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Parabolic Manifolds for
Semi-Attractive Holomorphic Germs

MARZIA RIVI

1. Introduction

The purpose of this paper is to study the local behavisedii-attractivénolomor-

phic self-maps o£™ (m > 2) in a neighborhood of a fixed point that we assume

to be the origin. Such transformations are the ones whose differential at 0 has one
eigenvalue equal to 1 while the remaining ones, gay.., B, with s > 1, have
modulus strictly less than 1.

Semi-attractive transformations such that 0 is not an isolated fixed point have
been studied by Nishimura [N], who considered analytic automorphiSr$
complex manifolds admittingg dimensional complex submanifoM of attract-
ing fixed points forF. Then, for each poinpy € M, one can choose local coor-
dinates(w, z) € C? x C™~? in a neighborhood/ of pg such thatU N M has
equationz = 0; hence the mapg’ can be locally written as

w1 =w+ O0(|z|)),
z1= C(w)z + O(||z]1?).

whereC(w) is a(m — q) x (m — q) matrix whose elements are holomorphic func-
tions onU and whose eigenvalugs(w), ..., B,,—q (w) have modulus strictly less
than 1.

LetQ={peU | F"(p) = po, po € M}, which is an open set containirid.
Nishimura proved that if these eigenvalues have no relations in any poMt of
that is, if for each multi-index = (ju, ..., jm—q) With > ;7 jx > 2and1<i <
m — g we haves]*(w) - - - ﬂf;fg(w) # Bi(w), then there exists a biholomorphism
S:N — Q, wherer: N — M is the normal bundle a4, which conjugate$ to
the automorphisng of N induced byF and given int XU N M) by

S1=19,
uy = C(s)u.

When 0 is an isolated fixed point, the problem has been studied only for maps
such that the eigenvalue 1 has multipliejty= 1. Fatou [F] and subsequently Ueda
[U1; U2] studied the dynamics of such transformatidng two complex vari-
ables. Fatou found a system of coordinatesz) such thatF has the following
expression in a neighborhood of 0:
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w1 = a(Q)w + ax(w? + - -+,
21 = bz +bi(Qw + ba()w? + - -,

whereb is the eigenvalue such that9 |b| < 1 and where;(z), b;(z) are holo-
morphic functions in a neighborhood o&CC such that;(0) = 1 andb1(0) = 0;
he then proved the existence of a basin of attraction to the origin w4(@n # 0.

The same result was obtained by Ueda after redugirig a simpler form of
type (1.1), where (for fixedk > 2) the coefficients:;(z) are constants anbl(z)
are linear monomials far < k. Ueda gave a precise description of the basin of
attractionQ2 and showed that if’ is an automorphism the® is biholomorphic to
C?; he also proved thaf is conjugated to the translatign, y) — (x +1, y) on
an open subset @b.

Finally, Hakim [H1] considered semi-attractive maps@t with m > 2; for
eachk > 2 she proved the existence of a local system of coordinates) <
C x €™t with respect to whichF has the form

(1.1)

w1 =w + aw’ + - + qw* + aa@w T+
721 =g(@) + zh(w, 2),

wherea,, ..., a; are constants; (z) (j > k+1), g(z), andh(w, z) are germs of
holomorphic maps front”~* to C, from C”~* to itself, and fromC™ to C"~*
(respectively), witth (0, 0) = 0, g(0) = 0, anddg(0) as the eigenvalues af(0)
that have modulus strictly less than 1a)f= 0 for eachj, then there exists a curve
of fixed points(w, z(w)) passing through the origin; otherwise (i.egif=--- =

ap = 0 anday, 1 # 0 for someh > 1) she found an attracting domain. Precisely,
Hakim proved the following result.

(1.2)

THeoreM 1.1 [H1]. Let F be a semi-attractive holomorphic transformation of
C™ such that the origin is an isolated fixed point and the eigenvalokd F(0)
has algebraic multiplicityl. Then either (a) there exists a curve of fixed points
or (b) F — id¢n has finite multiplicitysr + 1 at 0 and there exists an attracting
domainD of O with & petals.

Moreover, in the latter case, if is a global automorphism ofC?, 0) then
every petal ofD is biholomorphic taC2.

We are interested in the general cas€if, where the algebraic multiplicity of
the eigenvalue 1 ig > 1. The center stable manifold theorem [R, p. 32] guaran-
tees the existence of a closed analytic stable manifold of dimensieg tangent

at 0 to the generalized eigenspdceorresponding to the eigenvalugs ..., B,

with modulus strictly less than 1. In particular, in a neighborhood of 0 and choos-
ing local coordinatesw, z) € C? x C™~4 such that this manifold has equation

w = 0, we can write our map in the form

w1 = fi(w, z) = A@Qw + Py (w) + Pz (w)+---,
21 = folw, 2) = G(2) + B(w, 2w,

where:A(z) is ag x g matrix, whose elements are holomorphic functions,in
suchthatA(0) = J is the Jordan block atF(0) corresponding to the eigenvalue 1;

(1.3)
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P; .:C? — C4 are homogeneous polynomials of degieghose coefficients are
holomorphic functions in; G is a holomorphic transformation &f”~¢ such that
G(0) = 0 anddG (0) has eigenvaluesgy, ..., By; andB(w, z) isan(m — q) X ¢
matrix whose elements are holomorphic function€df vanishing at(w, z) =
(0, 0).

Note that, if the first component is just the identity inC4, then by the implicit
mapping theorem we obtaingadimensional manifold of fixed points by solving
the equatiorr; = z in z = z(w).

We consider the case where the origin is an isolated fixed point, and we shall
prove the existence of larger stable manifolds with the origin in the boundary. First,
we generalize Hakim’s method to separate the contracting part from the neutral
part of F to sufficiently high order (Section 2). Then we distinguish the case where
the algebraic and geometric multiplicities of 1 are equal (Sections 3 and 4) from
the one where they are different (Sections 5 and 6).

For semi-attractive maps such that the eigenvaluedFgd) has Jordan block
J equal to the identity matrix, we extend Hakim’s argument about germs of holo-
morphic transformationg; of (C¢, 0) with differentiald F1(0) = I (see [H2; H3]
and also [W]): by studying the blow-up @f;, Hakim proved that, for each non-
degenerate complex directidhinvariant under the homogeneous polynomial of
lowest degreé + 1 in the expansion of; — id¢+, we can obtairk stable curves
I' tangent toV at 0, with Oc aT", as fixed points of suitable operators on Banach
spaces. She also introduced some invariants associatednd determined con-
ditions ensuring the existence bfattracting domains to 0 such that each orbit
inside them converges tangentiallyWo

To describe the result obtained for our maps, we need to recall some definitions
introduced by Hakim. Given a transformatieh C” — C”™, we say thatF is
tangent to the identity at order + 1 if, in a neighborhood of the origin, it has
homogeneous expansioil = X + Py11(X) + Ppy2(X) + - - - with P,q #£ 0.

Let P;:C™ — C™ be a homogeneous polynomial of degree- 2; a char-
acteristic directionfor P, is a directionV € C™\{0} such thatP,(V) = AV for
somei € C; it is callednondegeneraté P,;(V) # 0. Given a nondegenerate
characteristic directio for P,, the projection?;: [X] — [P.(X)] on the pro-
jective complex spacB”~Y(C) is defined in a neighborhood &f and [V]is a
fixed point for 2,. Then the matrix associated to the linear map

1 D H — m—
d—_l(de[V] —id): Ty P"XC) — Ty P™"X(C)

is called thematrix associatedo V and denoted byi(V). A simple computa-
tion shows that this definition is equivalent to the one given by Hakim. Moreover,
if all characteristic directions of; are nondegenerate, théh is defined in the
whole projective spadg”~%(C) and hence the number of characteristic directions
is equal to the number of fixed points 8f, that is,(d™ — 1)/(d — 1) (see [FS]).

We say that¥ c C™ is aholomorphic manifold at the origin of dimensian
if there exist a domais of C", with 0 € 3§, and an injective holomorphic map
¥: S — C™suchthaty(S) = M and limy_.o ¥(X) = 0. The manifoldM is said
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to betangent(at 0) to a vector spack if, for any sequencéX,} C S such that
X; — O0and (Xx)] — [V]in P"~XC), we haveV < E. Finally, M is said to
be parabolicif it is F-invariant and if, for each point € M, the forward orbit
F"(p) converges to O.

By these definitions, the result obtained by Hakim for holomorphic self-maps
tangent to the identity at O can be stated as follows.

THEOREM 1.2 [H2; H3]. LetF be aholomorphic germ of transformations©f’
tangent to the identity at order + 1.

(i) For every nondegenerate characteristic directigrof F, there exist: para-
bolic curvesl'}, ..., I'’ tangent toV at the origin.

