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1. Introduction

There is an extensive theory, due initially to Patterson and Sullivan, intertwining
the isometric, conformal, and ergodic properties of Kleinian groups. Our purpose
here is to begin to expand this theory to the setting of quasiconformal groups.
In particular, we wish to explore the connection between the Hausdorff dimen-
sion of limit sets of quasiconformal groups and the exponent of convergence of
the Poincaré series. It is well known that, for a large class of finitely generated
Kleinian groups, the Hausdorff dimension of the limit set is the exponent of con-
vergence [BiJo; S2]. We are concerned with the facet of Patterson—Sullivan the-
ory that relates the exponent of convergence to the Hausdorff dimension of the
limit set, and our techniques are primarily from the analytic theory of quasicon-
formal mappings. We will, however, directly apply techniques and results from
Patterson—Sullivan theory in the sequel to this paper [BT].

The Poincaré series of a Kleinian group has been the object of much refined
study; see, for example, [BiJo; Mc; Pa; S1; S2; Tul].

Because a quasiconformal group no longer acts isometrically on hyperbolic
space, it is to be expected that the whole of Patterson—Sullivan theory does not
generalize directly to quasiconformal groups. Thus our purpose in this paper is
twofold: we record positive results and then provide counterexamples that demon-
strate ways in which the Patterson—Sullivan theory fails for discrete quasiconfor-
mal groups.

The central part of the paper consists of Sections 4 and 5, where we provide ex-
amples to demonstrate differences between the quasiconformal and the conformal
case. We find thathe exponent of convergence can be strictly greater than the
Hausdorff dimension of the conical limit dgExample 4.1) and thahe Hausdorff
dimension can “jump up” in the limit on convergent sequences of quasiconformal
groups(see Example 4.2). For convergent sequences of Kleinian groups, the Haus-
dorff dimension of the limit set is lower semicontinuous (see [BiJo] and [Mc]). We
also provide an example (Example 4.3) dfiscrete quasiconformal group whose
limit set consists entirely of conical limit pointsowever, the group has the prop-
erty that the Hausdorff measure of the limit set at the critical dimension has zero
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mass. This example helps to motivate our second paper on the subject [BT], in
which we extend our analysis by constructing an analog of the Patterson—Sullivan
measure on limit sets of quasiconformal groups and then use this measure to ana-
lyze the local properties of limit sets.

The paper proceeds as follows: Section 2 contains the basic definitions and re-
sults that we will need from both discrete group theory and the theory of quasi-
conformal mappings. Section 3 will show that the calculation of the exponent
of convergence does not depend on the choice of extension of a quasiconformal
group. Section 4 and Section 5 contain the construction of counterexamples with
which we contrast and compare various properties of Hausdorff dimension on limit
sets of quasiconformal groups and convergence groups to Mobius groups.

AckNOWLEDGMENTS. \We would like to thank Fred Gehring and Juha Heinonen
for enjoyable and productive conversations concerning the subject matter of this
paper. We thank the referee for useful suggestions, especially for providing us
with a more elegant synopsis of a proof of Lemma 3.1.

2. Basics

We recall that & -quasiconformal groug acting onR” is a group of mappings,
each of which is & -quasiconformal homeomorphism Bft. Such a groupgG
is discreteif there exists no sequence of mappings in the group that converges
uniformly onRR” to the identity mapping. We note that, from the theory of quasi-
conformal mappings, a discrete 1-quasiconformal group is a discrete group of
Mobius transformations, that is kdeinian group.
The action of a discrete quasiconformal gra@partitionsR” into two disjoint
sets. Thaegular setQ(G) c R” is the largest open set on whichacts discon-
tinuously; thelimit set L(G) is the complement of2(G) in R”. It is easy to see
that L(G) is a closed set; if.(G) contains more than two points, thérG) is a
perfect set (and thus uncountable) that is either nowhere dense oiRal &or
the basics in the theory of quasiconformal groups see [GM1]; for discrete Mdbius
groups(K = 1) see [Ma].
An important tool in the theory of Kleinian groups acting Bn-1is the hy-
perbolic metric orfl”. Note that every Kleinian group acting onR”—1 extends
to a group of hyperbolic isometries acting discontinuously on hyperbedigace
(H", p). If T has no finite-order elements, then the quotient spE¢E is a com-
plete Riemannian-manifold of constant sectional curvaturd. One of the great
difficulties in the analysis of (non-Mébius) quasiconformal groups is that, though
individually every quasiconformal mapﬁff_*l extendsto aquasiconformal map of
H", itis not known whether extensions of all elements of the group exist so that the
group structure is preserved. Furthermore, even in the case where such an exten-
sion exists, the extended group no longer acts isometrically on hyperbstiace.
Conformally equivalent to the extension problem frainr 1 to H” is the problem
of extending quasiconformal groups acting#m* to B". Note that, by reflection,
a quasiconformal group acting @t extends to a quasiconformal group acting on
R" with the same dilatation.
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Because we wish to use geometric arguments involving the hyperbolic metric,
we will consider only thos& -quasiconformal groups acting @t that preserve
the unit ballB”. We call such a grou@ a quasiconformal Fuchsian groupnd
we label such & by the symbol “QCF". IfG is a QCF group thedB" is also
invariant undelG, and if G is discrete in addition then it acts discontinuously in
B", andL(G) c 3S"* by [GML1, Cor. 3.8]. In this case it is easy to show tiGat
is countable.

