tors can be used to control a very interesting operator in harmonic analysis, the
Kakeya maximal operator (see Section 5). A positive answer to the conjecture on
mixed norm inequalities in the case= 1 would solve the Kakeya operator prob-
lem, which is considered very hard. On the other havid(x, =) appears to be

a good substitute fof, (x, 7) whena = 0. We once again restrict ourselves to
radial functions and establish the following pointwise inequality, which is of inde-
pendent interest and provides helpful inequalities to prove Theorem 2.

THEOREM 3. LetE be aradial set of finite measureR*, and lety ¢ be its char-
acteristic function. Then

Mxg(x, ) < CMuLxg ()" Vx eR", 7 e G(n, k),

where My denotes the usual Hardy-Littlewood maximal operatoiRih The
constantC depends only on andk.

An immediate consequence of Theorem 3 is the following.
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CoroLLARY 4. The operatorf + sup, Mf(-, 7) is bounded onL” (R") if
p > n/k, and it is of restricted weak type for = n/k.

Here, “restricted weak type” means that it satisfies a weak-type inequality when
restricted to characteristic functions (of radially symmetric sets, in our case). This
is equivalent to saying that the operator appliég'f’l into L"/%°_ (For the defini-

tion of these Lorentz spaces and the equivalence with the restricted weak type see
[SW], where the interpolation theorems used in this paper also appear.) Corol-
lary 4 for k = 1 was proved in [CHS] using a different approach. The method
we present here is simpler and extends bettér to 1. Notice that by using the
Cartesian product of the previously mentioned Besicovitch-type set in the plane
with the unit ball inR”—2, we obtain a counterexample to Corollary 4 for general
functions.

We denote by, the subspace af” formed by the radial functions, and we
use the notatiom ~ B to indicate that the quotiemt/B is bounded above and
below by absolute positive constants depending only andn. The constant
can vary even within a single chain of inequalities.

2. Proof of Theorem 1

Inequality(1.1) holds trivially whenp = 1, ¢ = 1, andr = oo, because for > 0
we have

/ TG m i) = £

using Fubini’'s theorem. On the other hand, we have the identity (see [S])

/ g(x)dX=f fIyl”’kg(y)dkk(y)dJ/n,n_k(n).
R G(n,n—k) Jnt

The one-to-one correspondences G(n, k) with 7+ € G(n, n — k) allows the
identification of these manifolds and their associated measures up to a constant
factor; this implies that

/ Tf(x, 70) dyn i () = cli f(x),
G(n,k)

wherel, is the Riesz potential of ordér(i.e., the convolution operator with kernel
|x|*=™). From the well-known boundedness properties of this operator we deduce
that (1.2) holds for =1, 1 < p < n/k, andq given by the scaling relation. It
is also known that, fop = 1 andg = n/(n — k), a weak-type inequality holds.
This result will be useful in this proof of Theorem 1. We remark that both results
are true even if the functiof is not radial.

The rest of the proof is based on an endpoint critical estimate that is the same in
(1.1) and (12), namely, the case = n/k, g = oo, r = co. Although the inequal-
ity will not hold for every radial functionf, it holds whenf is the characteristic
function of a set. Then we need only prove the following.
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LEmMA 5. Let E be a radially symmetric set iR”, and letIT be a translate of
a k-plane of R”. Then there is a constant, depending onlykaandr~, such that

M(ENTI) < CIEM". (2.1
Proof.

Casek = 1. Although this case was already proved in [DO], we include here its
elementary proof based on the following observation: the measure of the annulus
{x:r < |x| <r+ e} forafixede is an increasing function of

Assumeri(E N IT1) = L. If 0 € I then (by our observation) the measure of
E is minimum whenE N I is a segment of length centered at the origin, so
that|E| > cL". If d = dist(0, IT) > 0, let xo be the point inl1 closest to the
origin. Only the part off outside the bal{x : | x| < d} intersectdT and, again in
this case, the minimum measure corresponds to the case of a segment ollength
centered ato and contained if1. Then|E| > c[(d? + (L/2)®)"/? — d"] ~
cmax(d"2L?, L") > cL".