(i) If the associated matriX(V) of V has all the eigenvalues with strictly posi-
tive real part, then there exigtdisjoint attracting domain®’ i =1, ..., h),
suchthae aD’ andI"' c D, in which every point is attracted to the origin
along an orbit tangent t& at O.

In our case we derive the following.

TueoreMm 1.3 (Parabolic Manifold Theorem).Letm > 2 and letF be a holo-
morphic germ of a semi-attractive transformation©@f', fixing the origin, such

that the eigenvalué of 4F(0) has the same algebraic and geometric multiplicity

g > 1. Assume thaf is of the form(1.3). If f1(w, 0) is tangent to the identity at
order + 1and if V is a nondegenerate characteristic direction ®y,1 o, then

there exist: disjoint parabolic manifolds of dimensiom — ¢ + 1 and tangent to

CV @ E, whereE is generated by the generalized eigenspaces associated to the
eigenvalues of F(0) with modulus strictly less thah

In Remark 2.1 we shall see that the number of these manifolds is strictly less than
the multiplicity of F — id¢w at O.

We shall also see that the eigenvalues of the matrix associated to a nondegen-
erate characteristic direction are still invariants under change of coordinates and,
moreover, give us a sufficient condition for the existence of attracting domains.

TueoreM 1.4. Assume the hypotheses of Theorem 1.3P,lf; o has a nonde-
generate characteristic directiol such that its associated matrik(V) has all

eigenvalues with strictly positive real part, then there ekigtisjoint attracting

domains forF with the origin in their boundary.

If the algebraic multiplicityy of 1is different from the geometric multiplicity, then
the idea is to reduce this situation to the previous one by generalizing to our case
the following theorem of Abate.

THeoreM 1.5 [A] (Diagonalization Theorem). Let F be a holomorphic germ of
a transformation ofC™ such thatF'(0) = 0 anddF (0) is invertible and nondiago-
nalizable. Then there exist a complexdimensional manifold4, a holomorphic
projectionz: M — C™, a canonical poing € M, and a holomorphic self-map
F:M — M such that
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(i) 7 restricted toM\7~%(0) is a biholomorphism betweeM \7~%(0) and
C™\{0};
(i) 71;0F:F07T;~and
(iii) F(e) = ¢ anddF(e) is diagonalizable.

This theorem is proved by making iterated blow-upsCéf along submanifolds
starting from the blow-up at the origin. We cannot use Abate’s result directly be-
cause it requiregF(0) to be invertible whereas for our map this matrix may be
singular. But, in order to apply subsequently Theorem 1.3, we need only to diago-
nalize the Jordan block, which is always invertible. Hence, following the same
line of proof as for the diagonalization theorem, but starting now from the blow-up
along the center stable manifold, we shall prove our next theorem.

THeoreM 1.6 (Partial Diagonalization Theorem)Let F be a holomorphic germ
of a semi-attractive transformation @ fixing the origin, and lefX be the cen-
ter stable manifold fo". Then there exist a complexdimensional manifold/,
a holomorphic projectiomr: M — C™, a canonical poing € M, and a holomor-
phic self-mapF: M — M such that

(i) m restricted toM\7~Y(X) is a biholomorphism betwee \ 7 ~1(X) and
(Cm\X;
(i) mo F = Fom; and
(i) ¢is a fixed point ofF anddF(¢) = diag{/, Jo}, where! is the identity ma-
trix whose order is equal to the algebraic multiplicity of the eigenvalaed
whereJ is the Jordan block af F(0) corresponding to the eigenvalues with
modulus strictly less thah

Moreover, in a neighborhood éf there is a system of coordinates such that
takes the fornfl.3)with A(z) = I and P, ¢ # O.

Finally, Theorem 1.6 allows us to find parabolic manifolds also for semi-attractive
germs with geometric multiplicity of 1 strictly less than In fact, under generic
conditions, we shall prove the existence of an “allowable” nondegenerate char-
acteristic direction fotP, o and then of aF-parabolic manifold at the origin that
projects to aF-parabolic one (see Corollary 6.1 and Corollary 6.2).

| would like to thank M. Abate, S. Marmi, and J. E. Fornaess for their explana-
tions and suggestions that have contributed to the realization of this paper.

2. Change of Coordinates

Letm > 2 and letF be a germ of holomorphic self-maps 6f" with F(0) =
O and let1p8;, ..., B, be the eigenvalues afF(0), where|B;| < 1 for eachi =
1, ...,s. Letg > 1 be the algebraic multiplicity of 1 and lgtbe its correspond-
ing Jordan block. In this section, we reduce the expression (1.B)tofa form
where the terms of the first component do not depend on the vagalgeo an
orderk. If A(0) # I then this order will be& = 2; otherwise, it will be arbitrary.
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ProrosiTioN 2.1. AssumeF in the form(1.3). Then there exists a local system
of coordinatesw, z) € C? x C™~4 such that, in a neighborhood of the origif,
takes the expression

wy = fi(w, 2) = Jw + ﬁZ,z(w) + i’az(w) + -

~ 3 (2.1)
z1= f2(w,2) = G(2) + B(w, Dw,

where theP; . are homogeneous polynomials of degréeC? whose coefficients
are holomorphic functions inand whereB (w, z) is an(m — g) x g matrix whose
elements are holomorphic functions ©f* with B(0, 0) = 0.

Proof. Let us consider, in a neighborhodd x N, ¢ C? x C™~ of the origin,
the change of coordinates

W=U@@w, L [w= Uz)=w,
X1t { X1 {
Z =z z=27Z.
HereU: N, — GI(C, ¢) is holomorphic. Then we have
W1=U@)wr = U(G(z) + B(w, 2)w)[A(x)w + P (w) + -]
= U(G(Z) 4+ B(W, 2)U(Z)"*W)[A(Z)U(Z)*W
+ Poz(U(Z) W) + -]
= U(G(Z)AZ)UZ) W + Ppz(W) +--- .
We want
UGZNAZYUZ) =1
or, equivalently,
JUZ) = UG(Z)A(Z).

Then it easy to see that

U(z) = lim I TAG @)
i=0

is the solution. This limit converges in a neighborhood of 0 by the following facts.
(@) For|z| small enqugh, there exists© y < 1 such thatA(Gi(z)) = J + B;
with [ B;|| = O(y'llzID).
(b) Since
JJ+B) =JYJ+B)J " (JT"By — T B I Y
— (I + ]—lBk)J—n+l+ (J—anJn—lJ—n+l _ J—lBkJ—n+l)
— (I + J71J7n+1BkJn71)J7ﬂ+l7

by iteration we obtain
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n

T 0+ Bu) = 77" M+ B[ [ + Buc)
i=0 i=1

= +J "B, I H(J + B,_)
i=1

= ]‘[(1 + J Yy, .
i=0
(c) Finally,

n oo
lim > 7778, < 7Y I B
i=0 k=0

o0
< 174 0Py izl
k=0
is convergent.
Moreover, in a small enough neighborhood o€ "4, U(z) is an invertibile
matrix becaus&: N, — Ccisa holomorphic transformation agt{0) = 7. O

PrOPOSITION 2.2, AssumeF in the form(1.3) with A(0) = I. Then, for each
k > 2, there exists a local system of coordinates z) € C? x C™~4 such thatF
takes the following expression in a neighborhood of the origin

w1 = foe(w,z) = w+ Pa(w) + - + Pr_g(w) + Py (w) + - -,

- . (2.2)
z1= f2(w,2) = G(2) + B(w, 2w,

whereP; (resp.,P; .) are homogeneous polynomials of degraeC ¢ with constant
(resp., holomorphic functions i) coefficients and whe®(w, z) isan(m—q) xg
matrix whose elements are holomorphic function€éf with B(0,0) = 0.

Moreover, if f1(w, 0) is tangent to the identity at ordér+ 1, then for eactk >
h+1wehaveP, =--- = P, =0and P11 = Ppi10 #0O.

Proof. By Proposition 2.1, the assertion is true o 2, so we reason by induc-
tion. Suppose that there are coordingtesz) such thatF' takes the form

wy=w + Po(w) + -+ Pr_g(w) + P (w) +---,
z21=G(2) + B(w, D)w,
and consider the coordinate transformation
W =w+ QO (w), L [ w=W =0k z(W) -,
Xk - YO
Z =z z=7Z.