There is a well-developed theory relating the hyperbolic action of a Kleinian
group onB” to its conformal action 08”1 One can extend parts of this theory
to the class of quasiconformal groups. TPancaré seriesvith exponents of a
discrete QCF grouf is defined as

Y(s,x,y) = Ze’s”("’g()’» for x, yeB” ands > 0.
geG

DerINITION 2.1 (Exponent of convergence). For a discrete QCF gt@apting
onR”, we call
3(G) :=inf{s | (s,0,0) < oo}

theexponent of convergenocé G.

The following proposition shows that the convergence or divergence of the series
(s, x, y) is independent of the choice efandy (and sa$(G) can be computed

with any base points, y in the place of 0. We omit the proof, since it is based

on the well-known result in the Kleinian group setting (see g\g).

ProposITION 2.2. Let G be a discrete QCF group acting dk. Then, for all
x,yeB”,

inf{X(s, x, y) < oo} =inf{X(s,0,0) < oo}

= ir;f{Z(l— g0 < oo}

geG

= ir;f{Z(l— 12(0))* < oo}

geCG

1 1
= limsup-log N(r, x, y) = limsup- log N(r, 0, 0),
r r

r—00 r—0o0

whereN(x, y,r) =#{ge G | p(x,g(y)) <r}.

It is not clear a priori tha8(G) is finite for a discrete QCF grou@. Lemma 2.3
shows that in fact it is bounded aboverby 1, that is, the dimension of the sphere
at infinity of hyperbolic spacB”. This is a well-known fact for Kleinian groups;
see [N, Thm. 1.6.1]. A proof of Lemma 2.3 is in [GM2]; this has not yet appeared
in print, so we provide an outline of the argument for the reader’s convenience.

LemMaA 2.3 (Gehring—Martin). Let G be a discrete QCF group acting dR.
Thend(G) <n — 1
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Proof. Because&s acts discontinuously oB”, there exists a point € B” that is
stabilized only by the identity ii;. Since M6bius transformations act as isome-
tries on(B”, p), it is easy to see (using Proposition 2.2) that) is invariant
under conjugation o&; by a Mobius transformation. Thus we can assume that
x=0.

The geometric idea behind the Gehring—Martin argument is as follows. First
they show that there exists a fixdd(independent of) such that

N(r,0,0) < Ae" Y. (2.1)

The key geometric fact in showing this is that, becagse discrete and con-
sists of uniformlyk -quasiconformal mappings, there exists a hyperbolic distance
d such that all of the orbit points of O are separated by a distance of atileast

Itis immediate that

Z efaP(O,S(O)) = N(r,0,0)e " + Ol/ N(t, 0, 0)670” dr.
0

geG
p(0,g(0)<r
Substituting (2.1) into the equation just displayed and taking the limit-asoo,
we see that the Poincaré series converges for alln — 1. O

REMARK 2.4. In Section 5 we will demonstrate, using a more general class of
discrete groups, that Lemma 2.3 is no longer true in this enlarged class.

There is a connection between the Hausdorff dimension of the limit set and the
exponent of convergence for a Kleinian grdujacting conformally oi$”~%. The
relationship is especially nice in the setting of geometrically finite groups.