Casek > 2. Using an approximation argument, we can assume without loss of
generality thatt is a finite union of open spherical annuli; that is,

N
E = U{x Ly < x| < +¢gj), (2.2)
j=0
wherer; 4 ¢; < rj1ande; < r; if j > 1 and where the term fof = 0 appears
only if ro = 0. Then

N
|E|~eg+ ) /.
j=1

Letd = d(0, IT). As in the casé& = 1, we distinguish two possibilitiesi = 0
andd > 0. Ford = 0, the left-hand side of (2.1) is

N
A(ENTI) ~ ek 4 er’“lsj.
j=1

Then we need to prove

(irf‘lafy < C(ir,-”‘la)k- (2.3)

j=1 j=1
The left-hand side of (2.3) can be written as

§ : k—1 k—1 k-1
rjl 8j1rj sz...l"jn Ejps

which in turn is bounded by 2times

k—1 k—1 k=1
Z rjl gjlrj sz...rjn 8.]'”.

J1=j2<-=jn
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Using thatrj, &; < ry, if j < m, we can replace the factors corresponding to
the subscriptgs, ..., ju—« by r/'~* ---r/~* and so obtain part of the sum of the
right-hand side of (2.3).

Assume now thad > 0. Only those parts of outside the balfx : |x| < d} are
of interest now. Letjo the smallesy for which {x : |x| > d, r; < |x| < rj + &}
is not empty. Defing; ands; as follows:

d>+s?=rf A+ (s5;+8)7 = (r; + &) (2.4)

(If rjp < d < 1jy+¢j, We defines;, = 0.) ThenE NITis a union ofk-dimensional
spherical annuli of inner radij and widthg;, so that

N
M(ENTI) ~ Z max(s/ ;. 8%).
j=Jjo
From the definition o; ands; we have
2Sj8j + 812 < 3rj8]~, N 8j < er

and consequently max‘~15;, 8¥) < Cr/~; sincek > 2.
This ends the proof of the lemma. O

Fix 7 € G(n, k). Then the operatof +— Tf(-, 7) is bounded fromL}(R") to
LY(z1), as mentioned before, and from the Lorentz spdg (R") into L (1)
by Lemma 5. Then, using real interpolation for Lorentz spaces (see [SW]), we
deduce that the operator is bounded frbff), to L7 with p andg related by the
scaling condition. Since the bounds are independent afe deduce the first part
of Theorem 1 for = oo and hence for alt.

To handle the second part of Theorem 1, werfil < r < o0) and letE be a
radially symmetric set of finite measure. Using Lemma 5 then yields

/ (Tx (e, 7)) dyni ()
G(n,k)

< sup (TXE(va[))r_l/ Txe(x, ) dy, ()
reG(n,k) G(n,k)

< CIE|" MLy g (x).

Using now the weakl, n/(n — k)) inequality for the Riesz potentid), we de-
duce that

{x : / (Txe(x,m)" dynx(m) > fr}
Gn, k)

This is a weak-type inequality for the operator that sefids

1/r
( / (TF(x, 7)) dyn,k(n))
G(n,k)

(restricted to characteristic functions). pf andgg are given by(n — k)/r =
(n/po) — k = n/qo, then (2.5) means that the operator is bounded ftdfy' into
L9%°°_ Since it is also bounded from’ﬁéﬁ’lto L*, we can again use real interpo-
lation to deduce for eachthe result stated in Theorem 1.

We remark that our proof also gives endpoint results in Lorentz spaces.

< Cr ' |E|Y AT, (2.5)
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3. Proof of Theorem 3

Givena, b such that O< a < b < oo, denote byA, , the annulugx : a < |x| <
b}. Define the maximal function on annuli centered at the origin as

Af(x) = sup

X€Aq b |Aa,b| Aa,b

Lf (D)l dy.