Here O, .:C? — C? is a homogeneous polynomial of degreevhose coeffi-
cients are holomorphic functions in the variablen a neighborhood of 0. Then
we have
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Wi=w;+ Qk,z1(w1)
=w+ Po(w) + - + Poa(w) + Pr(w) + Qra(w) + Py (w) + -+
=W = Quz(W)+ Po(W) +---

+ Peoa(W) + P z(W) + Qr.azy(W) + Pryrz(W) + - -+ .
We want . .
Or,z(W) = Qkgy(W) = Py z(W) — Pro(W); (2.3)
this implies equalities between the coefficieptsq;: C"~? — C of the polyno-

mials P, andQy .. Then, for eacti = 1, ..., ¢(**/ "), we need that

qi(2) — qi(G(2)) = pi(z) — pi(0),
7:(G(2) — ¢i(G?(2)) = pi(G(2)) — pi(0),

7:(G"(2)) — /(G (2)) = pi(G"(2)) — pi(0);
hence, the solutions are

42 = ) _[5i(G"(2) — pi(0)].
n=0
For each, the series converges in a neighborhood of 0 becéatisea contraction
andp;(z) — p;(0) = 0 forz = 0. In particular we haved, o = 0 for eachk > 2.
Finally, assumefi(w, 0) tangent to the identity at ordér+ 1, thatis,z +1 =
min{d | P;0 # 0}. Then the second part of the assertion is proved because
xx(w, 0) = id¢4 for eachk and thusﬁk(w, 0) = fa(w, O) for eachk € N. O

REMARK 2.1. Supposefi(w, 0) is tangent to the identity at ordér+ 1, then
assumer’ in the form (2.2) with k > & + 1. Let multg(F) and orch(F) be (re-
spectively) the multiplicity and the order éfat 0. SinceG'(0) — I,,_, is invert-
ibile, we can solve locallg; — z = 0inz = z(w). Then mulg(F — idcn) =
multo( fk(w, z(w)) —idc,) (see [C, p. 108, Lemma 2]).

Moreover, for a holomorphic self-map of a neighborhood of GCifi such
that O is an isolated fixed point, the multiplicity at O is greater than or equal to
]_[;’zlordo(pi), wherepi is the initial homogeneous polynomial at O of tfih
component of the map (see [C, p. 112, Thm. 2]).

Hence mul(F — idcn) > ordo(fui(w, z(w)) —idg,) =h +1.

3. Parabolic Manifold Theorem

Given f, g1, ..., gs:C™ — C", from now on we denote

=01, ....8) <= 3Cy,....C; > 0]l f(w)]l = Caliga(w)l
+ -+ CGllgs )l
lLf )l
—_

f=o0() = —— 0 asw — 0.
g (w)l
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Also, for z € C” we setO0,(g1,...,8&s) = O(lzllgs ---, llzllgs). Under the
hypotheses of Theorem 1.3, we can assufe the form (2.2};,,1 with P, =

- = P, = 0andPy;1 = Pyi10 # 0, by Proposition 2.2. We split
(x,y) € C x C?tand setPi(x,y) = (pi(x.y),qi(x,y)) and P; .(x, y)
(ﬁi,z(-x’ y)? qi,z(-xv )’))

Up to a linear change of coordinates, we can assumePhathas a nondegen-
erate characteristic directidn equal to(1, 0). Then, making the blow-up = ux
with u € C?2~1, we obtain

x1=x+ prya(L, M)Xh+1 + -+ pa(l, u)xsh + pant1: (L, u)x3h+1 4+,
uy=u+r@x" + 0" + 0.(x%),
z1=G() + 0(x?, ||z]|x),

wherer (u) = gp11(1, u) — pry1(l, w)u.

SinceV is a nondegenerate characteristic directigf) = 0 andp;,,1(1, 0) #
0. If we then replace () by its power series expansion at 0 and change the co-
ordinatex into Ax with A" = —p;,11(1, 0)4, it follows that

X1=x— %xh+1+ O(xh+2’ ”u”xh+1) + Oz(x3h+1),
ur= (I — Ax"u + 0" ul’x") + 0.(x>"),
21=G(2) + O(x2, |z||x),

whereA = r’(0)/(hp,11(1, 0)) is just the matrixA(V) associated td'.
Moreover, we can find a polynomial functi@gix) such that, changing with
g(x), the mapF has the following form (see [B, p. 122, Thm. 6.5.7]):

X1=x— }_]l.xh+l+ 0(x2h+1’ ||u||xh+l) + OZ(X3h+l),
uy = (I — Ax"u 4+ 0"+ Ju)®x") + 0.(x3h), (3.
z1=G(2) + O(x?, |1z]|x).

ProrosiTiON 3.1. LetV = (1, ug) be a nondegenerate characteristic direction
for P,.1. Then the class of similarity of the associated matti¥ ) is invariant
under changes of coordinatga particular, its eigenvalues are invariants.

Proof. Let (X, Y, Z) = x(x, y, z) be a local diffeomorphism that fixes the ori-
gin and preserves the characteristic directio®pf;, that is, mapsLl, uo, z) into
(4, Ug, Z) for eachz € C™~4, where(1, Up) is another characteristic direction of
Py11. Then the firsy components of do not depend on. SincePy,; is a homo-
geneous polynomial in the firgtvariablesy, y?, ..., y¢~% we can simply consider
the restriction ofy and F to C4. In this case the linear part d@f is the identity
andP; =0fori =2,...,h, SOF = x 1o F o x is still tangent to the identity at
orderh + 1 andP,1 is conjugated taP,, 1 by the linear part of. Then, by our
definition of associated matrix, it follows thatl, ug) andA(1, Uyp) belong to the
same class of similarity. O
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Later we will find domainsD?, ..., D" such that, for each poirit, u, z) € D',
all iteratesx,, are contained in disjoint simply connected domains that omit the
origin. We can then apply the following argument to the restrictiof &b D'.

ProrosiTioN 3.2. Let F be a holomorphic transformation of ty§a.1) and let

l1, ..., 1. be the eigenvalues of(V) such thatzl; € N for eachj = 1,...,c.
Then, for eaclk € N, there exist an integef; and an analytic functiom (x, z)
inx,x" . xMe with values inC7~1 such that, after the change of coordinates
u — iy, the transformatior¥ takes the form

x1= f(x,u,2) = x — 2x" 4+ 0(x®*Hogx, [lul x"tY) + 0, (x¥1h),
ur=¢(x,u,2) = (I — Ax"yu + O(||u)|®x", ||ul|x"**logx)

+ O (Jlull x®) + x" gy (x, 2),
z1=v(x,u,2) = G(2) + O(x?, ||z|x),

(3.2)

whereg; (x,z) = O(x(logx)%, |z|) and the maps, ¢, v, x"® gy, (x, 7) are
analytic in the variables, x" logx, ..., x"logx, u, z.

Letasy, ..., a4—1bethe eigenvalues af(V') and sek := max;{Rew;}. Assuming
k > 14 x andk > 3, we can takeF in the form (3.2). Let D} = {x € C |
|x —r| < r}andletlli, ..., TI" be theh branches ofY" in D;*. Then, for each
i =1,..., h we shall prove the existence of a holomorphic local manifdidof
dimensionn — g + 1, with the origin on its boundary, by findings ¢ R* and a
holomorphic function

W' T x A9 — c17t
(x,2) > u'(x, 2),
whereA; 7 1= {z e C"4 | ||z|| < 8}, such that'(x, z) - 0 as(x,z) — 0.

Observe thaMf? = {(x, u,z) € C™ | u = u'(x, 2)} is invariant undef if and
only if its points satisfy

w (fQx,u'(x,2),2), v(x, u'(x,2),2)) = ¢ (x, u'(x,2), 2). (3:3)
Letv e C?~1 defined by
u = x""v = exp(hAlogx)v,

and letH(x, u, z) be the map deduced frognby the equality

hA_  —hA

Hx,u,z) i=x""(v—v))=u—=x Xy Cug.
By (3.2), we have
ur— (I — Ax"u = 0(x" ¥+ (logx) %, ||ul|®x", [lul x"**logx)
+ Oz(xh(k+l)’ ”u”xi%h);
moreover,

Xt =1 — Ax" + 0(x logx, [lul|x") + O, (x3")]x"4
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also implies
uy— (I — Axh)u
= (I — Ax")x" (vy — v) + [0O(xP logx, [lullx") + O, (x3")]x" x4 uq
= — Ax"x"(vy — v)
+ O 9 log x) HHE [lull?x", [|ul x** log x)
+ 0. (x"* 3 ogx, Jullx3M.
ThenH is analytic inx, x"'*logx, ..., x"logx, u, z and
H(x,u,z) = 0" P logx)®, [lul®x", ulx"**logx)
+ 0 (X"l %M. (3.4)
Moreover, the componegtof F can now be written ag; = v —x " H(x, u, z).

Since the functional equation (3.3) measi6x1, z1) = ui(x, 2), itis equivalent to
vi(x1, 1) = vi(x, z), that s,

x MU (x, 2) — x MMt (xg, z1) = M H(x W (x, 2), 2). (3.5)
Lemma 3.1. Letu(x, z) = x?t(x, z) with: TT!. x A~ ¢ — C9~1 holomorphic

and bounded. Lef(x,, z,)} be the orbit of a pointx, z) e TT. x Ay~ under the
transformationF, given by

x1= fu(x,2) = f(x,u(x,2),2),
21 =v,(x,2) = v(x,u(x,2),2).