THEOREM 2.5 [Pa; S1; Tu]. LetT" be a geometrically finite Kleinian group act-
ing onS". Then
8(I) = dim(L(I)).

If T is geometrically finite and purely loxodromic, th&l™) consists entirely of a
certain type of limit points. More generally, |6t be a discrete QCF group. Then
a pointx € L(G) is aconical limit point if there is a sequence of orbit points in
B" that converges to inside a Euclidean nontangential cone with vertex.al/e
denote byL.(G) the full collection of conical limit points i (G).

With respect to the conical limit set, Bishop and Jones [BiJo] were able to re-
move the assumption of geometric finiteness.

THEOREM 2.6 (Bishop—Jones).LetT be a Kleinian group whose limit set con-
tains more than two points. Théil') = dim(L.(T)).

In Example 4.1 we see that Theorem 2.6 does not generalize to the full class of
QCF groups. Though Theorem 2.6 is not true in this more general setting, an argu-
mentin [BiJo] (Theorem 2.1), showing that the Hausdorff dimension of the conical
limit set is bounded above by the exponent of convergence, generalizes to the case
of QCF groups.

TueoreMm 2.7. Let G be a discrete QCF group acting dR". Thens(G) >
dim(L.(G)).
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3. Independence of Extension

Our next goal is to show that the exponent of convergence of a discrete QCF group
depends only upon the action of the groupSsn™.

We first note that a quasiconformal mappifig B* — B" is a quasi-Md&bius
mapping; hence it is immediate that fifis the identity on the boundary, then the
hyperbolic distance from € B” to f(x) is bounded above by a constant depend-
ing only onK andn.

LeEmMA 3.1. Foreachm e N, n > 2, andK > 1, there exists a constantk, n) >
0 such that the following holddf f: B” — B" is K-quasiconformal and extends
to the identity or6” %, then

p(x, f(x)) <c(K,n) forall x eB".

REMaRk 3.2. EveryK-quasiconformal mapping: B” — B” extends uniquely
to a K -quasiconformal mapping 67~%; see [V].

Using Lemma 3.1, we now show that the exponent of convergence of a discrete
QCF group orR” depends only on the action of the group$iT™.

TueorEM 3.3. LetG andG be two discrete QCF groups acting & that agree
on S*7% that is, there exists an isomorphism G — G such thatg|g.-1 =
¢(g)|sn-1forall g e G. Thend(G) = §(G).

Proof. ChooseK > 1 large enough so that both grouﬁgandé areK -quasicon-
formal. Choosex € B". Forg € G let g := ¢(g) € G be the corresponding
element so thag andg agree or§”~L. By the triangle inequality we have that
p(x,8(x)) < p(x, g(x)) + p(g(x), §(x)).
Sinceg ! is K -quasiconformal, we obtain furthermore that
p(g(x), 8(x)) < Dk (p(x, g E(X))),

where®k (1) = 4d max{t, t%} with d = d(K,n) anda = KY¥" (see [GM2,
Cor. 2.10]). Observe now that™ o g is a K2-quasiconformal map oB” that
extends to the identity of”~% By Lemma 3.1 we obtain that(x, g g(x)) <
c(K?, n). Hence

p(x,8(x)) =< p(x,g(x)) +C,

whereC = ®g (c(K?, n)) depends only ok andx. In the same way we obtain
p(x, g(x)) < p(x,g(x)) +C.
Thus, for anys > 0 we have that
o—P.8(0) p=5C . ,=5P(X,(x) < ,=3p(x,8(x)) ,5C

This implies that

D e ED) <00 ifandonlyif Y e EW) < oo,

ge("; geG
and this completes the proof. O
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4. Counterexamples

This section contains a collection of basic counterexamples highlighting the differ-
ent behavior of the exponent of convergence with respect to Hausdorff dimension
that discrete quasiconformal groups exhibit. This list is not complete in detailing
the pathological behavior (relative to Kleinian groups) of the action of quasicon-
formal groups; we have limited ourselves here to examples using results in Sec-
tions 2 and 3 and to the use of elementary analytical technigues. In [BT] we will
explain why such phenomena occur by “localizing” Patterson—Sullivan theory.
Recall that a Kleinian group acting onR” is aFuchsian groupf I" keeps the
unit ball B" (or the upper half-spadd”) invariant. A Fuchsian group is a QCF
group withK = 1. Our first counterexample shows that, unlike in the Kleinian
case (cf. Theorem 2.6), the Hausdorff dimension of the conical limit set of a QCF
group can be strictly smaller than the exponent of convergence of the group (note,
however, that it is always true that dim(G) < §(G); see Theorem 2.7).