Given a setD C R”, we define its annular extension as
A[D] = {x eR" : |x| = |y| for somey € D}.

We begin the proof of Theorem 3 by proving that, givénlzall B lying on atrans-
late of ak-planeIl and a radially symmetric sét in R", there exists a constant
C depending only otk andn such that

M(BNE) _ <|A[B]mE|>"/”
A(B) T |A[B]
From this we deduce at once the pointwise inequality

sup Myg(x, ) < C(Axe(x)km.
weG(n,k)

(3.1)

Theorem 3 will be a consequence of the following claimy i a radial function,
then
My f(x) ~ Af(x). (3.2)

Proof of (3.1) for k = 1 In this caseB is a line segment whose length we de-
note byL; let .1(B N E) = £. Then the left-hand side of (3.1) &L. We use
the geometric observation already stated in the proof of Theorem 1 that the mini-
mum measure ofA[ B] N E corresponds to the case whBm E is a segment (of
length¢ and contained iB) that is as close to the origin as possible.

Assume first that @ IT and letd (0, B) = r. If r < L, then|A[B]| ~ L" and
|A[B]NE| = cmax(r", £") > c£" sothat (3.1) holds. If > L, then|A[B]| ~
r""IL and|A[B] N E| ~ r"7¢. Sincet/L < 1, (3.1) holds.

Let nowd = d(0, IT) > 0 and letxg be the point in1 closest to the origin; let
D =d(xo, B). If L, D <d, then|A[B]| ~ d" 2L max(D, L) and|A[B]NE| >
cd""?¢max(D, £); if D < d andL > d, then|A[B]| ~ L" and|A[B] N E| >
cmax(d"2¢?,¢") > ct". If D > d andL < D, then|A[B]| ~ D" ?L? and
|A[B] N E| > ¢D"~2¢?; finally, if D > d andL > D, then|A[B]| ~ L" and
|A[B] N E| = cmax(D"~2¢2,¢") > c£”. In all cases, (3.1) holds. O

Proof of (3.1) for k > 2. Let B be the ball of centetz and radiusk contained
in 1. Theni,(B) ~ R*. As in the proof of Lemma 5, we assume ttiatan be
written as a union of spherical annuli similar to (2.2). We again distinguish several
cases.

Assume first that Oz I1. If |cg| < 2R then|A[B]| ~ R", M (E N B) <
CY irf %, and|A[B] N E| ~ Y| r/"¢;. (The symbol}_ means that only
those values of for which the annulus of index intersectsB are taken into ac-
count; the first and the last values can be adjusted to coincide with the inner and
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outer radii of A[B].) A term of types{ ande} (respectively) corresponding to
Jj = 0 could appear in each sum. Inequality (3.1) is then a consequence of inequal-
ity (2.3).

If |cp| > 2R then we haveA[B]| ~ |cg|" 'R, A (E N B) ~ Y_" R*¢;, and
|A[BI N E| ~ 3 |cp|" ;. Since) "' ¢; < 2R, (3.1) holds.

Let nowd = d(0, IT) > 0 and letxy be the point inl1 such that (0, x¢) = d.
Defines; ands; as in (2.4). Ther(E N B) ~ Y., max(s/~1s;, 8%). Since for
r; > 2d we haves; ~ r; ands; ~ ¢;, whenB C {x : |x| > 2d} the situation is
reduced to the preceding one.