If , § are small enough, then for each, z) € IT¢. x A’ ? it follows that(x,,, z,) €
i x A7 and thatx,, ||z, are 0(1/nY") for eachn € N.

Proof. By hypothesisF, has the form
x1= f(x,u(x,z),z) = x[l— %xh +ax?"logx + bx?" + o(th)],
z1=v(x,u(x,2),2) = G2) + O(x?, ||zl|x),
wherea andb are two constants. By elevating the first componengpfo the
powerh, we obtain

1 1
=== +1+x"(1— b —alogx) + o(x");
XX

so, forr andé sufficiently small, there exists son# > 0 such that

1 1
— - = 1 < K|x"? < —,
xp xh I RY/2

whereR = 1/(2r).
Then, proceeding as in[H1, Prop. 3.1], we derive the assertion for semi-attractive
transformations with the eigenvalue 1 having multiplicity 1. O
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Now let B,’;’dﬂ.,s be the Banach space formed by functions of tyge, z) =
x"*=(log x)“t(x, z), with  holomorphic bounded froml’ x A}~ toC77, en-
dowed with the normjul| 3 = ||t|lo.. Givene > 0, for | x| small enough it is not
difficult to show that

x4 < [ ~OF; (3.6)

then, for each element(x, z) in this space,
xMH(x, u(x, 2), 2) = O(x"FH9(log x) 4+,

Since for each € N we have that, € A’; 7 and thate = O(1/n) uniformly on
i x A% and sincek > 1+ 1, the series

oo

—hA
> X H (X, (X0, 20), 20)
n=0

is normally convergent. We can thus define

00
Tu(x,z) = th Zx;hAH(xna u(Xy, Zn), Zn)-
n=0

ProposiTION 3.3. T is an operator onB. , , ,. Moreover, there exists a closed
subsetS}. of Bj ,, ; such thatT restricted toS;. is a contraction.

Therefore,T has a fixed poinfi’ € Si. and soii’ satisfies equation (3.5). Hence
u = ii'(x, z) is the equation oM’ defined onlT: x A’y 7. By (3.3), if we make
the changer — i’ (x, z) in the form (3.2) of F, we find that

X1=x — %xh+l+ 0(x2h+llogx’ ||M||xh+l),
ur = (I — Ax"yu + O(||ul®x", lull x"logx),
21=G(2) + 0(x?, |Iz]lx),

and the equation o/’ becomes = 0. Then, for eaclix, 0, z) € M/, by the same
argument as used in Lemma 3.1 we see thatnd||z,, || are O(1/nY"). Therefore
M' is stable and tangent ©V @ E at 0.

Proof of Proposition 3.2

The following result is a generalization of Proposition 3.5 in [H2], and it can be
proved with the same argument used by Hakim.

ProposITION 3.4. Let (f*, ¢*) be a holomorphic transformation of x C7~1
of type

x1= f*(x,u) = x(l— %x’l) + O |l x Y,
up=¢*(x,u) = (I — Ax"yu + O(lul®x", flullx") + 2"y (x).

Let {l4,...,1.} be the eigenvalues of such thati/; e N fori =1,...,¢c. Then,
for eachn € N, there are an integeb, and a function, (x) with values inC7~1

(3.8)
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such that(a) u,(0) = 0, (b) its components are polynomialsinx"*logx, ...,
xMe log x of total degree: in x, and (c) after the change af in s = u — u,, the
transformation takes the expression

X1 = f*(x, s) = x(l— %xh) + 0(x?*logx, |Is||x"TY),
s1=¢7(x, ) = (I = Ax")s + O(ls|’x", sl x"*Hlogx) + x" "y, (x).
Fjerelpn(x) = R}(logx) + o(x logx), with R(¢) a polynomial of degreg,, and
f*, ¢*, x"tny,(x) are analytic inx, x"1logx, ..., x" logx, s.
The expression (3.1) of our map can be rewritten as
x1= e, u) + O (3,
up = ¢*(x, u) + O (luflx®) + x%o(x, 2),
1= G + 0(x?, ||zl|x),

where(f*, ¢*) is of type (3.8) and(x, 0) = 0. For eachn € N, letu,(x) be the
function given by Proposition 3.4 for the map*, ¢*); then, if we changa with
s = u — u,(x), by the same proposition we have

s1= (I — Ax™)s + O(lIs|2x", Isl|x"logx) + x" Ty, (x)
+ 0. (IIsx3") 4+ x¥o(x, 2).

Hence, by choosing = 2i we can assume in the form (3.2}, wherep,(x, z) =
xR3, (logx) + o(x) + O(|1z|)-

Now let us consider the simpler cage= 2, where A(V) is a complex num-
bera.

LemMa 3.2. Let F be a self-map ofC x C x C”~2in the form
x1= f(x,u,2) = x(1— 2x") + 0(x*"*tlogx, ux"t 0, (x¥1h),
ur=¢(x,u,z) = (L—ax"u+ 0", ux"logx)
+ 0.(ux®) + x¥¢a(x, 2),
z1=v(x,u,2) = G@) + 0(x, Jz]lx),

with p2(x, z) = xR2(logx) + o(x) + O(J|z]l). Then there exist sequencgh }
of integers and, } of polynomialsi,(x, z) in x, x"* logx of degree8h + n in x
whose coefficients are holomorphic functiong such that, for each € N*, we
havei,(0,0) = 0 and
¢ (x, lin—1(x, 2), 2) = dp-a(f(x, An—1(x, 2), 2), V(x, fa_1(x, 2), 2))
+ 'x3h+n¢n(xv Z)v (39)

with ¢, (x, z) = xR,(logx) + o(x) + O(||z||) and whereRr ,(¢) is a polynomial of
degreed,,. Moreover,i_; = 0and

(X, 2) = fp_1(x, 2) + [x77"Q,(log x) + c,(2)] x>+ for n > 0,
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whereQ,,(¢) is a polynomial and
ca(2) =) ¢a(0,G'(2)).

i=0

Proof. Forn = 0 the claim is obvious, by hypothesis. So by induction we assume
there exists a function,,_1(x, z) such that the assertion is satisfied fior> 1.

Define
fn(x, 2) = fy_1(x, 2) + [x17"Q,(10gx) + ¢, (2)] x 3"

with ¢,(0) = 0 and letp, > d, be the degree af,,. Since

A 2h+1 3h
lp—1= O(x*""(logx)", ||z|lx*"),
we have

ln (f(x, dn(x,2),2), v(x, lin(x, 2), 2))
= ﬁn—l(f(xa ﬁn—l(xv Z)7 Z), V(xv ﬁn—l(x’ Z)’ Z))

4 Q,1(|ng)x2h+1+n + Cn(G(Z))x3h+n
1 1
_ [(24- %)Qn(logx) + }—lQ;l(Iogx) + 0(||Z||)]x3h+n+1

+ 0(x3h+l’l+2(|ogx)Pn+l).

Sincei,_1(x, z) satisfies equality (3.9) ang,(x,z) = xR,(logx) + o(x) +
O(||zlD), it follows that

¢ (x, lin(x,2), 2) =l (f(x, (X, 2), 2), V(x, lin(X, 2), 2))
=[cn(2) — (G (@) + @a(0, D] + @, 1 (x, )3T,
where
n+1 1,
(pn+l(xa Z) = (2 —o+ T) Qn(logx) + EQn(logx)
+ R,(logx) + O(x(logx)” L, ||z]]).
Then we want
cn(G(2)) — cn(2) = ¢n(0,2)

en(G'(2) — ca(G'(2)) = 9u(0, G'(2)).
SincegG is a contraction ang,(0, 0) = 0 by induction, the solution is
(@) = ¢a(0,G'(2))
i=0
because the series converges. Sii¢e) = 0, this implies also that,(0) = 0.
Moreover,Q, is the unique solution of the differential equation

(2 st ”T“) 0,(0) + %Q;(t) — —R(0),
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sop, =d,if2 —a+ "T” # 0; otherwise p, = d, + 1. Hence, by the inductive
construction and equality (3.9,+1(x, 2) = xR,11(logx) + o(x) + O(||z|)). In
particular,g,1(0, 0) = 0 andg,.1(0, z) is analytic.

By induction,x3"*"R ,(log x) is a polynomial inx andx"* logx; then alsai,, is
a polynomial inx andx’ log x andx®"+"¢, . 1(x, z) is analytic inx, x"* logx, z.