ExaMPLE 4.1. There exists a QCF group acting onR? such thats(G) >
dim L.(G).

Construction.It will be more convenient to work in the upper half-space model
HZ2. Let T be a finitely generated Fuchsian group of the second kind actififon
that contains a parabolic element with fixed poinbat Necessarilys(I') < 1
One can, for example, choo§eto be the Hecke group generatedy> z + 1
andz — —x~?/z for someir > 2. We can assume thai(z) = z + 1is a generator
of I'. ChooseK > 1so large thak /(K + 1) > §(I"), and define

o= ? if Jzl <1,
LA (NP S PR |
One easily verifies that, for largec Z, we have
p(, py"@ i) = p(, (i + n)) ~ log(|n|Y5+1),

where “~" means that the two quantities differ only by an additive constant that
is bounded independently aof Hence, using Proposition 2.2, we observe that

8(G) = 8((pyo ™)
= inf{s >0 } Ze—sp(i,tpyn(p—l(i)) - oo}

nez
=inf s>0’22 ;<oo
- nsYK+1
neN
K
= > 5(T).

K+1

On the other hand is locally bi-Lipschitz at every € R (but not atco), and this
implies that dim{L.(G)) = dim(L.(T")). Since dim(L.(T")) = &(T") by [Pa] and
[S1], we conclude that difL..(G)) < §(G).




Hausdorff Dimension and Limit Sets of Quasiconformal Groups 249

We will return to this example in more detail in [BT]. In particular, we will local-

ize the definitions for the exponent of convergence and the Hausdorff dimension
of the limit set and thus show that the pathology behind this example can be de-
scribed in terms of these localized quantities.

We conjecture that Example 4.1 is sharp in the sense that the exponent of con-
vergence of & -quasiconformal conjugate of a parabolic cyclic Fuchsian group
acting onH? cannot exceed /(K + 1). Note that if we replace in the exam-
ple byp(z) = |z|Y%~1z then we havé((py¢™)) = 1/(K + 1). Recall also that
the exponent of convergence of any parabolic cyclic Fuchsian group actifig on
is 3.

CoNJECTURE.  LetI" be a parabolic cyclic Fuchsian group acting oit, and let
¢: R2 — R2 be aK-quasiconformal mapping that keefi$ invariant. Then

< 8(plp™) <

K+1~ K+1

Our second counterexample contrasts the behavior of the exponent of convergence
on sequences of QCF groups with its behavior on sequences of Kleinian groups.
We start by defining in what sense these sequences are converging.

Fix an abstract finitely generated groff and let

pi: H— QC(K)

be a discrete faithful representation Bfinto the space&C(K) of K-quasicon-
formal mappings oiR” endowed with the compact-open topology. We say that a
sequence

{pi: H— QC(K)}

converges algebraicallio a discrete faithful representatipn,: H — QC(K) if
pi(h) = pso(h) for each generatdre H.

In dimension 2, if{ p;} is a sequence of discrete faithful representations into
the space of Mdbius transformations alds not cyclic, then it is a fundamental
result of Jgrgensen [J] that the limit representation is automatically discrete and
faithful. In any dimensiom > 2, if H does not contain elements of finite order,
if p;(H) is a non-elementary quasiconformal Fuchsian group for gaanid if K
is sufficiently close to 1, then we have shown [BM] that the limit representation is
again discrete and faithful.

Itis clear that, by definition, algebraic convergence preserves the group struc-
ture. Our next type of convergence respects, in the Kleinian case, the geometric
structure on compact subsets of the quotient manifolds. A sequence

{G; € QC}
converges geometricaltp G, if:

(1) for eachg € G, there exists a sequengg € G;} such thatg; — g; and

(2) if {g;, € G; } sothat{g;, } converges tg, theng € G.