Write D = d(xo, cg). If D > 4d andR < D/2, thenB C {x : |x| > 2d} and
the result is proved. LeD > 4d andR > D/2. Then|A[B]| ~ R", so that (3.1)

holds if
n k
(5 et ) (£
j J
This inequality follows from mags/ ;. 6%) < Cr/~*¢; and (2.3), asin Lemma.
A similar proof applies wherD < 4d andR > d because in this case again
|A[B]| ~ R".
We are now left with the cas® < 4d and R < d, for which |A[B]| =
C[(d?+ (D + R)®»"? — (d? + (D — R)»)"/?] < Cd"~?max(DR, R?). If R <
D/2theni (ENB) < CR* 3" §;and|A[B]NE| ~ d" '} &;. The required

inequality is now
SLAINEAY
R - DR ’

but in this situatiors; > D/2 andr; < 10d (in both cases for the terms "),
so thats; < 20dD"¢;; together with)_’ §; < 2R, this gives the inequality. If
R > D/2 then we need

<Z3’ maxts, ;. ) =e(22 DL )k
—_ R2 b

Rk

which is a consequence gf §; < cR ands;s;, 87 < 3rje; < 30de;. O

Proof of (3.2). We prove first that there exists somdg such thatMy, f(x) <
C1Af(x). Let B be the ball centered atwith radiusR. Leta = max(0, |x| — R)
andb = |x| + R. Our aim is to show that

1 1
J— <C / . 3.3
|B| /Z;|f| |Aa,p] Aa,b|f| @

If |x] < 2R, then|A, ;| ~ R" andB C A, so that (3.3) holds. Ifx| > 2R,
then|A, ;| ~ |x|"~IR; rotating the ballB with respect to the origin, we can get a
numberN; of disjoint balls insideA, ,. Geometric considerations show that it is
possible to choos#; > c1(]x|/R)"~* for somec; independent ofx| andR; since

f is radial, the integral on all the rotated balls is the same and again (3.3) holds.
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We consider now the reverse inequality; that is, suppose there existsuch
that Af(x) < CoMpy f(x). Let A, , be an annulus such thate A, , and de-
fineR=b—a.lfa <b/2 then|A, ;| ~b" ~ R" andA,;, C B(x,4R) so that
the converse of (3.3) holds with = B(x, 4R). If a > b/2, then|A, ,| ~ b"'R.
Let B = B(x, 2R); we can cover, , with N, balls obtained by rotation @ in
such a way thaV, < c»(|x|/R)"~1. Again, the fact that the integral gf on all of
these balls is the same gives the converse of (3.3). O

4. Proof of Theorem 2

The proof of Theorem 2 fat > 2 is similar to the proof given in [DO] fok = 1.
Here we sketch its main lines.
LemMa 6. Assume thay is nonnegative.
(i) LetO < B <a <y <n; then
T f(x,7) < T f(x, 1) °T, f(x,7)°, @ =(1—=9)p+sy.

(i) LetO < o < y < n. Then there exists a constafitdepending only ox, y,
andk such that

Ty f(x, ) < CMf(x, m)" VT, f(x, 1)/

Proof. Both inequalities are proved in a similar way. Write
To f(x, ) =/ +/ fx =PIy  di(y).
[yl<R [yI=R

Use the elementary bound® #Tj f(x, m) and R*~"T, f(x, 7), respectively,
and choosek so that both bounds have the same size; this yields (i).

For (i), use instead the boundR*Mf(x, ) for the first integral. It can
be obtained decomposing the integration domain into anpuli 27*-1R <
ly| < 27%R} for k = 0,1, 2,... and then using on each annulus the bound
Q*RY*Mf(x, 7). O

Proof of Theorem 2 forr > k. Using part (i) of Lemma 6 (with8 = k and
y = n) together with Lemma 5, we have

n—k n—a n—a k
Toxe(x,m)yet < Tixp(x, m)e*tTyxp(x, m) < |Ele=k"n T, xp(x, 7).

From here the boundedness fréf{$ " to Lo (L"—®/@=b) is immediate, and the
end of the proof is as in the second part of Theorem 1. O

Proof of Theorem 2 for < k. Use inequality (ii) of Lemma 6 withf = xg
(which impliesMyg(x,7) < 1) andy = k, together with Lemma 5, to get
Tyxe(x,m) < C|E[*/",

Use now the same inequality with Lemma 5 to obtain

Tyxe(x, m) < CMxg(x, 1) /% E|*",
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which together with Corollary 4 implies the boundedness pfrom L’r‘éﬁ’l to
L/U=a.00120y The weak estimates for the values gpland Ir over the line
joining the points(1, 1) and(k/n, 0) are obtained as before. For fixedreal in-
terpolation between Lorentz spaces gives Theorem 2. O

5. Some Consequences of Theorem 3

The pointwise inequality of Theorem 3 leads to some interesting consequences for
several operators acting on radial functions.