O

ProrosiTiON 3.5. Let F be in the form(3.2), and letl4, ..., I. be the eigenvalues
of A such thathl; € N for eachi = 1, ..., c. Then for eactn € N there exist an
integerd,, and a functioni, (x, z) with values inC4~* such that, after the change
of coordinates: — i, the transformation? takes the form

X1 = f(x, u, Z) =X — }_:Il-xh+l+ 0(X2h+llogx, ||M||xh+1) + OZ()C3]1+1),
uy=¢(x,u,z) = (I — Ax"yu + O(|Jul®x", |lul| x"*log x)
+ O (lull x>y + x¥ g, 1 (x, 2),

z1=v(x,u,2) = G(2) + O(x?, ||zl|x),

(3.10)

whereg,(x,z) = O(x(logx)%, |z|) and the mapsf, ¢, v, x¥*+"p,(x, z) are
analytic in the variables, x"tlogx, ..., x" logx, u, z.

Proof. By Lemma 3.2, the assertion is true whgn= 2. In the general case we
again reason by induction an If the matrixA = (aJ’f) is intriangular Jordan form,
then the previous argument shows that the compongnts ii,, are determined
for the j in decreasing order fromp — 1to 1. O

Finally, for eachk € N, if we takei(x, z) = dpx-2-1 (Wherei,(x, z) are the
functions given in Proposition 3.5), then Proposition 3.2 is proved.

Proof of Proposition 3.3

To simplify the notation, we shall prove Proposition 3.3/ice 1. The same argu-
ment can be used also when- 1
Letu(x, z) = x?t(x, z) with7: D} x A’{"% — C?~tholomorphic and bounded,
and let{(x,,, z,)} be the orbit of(x, z) under the transformation
X1 = fu(xs Z) = f(-xv M(x$ Z)» Z)v
z1=vu(x, 2) = v(x,u(x, z), 2).
By Lemma 3.1, there are positive constantand$ such that, for eaclw, z) €
D x Ay one has(x,, z,) € D" x A% andx, = O(1/n) for eachn € N.
Moreover, there is an integésuch that
x1=x —x?+ax3+bxllogx + O(x*(logx)"),
where the constantsandb do not depend on. Hence
1 1
— == 414 x@A—a—blogx) + 0(x?(logx)").
X1 X
Then, arguing as in [H2, Lemma 4.2 and Cor. 4.3], we find
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| x|
|1+ nx|

and, for each real numbgar > 1 and for each integér there exists a consta€y, ;
such that

lxn| <2

eN (3.11)

[ee]

D lxal*llogix,|’ < Cpuglx|*log]x]|". (3.12)
n=0

LemmMA 3.3. There are positive constantsands such that, for every satisfying

Itllo <1 [x4], <1 and| | <1and foreachx,z) € D} x A7,
ox xn? ox
"l <o '2 : < Ixal?,
0x | x| 9z
%l <1 %l <1
ox 9z

forall n e N.

Proof. Let u = G'(0); sinceG(0) = 0, we getzy = uz + O(x?, |[t]lox?, |1zl x,
Izl1%). By the hypotheses onand||u| < 1, for » ands sufficiently small there
exist positive constant&;, K, K3, K4 such that

0z

2 < Kilx| + Kallz) < 1,

ox

071

o | = Il + Kslxl + Kallzll < 1

Since
x1= f(x,u,z) =x —x2+ax+ bx3logx + O(x*(logx)’, |lulx?) + 0.(x%
for a suitabld, it follows that

1 +@1—a)logx; — é(Iogxl)2
X1 2

1 b
= - +1+@-a)logx - 5(09)% + ¥ (x, u, 2),

where
Y(x,u,z) = O(x2(logx)’, [lull, Izl x?).

Settingu = u(x, z) yields

Y(x, u(x,2),z) = 0(x*(logx)’, x?||tllsc, llzllx?),

0x

a t
‘aw(x,u(x,z),z) SCl|x|||09|x||l+C2(||t||oo+ x—‘ )IXI, (3.13)
o0

H ilﬂx, u(x,z),2)
0z

at
< cg(H—H + 1)|x|2, (3.14)
07 || oo

whereCy, C,, C3 are positive constants.
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Differentiating with respect te (resp.,z) the relation

1ia-a logx, — l—’(logxnf
Xn
n—1

1
== —|-n—|—(1—a) logx — —(Iogx) +Zw(xj,u(x,,zj) Zj),
j=0
we have
— (11— a)x, + bx,logx, %
x2 ax
1—A—a)x +bxlo .
===t “);2 e =2 G 2, z,)]—
0
n—-1 =
—Z—[W(Xp u(xj1 Zj) Zj)]
and (resp.)
— (- a)x, + bx,logx, Bﬁ
x2 0z
n—1 n—1 9
= —Z—[¢<x,,u<x,,z,> z,)] Z—[w<x,,u(x,,z,) z,)]—.

j=0

By (3.11),|xn| < 2|x|. Moreover, arg,, — 0 and then, forx| small, it follows
that

dx1 - 11— (1— a)x + bx logx| + Ca|x|3|log|x||" + 2C5|x|® |x1/? _ |x1)?
x|~ [1— (A — a)xy+ bxilog x| [x]2 — " |x|2’
ax 2C3|x|?

=< ° xal? < |xal2

0z |I1— (1 — a)x1+ bxilog x|

We argue by induction on. Suppose that, for each< n, all inequalities of the
assertion are satisfied; by (3.13) and (3.14) and then applying (3.12), we obtain

a

—[x/f(x],uu,,zj) z,)]— < Cilloglx||" + Ca,

3
|
-

0 0z, ~
8—Zj[1/f(xj, u(xj, z;), Zj)]a_; < C3lx|,

~.
Il
o

3
|
[u

0 0x; 712 ! roi2
— W (xj, u(x;, z;), )] —| < Cylx|7[log|x||" + Cs|x|,
ij BZ

-
Il
o

3
|
.

0 0z
gj[l/f(xj, u(xj, z;), Zj)]a_z] < Cjlx|.

~
I
o
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Hence, for|x| small we have

axy| _ 1= @A—a)x +bxlogx| + CilxP’lloglxll’ + Calx® + Calxf® |x,
ox | 1— A—a)x, + bx, logx,| | x|2
|xa 2
BRREE
‘% - Cylx/?|log| x|’ +CQIXI2+C§IXI|XH|2 < Inl2
0z 1— @1 —a)x, + bx,logx,|

Finally, by the inductive hypothesis and (3.11) (which implies/|x| < 2),

0Z; - -
H a—xj < Nl + Kalxj—1l + Kallzjall <1
and
0Z; - -
‘ a—zj <l + Kalxj_a| + Kallzj-all <1 O

LeEmMa 3.4. LetT be the operator on the Banach spaBg, . s defined previ-
ously. Given a constamy > 0, we can find-, § small enough such that, if

lu(x, 2| < Rolx/*Hlog|x[|? V(x,z)e D x A7, (3.15)
then||Tu(x, z)|| satisfies the same inequality by x A’y 7.

Proof. Recall that

00 —A
Tu(x,z) = Z(%) H(xp, u(Xny Zn)s Zn)-

n=0
By (3.4), for eachR the hypothesis implies
H(x,u(x,n), z) = O(lx/**Hlog|x||**, l|z[| x|+
Sincez, € A’g*q for eachn, for r, § small enough it follows that there exists a
positive constan€; such that, inD* x A’y ™%,
IH (X ey 20)s 2) | < Crlxal “Hloglc, |74

Sincek > max{3, 1+ 1}, by (3.6) and (3.12) we obtain

—(A+e)
n k+1 d+1 k d+1
- |, “FHlog|x, | |“F < C1lx]*[log]x||“F

[o¢]
ITu(x, ) <C1)
n=0

Hence, whenx| is small enough| Tu(x, z)| satisfies the inequality. O

Lemma 3.4 tells us that, if(x, z) € By, 4,5 With |lullg < Ro, then alsdlu(x, z)
belongs to the same Banach space and its norm is boundRgl. byenceT is an
operator on the Banach spaBg, , s and

ITI= sup |[Tullp =1

llull p=<1
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LemmMa 3.5. LetT be the operator previously defined, and assume the hypothe-
ses of Lemma 3.3 are satisfied. Given two positive constyrasd R,, we can
find» ands$ such that, ifu(x, z) satisfies inequality3.15)and if

d
Ha—“(x, 2)| < Ralx|*?|log|x]4, (3.16)
X

0
H —a” (x.2)|| < Ralx/*"Ylog|x||* (3.17)
Z

forevery(x, z) € D} x A’y then also the partial derivatives dfu(x, z) satisfy
(3.16)and (3.17).