For Kleinian groups, the topology induced by geometric convergence is equiva-
lent to the Gromov topology, that is, quasi-isometric convergence on compact sets
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of the quotient manifolds; see [Th] or [BePe]. Observe that, if a sequgnges
converging algebraically and geometrically, then it is clear from the definition of
geometric convergence that the algebraic limit is contained in the geometric limit.
Should a sequendg;} converge algebraically and geometrically to the same dis-
crete groupG, we say that the sequencenverges strongly.

We will show that the following two facts, which are true in the Mobius cat-
egory, are not true in general for QCF groups. The first theorem is true in more
generality than we give here; however, the statement given makes the contrast be-
tween Kleinian groups and non-Kleinian QCF groups explicit.

THEOREM 4.1 [CT2; Mc]. Suppose thall is not a free group, and I€to; : H —
Mob(n)} be a sequence of Kleinian groups converging strongly to a geometrically
finite groupps, (H). Then

lim 8(pi(H)) = 8(poo(H)).-

Via Patterson—Sullivan theory, we see that Theorem 4.1 can be restated to conclude
that the Hausdorff dimension function is continuous on strongly convergent se-
guences (with geometrically finite limits) of Kleinian groups provided the groups
are not free.

If one assumes only algebraic convergence, then the best one can do is lower
semicontinuity.

THEOREM 4.2 [BiJo]. If H is afinitely generated abstract group afd;: H —
Mo6b(n)} is a sequence of discrete faithful representations converging algebraically
t0 pso, then

dim(L(peo(H)) < liminf dim(L(p;(H)).

REMARK 4.3. There are well-known examples where the dimension of the limit
set of the limit group isstrictly lessthan the limit inferior of the dimensions of

the limit sets along the sequence. An example of such phenomena is a sequence
of degenerate groups on the boundary of a Bers’ slice converging to a maximal
cusp [C].

ProrosiTION 4.4. LetT be a Kleinian group, and Iefp, € QC(K)} so that{e, }
converges to a mappinge QC(K) in the compact-open topology.
Then the sequende,} of representations of" to QC groups defined by

{pn: T = @uTp, Y}
is strongly convergent to the representation
p: '~ (ngp_l.
The proof of this proposition is exactly the same as the proof for Kleinian groups,
so we omit it.
The following example shows that Theorems 4.1 and 4.2 do not generalize to

the setting of QCF groups. Example24i) contrasts Theorem 4.1, and Exam-
ple 4.2(ii) contrasts Theorem 4.2.
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ExaMpLE 4.2. (i) There exista Kleinian groupacting onR? and a sequende,,}
of uniformly quasiconformal mappings @? that satisfy the followingip, — id
asn — oo, but

8(paT Y /> 8(I) asn — oo.

(i) There exist a finitely generated Kleinian grotlipacting onR? and a se-
quencey,,} of uniformly quasiconformal mappings @# that satisfy the follow-
ing: ¥, — ¥ quasiconformal a8 — oo, but

dim(L(G,)) =1 foralln and dimML(G)) > 1,
whereG, = ¥,I'y, tandG = yT'y % that is,
dim(L(G)) £ liminf dim(L(G,)).

Construction.(i) Let I be a finitely generated and purely loxodromic Fuchsian
group, so thatl..(I') = L(I") = dD. For eachn € N we constructy, as follows.
Let P, be a regular polygon with"2sides, inscribed in the unit disk and placed in
such a way that two of its corners are on thaxis. Then the interior of, is con-
tained in the interior ofP,, for all n. Replace now each of the sides ®Bf by a
regular snowflake curve and call the resulting cutygsee Figure 1).

P ¢TSS
T, P ¢ S b,
‘Cjé h ; Jf igmfig
SR g
i AP :
¢ i? e ad
S 5 ety M e
o \zﬁwﬁ“’” o - %mf" W&%é
n=2 n=3

Figure 1 The curves,

ThenC, is aK-quasicircle, wher& can be chosen independentlywofurther-
more, din(C,,) = log 4/log 3 for alln, andC,, — 9D in the Hausdorff set topol-
ogy asn — oo.

Letg, mapD conformally onto the interior af,,, whereyp, (0) = 0 andyp, (0) >
0. Theng, — id by Carathéodory’s theorem on kernel convergence (see e.g. [Po]).
Extend eachy, to a quasiconformal map @2, and denote the extension again
by ¢,,. Then allg,, are uniformly quasiconformal, ang, — id asn — oco.
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DefineG, = ¢, o T o ;1. Since the quasiconformal conjugacy maps the limit
set ofl" onto the limit set of5, and in fact preserves the property of being conical,
we have thal..(G,) = C,; hence

dlm(Lc(Gn)) = :2%: for all n, but

dim(L.(T)) = 1.