Let D be a set inR", star-shaped with respect to the origin and with positive
finite measure. IfD is described in polar coordinates &s\ {0} = {(p,u) €
(0,00) x $"71:0 < p < R(u)}, then the measure @b isn™* [;, 1 R(u)" do(u)
(heredo denotes the Lebesgue measure on the unit sphere). Then we have

R(u)
/ Fx— )l dy = / /O £ (x — pw)lp™Ldp do )
D n—1

< [ R@"MF (. dotw) <niDI sup MfGr.w.
sn—1 uesn—1
Fork =1, G(n, 1) can be identified with a half-sphere and the meaguyg with
the Lebesgue measure on it. Define the maximal opeyeatars follows:

1

M) =suprr [ 1=yl dy.
p |DlJp

where the supremum is taken over all sBtshat are star-shaped with respect to

the origin and with positive measure. Af is a radially symmetric set then using

Theorem 3 and our previous calculation yields

Mxe(x) < CoMup xg(x)Y".

CoroLLARY 7. The maximal functiosM is bounded orL?, (R") forall p > n
and is of restricted weak-type, n).

In particular, the Kakeya maximal operator defined as the supremum of averages
of f over all parallelepipeds of sidésx i x --- x h x Nh (h > 0 variable,N
fixed) is smaller thao\, so it is bounded od.”, (R") for p > n with a constant
thatis independent @¥. This result was obtained in [CHS]. For general functions,
the best possible result is a logarithmic growthMiiknown only forn = 2).

A weighted version of Corollary 4 is also possible.
CoroLLARY 8. The operatorf — sup, Mf(-, w) is bounded fronL?, (w) to
L?(w) if p > n/k and ifw is in the Muckenhoupt class,,, and is of restricted
weak type folp = n/k with A; weights.

As usual,A, denotes the class of weights for which the Hardy—Littlewood max-
imal operator is bounded oh”(w) (the L? space with respect to the measure
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w(x) dx) if p > 1or satisfies a weak-tyfdg,1)inequality if p = 1. For a descrip-
tion of these classes of weights and their main properties, see [GR].

Proof of Corollary 8. From the boundedness &fy_ and the pointwise inequality,
we deduce that the operator defined in the statement is boundecLﬂg&](“w) to
Li(w) whenw € Ay ,. By interpolation withL> we deduce that, ip > ¢ and
w € Ay, then the operator is bounded a1 (w). But the union of the classes
Ay forallg < p givesA .

The second part of the statement is immediate. O

Notice that the same weighted result witk= 1 can be stated for the operatbt
considered in Corollary 7.

Finally, we give an application to a rough maximal operator with variable ker-
nel. LetQ be a function defined oR” x $"~! and define the rough maximal
function associated @ as

1
Mg f(x) = SUD—f 12(x, y') f(x = y)dy,
Iyl<R
wherey’ denotes the projection ofover S”~1 and where

sup [ 1Q(x, w)|do() = AQ) < oco.

X sn—1

Using polar coordinates as before, we have
Mg f(x) < C,A(R2) sup Mf(x,u).

uesn-1

CoroLLARY 9. The operatorMg, is bounded fronL?, (w) to L”(w) for p > n

andw € A,/,, and it is of restricted weak typ@:, n) for w € A;.

When is independent ok, the unweighted.” boundedness is easy to prove
(for all p > 1 and for generaf). But even in such a case the weighted inequali-
ties given in Corollary 9, when we restrict the operator to radial functions, are not
always true if we consider general functions.
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