Proof. Inequalities (3.15)—(3.17) imply that

k+1 d+1
”H(xm u(xn, Zn)v Zn)” = Cl|xn| * ||Og|xn|| * )

d
S H O u(x,2),2) < Calx|*|log|x||* T,

0
S H(x u(x, 2),2) < Cslx[?|log]x]|,

d
o H u(x,2),2) < Caqlx|*Ylog]x||4

for some positive constants.
Differentiating with respect t@ the formula

o0
Tu(x,z) = xA Z.XH_AH(.X,“ u(Xp, 21, Zn),

n=0
we have 5
—Tu(x,z) =51+ 52+ 53+ 54,
ox
where
dx? & _A
S1= —— X, H(xn, u(Xn, 21), 2n)s
dx
n=0
- 3 dx
SZZXAZXHAI:_Axan(xnv u(Xp, 21, 20) + H(xy, u(xn, zn), Zn):|_n»
= 0x, 0x
00
ad du dx du 0z
A —A n n
= —H(x,, ns<n)s<n)| 7 + s
s3=x ;xn ™ (X, u(Xp, 20), 2 )[an ox oz 8x]

A - a0 9zn
S4 =X ;xn EH(xnau(xn»Zn),Zn)a-

Since% = Ax~x4, the proof of the previous lemma shows that there exists a
constantk; such that



230 MARZIA RIVI

k-1 d+1
lIsall < Kalx|*~*log]x||“

Lemma 3.3 and (3.12) imply that
—(A+e) |xn|k+2

|x|2

d+1

o0
X
Is2ll <2 (IAIICL+ C2)

n
X
n=0

llog] x|

k-1 d+1
< Ko|x|*Hlog|x||H,

where(; is the constant given in Lemma 3.4.
Similarly, by inequalities (3.16) and (3.17), we find

k-1 d+1
lIssll = Kslx|""[log|x||“7,

k d+1
lIsall < Kalx|*[log|x[]“*.

Becauses, s», s3, ands, are of order higher thap|*~?|log|x||¢, it follows that
%Tu(x, z) satisfies inequality (3.16) whené are small enough.
Similarly, differentiating with respect tothe formula ofTu(x, z), we have

0 - - .
—Tu(x,z) =851+ 52+ 53,
0z

where
nd a0 ox
51:xAanA[—Axan(xn,u(xn,zn),zn)+ H(xn,u(xn,zn),zn)} -,
—~ 0x, 9z
> 3 du dx,  du 3z
~ A —A n n
= —H ns ns<nl)s<nl)| 5 )
S2=x ;xn ™ (xn, u(Xp, 20),5 2 )[axn oz +3Zn 81]
o0
a 0z
5 LA —A n
53=2x ;xn oz, H(xy, u(xp, 2n)s Zn) 81-
Then
1510l < Kalx|“*Hlogl x|+,
1521 < Kalx|*[log|x||**,
I53ll < Kalx|*[log|x||**,
Hence% Tu(x, z) satisfies inequality (3.17) whens are small enough. O

Let Rg, R1, R, be positive constants. L&t (r, 8, Ro, R1, R2) be the closed subset

of By 4., s formed by functions:(x, z) such that, for eachx, z) € D} x A7,

the inequalities (3.15)—(3.17) are satisfied. Then, by the preceding lemmas, the
operatorT sendsSr(r, 8, Ro, R1, R2) into itself.

LEmMA 3.6. Let

ui(x,z) = xk_l(logx)dtl(x, z) and uy(x,z) = xk_l(logx)dtz(x, 7)
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be two functions irfr (r, 8, Ro, R1, R2). Let {(x,, z,)} and {(x/, z,)} be the iter-

n’

ates of (x, z) by (fu,, vuy) @nd (fu,, vu,), respectively. Then there exist positive
constantsky, K, such that, for each e N,

k—1 d
lx;, — x| < Kalxu||x|*Hloglx||NI172 — t1lloo,
k=1 d
lz), — znll < Kalx|*Hlog|x[|“llt2 — f1]loo-

Proof. If r, § are small enough, then for each, z) € D;” x Ay ? there exists a
C1 > 0 such that

lxp—x1| = | f(x, ua(x, 2), D)= f(x, ua(x, 2), 2)| < Calxal|x|*[log]|x]| [l 12— 11 -
Suppose, by induction, that there exists sathe C; such that
n—2

k d
51— Xnal < Kol Y 1xil*lloglxi (14122 — tall -
i=0

Sincex], = x, + o(x,) andz,, z, € A’} 7, we obtain
|x,/1 - -xn| =< |x;,_1 - xn—l' |1 - x;;_]_ — Xp-1+ 0(xn—l)|
k d
+ K| x| x5-1]" [log]x, 1] |“lIt2 — ta]l 0o

n—2

k d
< K<|xn_1| 1= x, 1 — xa_1+ o(xa) Y _|xi[*[log|x;]]
i=0

k d
+ x| xp—1]" [lOg| X1l >||t2—t1||oo

n—1
k d
< Klxal Y lxil*{loglxil|llt2 — talloo-

i=0

Then, by (3.12),
k—1 d
|2, = xn| < Kalx,[1x]"Hloglx[[][t2 — t1lco-
A similar argument can be used for
k d .

iz =zl = v(x, u2(x, 2), 2) = v(x, us(x, 2), 2|l < Ca|x|*|log|x||[It2 — t1]l0;

since||G(z') — G|l < ylz’ — z|l with 0 < y < 1and since,, x, areO(1/n)
by the estimate o, — x,|, we have

1z = zall

< Izj_1 = Zu-1ll(¥ + O(xu_1])) + Calx,_y — Xp_al|Xs—1l
+ Calxy—a|*loglx,—al Itz — t1lloo

< llz)_y — zn-all + CaKalx,—a/?|x|*|log| x| |||tz — t1]l
+ Calxu—al*Hloglx,—1l|*lIt2 — t1ll oo

n—1 n—1
< (C3K1|x|k—l|log|x||dZw+C4Z|x,~|k|log|x,~||d)||rz—anoo

i—0 j=0

k-1 d
< Ko|x|"“lloglx||*llt2 — tallcc- 0
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Finally, the previous inequalities allow us to argue as Hakim (see [H2, Prop. 4.8])
to prove that, for, § small enough, the restriction to the metric spégé, §, Ro,
R1, R,) of the operatofl” is a contraction. This establishes Proposition 3.3.

4. Existence of Attracting Domains

Given a semi-attractive self-mapof C” such that the eigenvalue 16f(0) has

the same algebraic and geometric multiplicities, we have seerftbah assume
the form (2.2) for k > 2. Then Theorem 1.4 is an immediate consequence of
Proposition 3.1 and of the following proposition.

ProrosITION 4.1. Let F be a holomorphic germ of semi-attractive self-maps of
C™ such thatF(0) = 0, and assume the eigenvaltief dF(0) has algebraic
and geometric multiplicityy > 1. Choose a local coordinate systefw, z) €

C4 x C™~1 such thatF takes the form(2.2)s,.1 in a neighborhood of0, with
P;=..--=P,=0andP,,1 # 0. LetV € C? be a nondegenerate characteris-
tic direction for P;, 1. If the matrixA = A(V) associated t&/ has all eigenvalues
with strictly positive real part, then there existattracting domainsD?, ..., D"

for F such thatO € D’ and each point inD’ has the firsi; components of its
orbit converging tangentially td.

Proof. Under a linear change of coordinates, we can assumévthat(l, 0)
C x €971 We have seen that for eaéh= 1, ..., h there is a local system of co-
ordinates, analytic in a sector

{(x,5, ) €Cx CTHx C" 7 | x eIy, |yl < elxl, Izll <8},

such that, after the blow-up = ux, the transformation takes the form (3.7). Let
{a, ..., 4—1} be the eigenvalues of, and leth be a positive constant such that
Req; > A foreachj =1,...,g — 1

Forj=1...,q-1, Ieth/I[le = {x eC||1-wa;x| < 1}. Since the real part of
every eigenvalue; is positive, there exist two constantsp such that the sector

Spp ={xeC||Imx| <nRex, |x| < p}

is contained in the intersection 8f" and the[)f/‘ajl. Then, foreachi =1,..., A,
the setdl! = {x €Il | x" €S, ,} are disjoint nonempty domains with the ori-
gin in their boundary.

Choose a system of coordinate such that in an almost diagonal Jordan form,
thatis, the elements of that are above the diagonal are equal to &,pwith &1 >
0 small compared ta. Then there exists some> 0 such that

17— Ax"| <1—(+e)lxl™

Then, ifn, p, 8, c are small enough, faix, u, z) € H‘W x A7t % A1 we see
that
llaall < fluell @ — Alx|™). (4.1)
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Hencelju|| is uniformly bounded. We have

1 1 h
— = — +14 0(x"logx, [lul)
Xq X

and so, forp, ¢, § sufficiently small, there exists & > 0 such that
1

1
|

¢ + K |x|"[log I<1
<C X X —.
xh o xh -2

We then proceed as in Lemma 3.1 to prove thaand||z, || are O(1/n%"). Since
|lu|| is uniformly bounded, we also get = u, x, — O.
Let u be a positive number such that< A; then

0" = x4 px" + 0(x?" logx, ullx"))

and, forp, ¢, § small enough,
|2l 7" < x| M@+ Alx] ™).
Thus, by inequality (4.1),
el foeal ™" < faall ] (@ = X21x[*) < [lull ] 7"

Hence there exists a consta@t such that|u,| < C|x,|"™. In particular,
u, — O faster than in* for each positive number such that Re; > 1 (j =
1,...,q —1), and(x,, y,) converges to 0 tangentially 8 with y, = o(1/n**%).