Now extend eackp, to a quasiconformal map @® and choose a subsequence
(again denoted by, }) so thaty, — ¢ asn — oo, whereg is quasiconformal
andgo|]Rf2 = id. Using Theorem 2.7 and Theorem 3.3, we obtain that

S(poT o™ =8 =dim(L(I") =1,
but
3(Gy) = dlm(Lz(Gn)) = loi‘l
- ‘ log 3
(ii) Let T be a finitely generated Fuchsian group witfi") = 9. Let v, map
D conformally onto the interior of theth approximation of the regular snowflake
curve (see Figure 2), whetg,(0) = 0 andy, (0) > O.

>1 forall neN.

/\ /LyAzf/L mé\kybéw%é S mémj“%g

N

Phd

R
I

E}‘FE
~FR
¢

\

PN
5o

N

S

s fié
2.8

n=2 n=3 n=4 n=5

<
y
+
9
535
3

Figure 2 Approximations of the snowflake curve

Then{y,} converges to the the majp which mapsD conformally onto the inte-
rior of the snowflake curve. Eaah, can be extended to a quasiconformal mapping
of R2, where the quasiconformal dilatation is independent.a€hoose a subse-
quence such that, — ¥ for some quasiconformal mapping: R2 — R2. Then
V| = ¥, So thaty is an extension of to R2.

DefiningG, := ¥, o T o ¢ tandG = v o T' o %, we obtain

L(G,) = ¥, (L(T")) = v,(dD)
and hence
dim(L(G,)) =1 forall neN.

On the other hand, we have
L(G) = ¢(0D) = standard snowflake curve
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and so

dim(L(G)) = log4 > 1

log 3

Using a similar construction to that of Example 4.2, we can produce an exam-
ple that illustrates how different the Hausdorff measure behaves on limit sets of
K -quasiconformal groups as compared to how it behaves on limit sets of Kleinian
groups. To draw the comparison out, note that we can take the quasiconformal
group G constructed in Example 4.3 to be finitely generated so that its limit set
consists entirely of conical limit points. For Kleinian grodpsatisfyingL.(I") =
L(T"), the Hausdorff measutd, at the critical dimension (restricted to the limit
set) is finite and positive [S1]. We explore this dichotomy between quasiconformal
groups and Kleinian groups more fully in [BT].

ExaMPLE 4.3. There exists a discrete quasiconformal gr6ugcting onR? that
satisfiesH, (L(G)) = 0, wherea = dim(L(G)).

Construction.LetI” be a Fuchsian group acting BAwith L(I") = dD. Choose
a sequencée;} with 1 < o < ap < -+ < 3 and limia; = 3. LetC; be a
snowflake curve of Hausdorff dimensien whose base length igif. Put allC;
together “head to tail”, and close this homeomorphic image df][0p with a rec-
tifiable arc so that the resulting curve forms a closed Jordan clrgee Figure 3.

Figure 3 The curveC of dimensiong

Let ¢ be a quasiconformal map & that mapsD onto the interior ofC, and
defineG := ¢I'p~L. Then we haved.(G) = C and moreover that dir@ = g but
Hz/»(C) =0.

5. Convergence Groups

We conclude this paper with an open question. In [CT]] it was shown that an
infinite-index ge~ometrically finite subgroupof a Kleinian groud" has the prop-
erty that dim{L(T")) < dim(L(T")). We show in Example 5.3 that the analogous
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statement is not true in the very general setting of convergence groups. The ques-
tion of whether this theorem remains true in the quasiconformal case (see Ques-
tion 5.1) remains open in its full generality [ABT].

Discrete convergence groups are generalizations of Kleinian groups and were
invented by Gehring and Martin [GM1]. The definition is as followsdiacrete
convergence groug onR” consists of homeomorphisms acting®f with the
property that, for every sequengf;} of distinct elements iz, there is a subse-
quence{ fi;} and two pointsz, b € R” such that the sequen¢g;, } converges to
the pointa locally uniformly inR” \ {»} and the sequendgf,-} converges to the
point 5 locally uniformly inR” \ {a}. It is clear that each element is isolated in a
discrete convergence group; no sequence of elements converges to the identity.

Mdbius groups and quasiconformal groups are examples of convergence groups
(see [GML1]). Homeomorphic conjugates of quasiconformal groups are also con-
vergence groups, so that the class of convergence grouRs isf strictly larger
than the class of quasiconformal groups. Convergence groups in many essential
ways resemble their conformal counterparts. For instance, as with Mobius groups
one defines thémit set L (G) and theregular set2 (G) of the convergence group
G in exactly the same way.

First we remark that Proposition 2.2 is no longer true if we require the gtoup
only to be a discrete convergence group. However, we can still define the exponent
of convergence for a discrete convergence gréuacting onR” (and keeping”
invariant) to bes(G) = inf{s > 0| 3_ ., e @@=} with the convention
that inf(¥) = oo.

ExampLE 5.1. There exists a discrete convergence gieum R” that keep®”
andS"~tinvariant but satisfie8(G) = oo.

Construction.LetI" be a Fuchsian Mobius group @& that satisfies(I") > 1,
and letg: R* — R” be the homeomorphism defined by0) = 0, ¢ = id on
S 9(x)/le(x)| = x/Ix|, andp(0, ¢(x)) = (0(0, x))¥2 for x e B" \ {0} (and
extendyp to all of R” by reflection). TherG := ¢I'p ! satisfiess(G) = oo.

This example actually shows more. Since the grag@sdl” agree or$"~* (note
thaty = id onS"~1), we immediately have the following.

ExaMPLE 5.2. There exist two discrete convergence grai@ndG onR” that
agree orS"~! but have different exponents of convergence.

Hence, Theorem 3.3 cannot be extended beyond the quasiconformal class.
We now end with the example announced previously.

ExaMPLE 5.3. There exists a discrete convergence giG@weting onR2 with an
infinite index subgrougs such that
dim(L(G)) = dim(L(G)).

Moreover,G andG are finitely generated groups that are topologically conjugate
to Schottky groups.
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Construction.Let I" be a Schottky group oR?; that is,T is a finitely gener-
ated, free, purely loxodromic Kleinian group with non-empty regular set [Ma].
We further assume thdt is generated by, y», y3 such that, fori =1, 2, 3, v;
maps the exterior of the (round) digk” c R2 onto the interior of the disb,’ c
R? and also the interior ob{ onto the exterior oD’ . Let all six disks be mu-
tually disjoint and have radius 1. L€t be the common exterior of all six disks
(with co € Q).

Now define a homeomorphisg as follows. Setp = id on Q2. Defineg on
DO\ y7%DD U DP U DP U DD U D) so that the images af; 1(3DD),
yfl(aD(Z)) andy; (BD(Z)) are circles of radius/b and, on the other hand, the

images ofy; %(3D3) andy; (8D3) are circles of radiugl/5)?.

In the same way, defing on D\" \ y2(D" U D@ U D UD® U DP): Let
the images of1(dD,"), y1(8D?), andyl(aD( ) be C|rcles of radlus/E and, on
the other hand, let the images)afdD2) andyl(aD3) be circles of radiugl/5)?.

Proceed inductively in the same manner. The images undécircles that are
images oBD.; ' under an element df/1, y») are circles of radiu® /5, whereR
is the radlus of the “motherdisk”. All other “children” in a disk of radiRshave
size(R/5)? (see Figure 4).

Figure 4 Construction of the groug

Now letI' = (y1,y2) andG = (). It is easy to see that dith(G) =
log 3/log 5 =: d. On the other hand, for anye N, the limit set ofG can be cov-
ered by 4 3" disks of radius 15" and 4 (5" — 3") 4 2. 5" disks of radiug1/5")?.
For this covefU,}, we have
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d d
> (diamy,)* = 4- 3(53) +[4-E—-3)+2- 5,,](5_1)

=4.294294.(5"-3")+2.5"37%" - 4.2 asn — oo.

Hence dimL(G) < d, but sinceL(G) C L(G) we conclude that (G) andL(G)
have the same Hausdorff dimension.

However, our question does remain open in the quasiconformal setting.

QuestioN 5.1, LetG be a discrete quasiconformal group actingkom so that
dim(L(G)) <n. LetG be a finitely generated infinite index subgroupf
IsdimL(G) < dimL(G)?
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