O

5. Iterated Blow-up of C™ along Submanifolds

We shall refer to the notion given in [A] dflow-upof a complexn-manifold M
along a closed complex submanifatd C M and, for increased clarity, we shall
use the same notation.

Let Nx,u be the normal bundle of in M, and letEx = P(Nx,) be the pro-
jective normal bundle whose fiber overe X is E, = P(T,M/T,X). Then the
blow-up of M alongX is the setMy = (M\ X) U Ex endowed with the complex
structure that we shall describe, together with the projeetiodfy — M defined
byU|M\X = idM\X andU|Ep = {p} for eaChp eX.

Givenz = (z1,...,zm) € C™ and a splittingP = P’ UP” of {1, ..., m} of

weight0< r < m (i.e., P’ = {iy,...,i,} andP” = {i,;1,...,in}, Wherei; <
- < ipandiy < -0 < i), we shall writez” = (z;,...,2;,) andz” =
(Zi,+1v ey Zig)-

Achart¢ = (z1,...,zm):V — C™ is said to beadaptedto X if there is a
splitting? = P’ U P” of {1, ..., m} of weightr = dim X such thatV N X =
{z” = 0}. Choose a chaxtV, ¢) adapted toX and, forj e P” andp € V N X, set
X; =1{z; =0} C V, Lj, = P(Ker(dz;(p))/T,X) C Ep, Lj = Upeynx Lip:
Eyvnx =0 XV NX), andV;, = (V\X;) U (Evnx\L;).
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Definey;:V; — C” by

() it heP UG}
K= :Zh<p>/z_,-<p) it heP\j) } T e
and by
zn(o([v])) if heP’
1D = { dene @ @/dz; @)@ it heP ()
0 if h=j

if [U] € EVﬁX\Lj-

The family (V;, x ;) together with an atlas a¥f \ X determines am-dimensional
complex structure oMy such that the projectiom is holomorphic.

Moreover,

B wy, if heP'U{j},
¢ooox,~1(w>h={ . b (5.1)
' wiwy it heP"\{j}.
The setEy = o ~1(X) is called theexceptional divisoof the blow-up. IfY € M
is a submanifold ofZ, thenY = o—1(Y\ X) C M is called theproper transform
of Y.

Let End M, X) be the set of germs & of holomorphic self-maps a¥7 such
thatF(X) C X, and letF € End M, X). Takep € X and choose char(S/ )
and(V, ¢) adapted toX so thatp € V andF(p) € V. Then, setting = ¢o Fo¢,
in a neighborhood op we can write the homogeneous expansio#/tfas

H'(z) =) P(").

1>1
Let
vx(F, p) =min{l | P4,y #0} >1

be theorder of F at p, and let
vx(F) = min{vx(F, p) | pe X}

be theorder of F along X. ThenF is saidnondegenerate along if F~1(X) €
X and if, for eachp € X, we havewy (F, p) = vx(F) and P, (r),¢(py (v) = O iff
v=0eC" ",

ProrosiTioN 5.1 [A]. Let M be a complex manifold of dimensien and let
X C M be a closed submanifold of dimensior> 0. Let F € EndM, X) be
nondegenerate alony. Then there exists a unique e End(My, Ex) such that
Foo = o o F. Furthermore, ifp € X and (V, ¢), (V, $) are charts adapted t&

with p € V and F(p) € V, then for all[v] € E, we have

F([]) = Gipp).) " ([Poxmro0py ipp()])

wherei,, »: E, — P™~"71(C) is the canonical isomorphism defined by the ciart
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Arguing as in [A], it is possible to prove the following results.

ProrosITION 5.2.  Let M be a complex manifold of dimensiaen and letX ¢ M
be a closed submanifold of dimensior 0. Let F € End(M, X) be nondegener-
ate alongX with F € End(My, Ey) its lifting. LetY € M be a submanifold af/
of dimension- + s (with s > 1) and letY € M be its proper transform. Assume
that:

(i) Y properly containsX;

(i) F(Y)cYandF~Y)CY;and
(iii) there exists a local system of coordinates such that

dF(p) = diag{J1(p). J2(p)},

whereJi(p) = d(F|x)(p) and Jo(p) € M,,_, m—,(C) is invertible for all
peY.
ThenF is nondegenerate along anddF(p) = diag{Ji(p), Jo(p)} with Jo(p)
invertible forall p € Y.

ProrosiTION 5.3. Let M be a complex manifold of dimensien and letX c M
be a closed submanifold of dimensiomr 0. Let F € End(M, X) be nondegener-
ate alongX, with F € End(My, Ey) its lifting. Takep € X and a linear subspace
L C E, of dimensiory — 1 (with s > 1). Assume that

(i) F(L)C L; and

(i) there exists a local system of coordinates such that

dF(p) = diag{J1(p), J2(p)},
whereJi(p) = d(F|x)(p) andJ2(p) € My,—, m—r(C) is invertible.

Then F is nondegenerate alonj and dF([v]) = diag{J1([v]), Jo([v])} with
Jo([v]) invertible for eacHv] € L.

Now we describe a precise sequence of blow-ugs'estarting from the blow-up
along a complex submanifold containing the origin. Givep > 1, a p-patrtition
ofnisasetM = {u1,...,u,} C Nwithpug > -+ > u, > landus+---+pu, =
n. Thelengthof M isI(M) = pqif w1 > pp orl(M) = pu1+ 1if w1 = po.

Letr = dim X. Given ap-partition ofm —r, setvy = r andv; = v;_1 + uj_1
forj =2,...,p. Foreachl< [/ < p and each (< k < u; — 1, define also the
sets

/

[} if k=0,
Pklz{

fvi+1...,v+minfk, w}} Fl<k<pu —1
In addition, for 1< [ < p define
, i+1 v+ if 1 #2o0rpu# po,
Mll:{{vz—i—l,...,vz—i-uz—l} if /=2andu;=pu;

and defineP), ,; = {va+1 ..., v1 4 p1, v2 + w2} Finally, letP] = (J_, P},
andP! ={r+1...,m\P,.
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We nowset? = C”, X° = X, andey = 0 € X and letypg be alocal chart cen-
tered at 0 and adapted 0o with respect to the standard splitti®y = {1, ..., r},
P” = {r+1, ..., m}. Starting from the blow-up a7 ° alongX °, we obtainM* =
M)?O andmry = oy MY — MO. Let{d/dwy, ..., d/dw,,} be the canonical basis of
ToC™; thenTy X = sparfd/dwsy, ..., d/0w,}. Set

3
P = [8w +T0X]GE1=7111(X0), h=1..,m—r;
r+h

k= spardp, |heP} CEy, k=1...,[(M)—

Now putX* = y* and setM? = M31. Let X2 ¢ M? be the proper transform of
Y2, and setM® = MZ,. Next, letx® c M3 be the proper transform (with respect
to o3: M3 — M?) of the proper transform (with respectde: M2 — M?') of Y3,
and putM 4 = Mg?a Proceeding in this way, far = 2, ..., (M) — 1 we define
the manifoldM*** as the blow-up oM * along the |terated proper transforxt
of Y*; we denote by 1: M¥+1 — M* the associated projection and By+* =
o 1(X*) the exceptional divisor.

We also putty = 010 --- oo M — MO fork = 1,...,1(M). The set
7, 1(X°) is called thesingular divisorof M*.

LemMa 51. For 1 < k < I(M), there existe, € M* and a canonical chart
(Uy, @r) centered irg, such that

Ucnx* = ¢;1({wr+1= 0N ﬂ {w, = 0}>,

heP)

U N (X0 = w;l( U twn = 0}),

heP;,

and, forj =k+1,...,I(M) —1,

U N Xj = (pkl<{wr+l =0}n ﬂ {wy, = 0})

her”
Furthermore,
_1 _
pooo10@; (W) = (W, ..., Wril, WrpdWr g2, -+ vy Wrp1W),
-1 _
Puq © Opug+1° (p,,_ﬁ_]_(w) - (wla coey Wy Wr AWyntvpy Wr2, -0,y wm)a

and, for2 <k < uq,
wy, if he (P_\r+1HU{l ....r,r +k},
wiwy, if hef{r + 13U (P \r +k}).

Proof. Fix e; = p;. Let(Us, ¢1) be the canonical chart, centereéatnd adapted
to X%, obtained fromg, via the previous construction. Then, for= 1, the

Pr—100% 0 @ (W) = {
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assertion is an immediate consequence of (5.1) and the definition of blow-up along
a manifold. Fork > 1 one argues by induction, taking

& = [Ehj% + T, X k‘l} co, e 1)
or,ifk=u1+1
0 -1
e, = [m + Te,, X’“} €0, (&)
and definingUs, ¢i) as(Vr 1k, Xr41) Via (Ur—1, 9x—1)- O

Writing now z = g o 1y o ¢ H(w), by induction we have, for & k < 1,

w;j if jef{l,...,r},
w ]_[j (wp)? ]_[r+k~ w if jeP!
r+1] Lp=r+2\Wh h=j+1%h J k1’
j = - L
wet [ (T o yawn)wy i j Pl 2<1<p,
wya [T o (wi)w; if jeP;
fork = w1+ 1,
wj if je{l...,r},
wr+1H2=r+z(wh)2(l'[21’}ilwh)wvwz it jePua
4= wea [T w2 (T2 wn)wiwepyp, i jEPL
2<l=p,
w1 [T 20 2 0n)? (W 02)? if jePp,
Furthermore, i, 11, ..., 2,44 # O then, for 1< k < w4, we have
Zj if je{d,...,r},
(Zr+l)2/zr+k if j=r+ 1
i/ Zr4j—u if jeP,2<l<p,
Zj/zr-‘rk if .] € P”;
fork = w1+ 1,
Zj ifje{l,...,r},
(Zr+l)2/zv2+uz if j=r+1
w; =1 2j/Zj-1 if jeP, \Mr+1}

2j/Zrtj—v if jeplllp 2<l=<p,

2j/Zr4m if jeP/’jl.
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6. Partial Diagonalization Theorem

Let F € End(C™, 0) be semi-attractive, leX be the center stable manifold &t
and letg be the algebraic multiplicity of the eigenvalue 1. Thérs F-invariant,
0 € X, and dimX = m — g. Moreover, F is nondegenerate alorig with order
Ux(F) =1

In order to prove Theorem 1.6, we assuimen the form (2.1) and invert the
variables (we setx, y) = (z, w) e C" "9 x C):

xt=Gx) + B(x, y)y,
Y=y + Py (y) + P (y) + -

Then the second component of its linear part does not depend anvdigables
and is in Jordan form. Hence the linear spakésdefined in Section 5, will be
invariant under the lifting of to the blow-up ofC™ along the center stable man-
ifold. This fact is fundamental for the iteration of the liftings Bf

Consider the sequence of blow-ups@f defined before. By Proposition 5.1,
its lifting F1 € EndMY, EY) exists andFy| 1 is induced byJ. Moreovere; € E*
is a fixed point of i, and Fy(Y*) = Yrfork =1, ..., p1.

By Proposition 5.3F; is nondegenerate alor and so Proposition 5.1 yields
F,. By Proposition 5.2, is nondegenerate alonf? and thus we havé’s. By
Proposition 5.2,F3 is nondegenerate along® because, outside df? c X2,
dF, = dF; and then Proposition 5.1 yield,. Hence we can repeat this proce-
dure for allk < [(M) to obtain F;. By the Jordan structure ofF(0) and the
definition of Fy, the pointe; defined in Lemma 5.1 is a fixed point f&f.

Finally, sinceF o vy = mm) © Fiomy, we also have

(6.1)

-1 -1 = -1
F o (9o © Tiam) © 91iamy) = (@0 © Ty © @100m) © (@i © Fiomy © @1iaq)-

Then, applying the formulas at the end of Section 5, and inverting the coordinates
once again, we find" := F,(M) in the form (1.3) withA(z) = I, and Py, =

(pzyz, ...,pz,z) has the following expression:

@) if 1 > po,
—alt(w? + 2wwy if j=1
—wj + wjw; if 2<j<p—1
afy @wawy, — w?, it j = pua,

Wy tm—g+1(—wj +wjy) if m—qg+je P,;Ll\{vl + ik

py.(w) = 2<l<h,
— Wy 1W; if m—qg+j=v+uw,
W< p1—1
a{l(z)wlw,“ — Wy, W; ifm—qg+j=v+ u,

w=p1—1
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(0) if 1 = o,
—aF T wE + 2ww, i j =1,
_wjz + Wjw; if 2<j<pu—1,
—wp, it ) = pa.
Wj—vy+m—q+1(—Wj + Wj+1) if m—q+jeP, \lvi+wml

I (w) = 2<l<h,

p2,z w) = v2+pu2—m+q . .
an (Z)wlwv2+p,27m+q if m— q+j=vo+ uo,
O ifm—q—i—j:])l-k’ul’

i < M1,

ai{l(z)wlwvz-ku-z—m-kq if m— q +J =+ u,

W =p1, 31 < p.

Herez = x andaj,(x) is the coefficient of? in the jth component of; ().

CoroLLARY 6.1. Let F € End(C™, 0) be semi-attractive. Let be the algebraic
multiplicity of the eigenvalué of dF(0), and suppose that the geometric multi-
plicity of 1is strictly less tharny. Let M be thep-partition of ¢ induced by the
structure of the Jordan block associated to the eigenvaldssume that( M) =
w1 andaj (0) # 0.

ThenF admits a parabolic manifold of dimensien— ¢ + 1tangenttoC @ E
at 0, whereE is generated by the generalized eigenspaces associated to the eigen-
values of/F(0) with modulus strictly less thah

Proof. Consider the Iiftinglﬁu1 of F given by Theorem 1.6. By Proposition 2.2, we

can as:sume?,t1 in the form (2.2) with k > 3 andP, = P . Then we can apply

Theorem 1.3 to obtain B,, -parabolic manifold and usg,, to project it down taF.
Not all nondegenerate characteristic directionggfare acceptable; we must

exclude the ones tangenbtgll(X) because they are killed when we project down

by m,,. HenceV = (v, ..., v,) is anallowablecharacteristic direction of, if

it is not tangent towljll(X) (i.e., iff vy, ..., vy, # 0, because of Lemma 5.1).
Then, using the expression B , just given and imposing, o(V) = AV with

A #£ 0, we see that the unique solution is

1 -
%(Zﬂl—l))\, for ] —1,
(m1+Jj — 2 for 2<j <y,
0 form—qg+j=v,+h,

I<h<pu, p<pr—1
aﬂ+‘L‘7nx+q(o)

(w+hr form—qg+j=v +h,

i)

1<h=<w, py=pn1—1
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Thus there exists a:“l -parabolic manifold at the origin, tangent@/ & E and
of dimensionm — ¢ + 1, that is contained nM“l\;r‘l(X) Because this mani-
fold is g|ven as the image of an injective holomorphlc miaft follows thaty =
Ty © ¥ defines the parabolic manifold fat sincer,, restricted toM“l\nl;ll(X)
is a biholomorphism. O

REMARK 6.1. With computations similar to those made in the preceding proof,
we also see that jb >2 andu, = u» then there are no allowable characteristic
directions forP; o of F,,; ;1.

CoRrROLLARY 6.2. LetF € End(C™, 0) be semi-attractive such that the eigenvalue
1 of dF(0) has algebraic multiplicityy = 2 and the corresponding Jordan block
is nondiagonalizable. Assun#ein the form(6.1)with a%(0) = 0, that is,

xt=G(x) + B(x, y)y,

vi=yi+ yo + ah(0)y2 + 2ak,(x)y1y2 + ady(x)yd +

Y3 = v2 + 2aZ)(x)y1y2 + ay(x)y3 + aZy(x)y3 +
and set

e =a}(0) +a?(0), 1= (a}y(0) — a?,(0))? + 2aZ,(0).
Thene andn are projective invariants and, whea, n) # (0, 0):

(i) ifn # 0, €2, thenF has two distinct parabolic manifolds of dimension- 1;
(i) if n = &2 #£00rn =0 +# £2, thenF has one parabolic manifold of dimen-
sionm — 1

Proof. For such maps, the blow-up along the center stable manifold immediately
diagonalizes the Jordan block &f'(0) corresponding to the eigenvalue 1. In fact
we have

xt= G(x)+ l;‘(x, w)w,
wi = w1+ afy(x)wi + wawz + O(lwlf®),
wp = wa + ay(V)wi + (2a5(x) — ay(x)wiws — w3 + O(|w]?).

Then a characteristic directidn = (v1, v2) for Py o(w) is allowable iffvy # O.
Therefore we obtain two allowable characteristic directions (up to multiplication

by a constant),
Vi = <1, 4150 = ail(o) = >

which are degenerate iff+ /7 = 0. Hence the assertion is obtained by apply-
ing Theorem 1.3. O

REMARK 6.2. Note thatA(Vy) = F2,./7/(s £ /1) and so ReA(V,) > O iff
Re(s/ £ /1) < —1whenp # 0, ¢2. Then Theorem 1.4 also implies th&thas
an attracting domain whelRe(s/, /)| > 1.



Parabolic Manifolds for Semi-Attractive Holomorphic Germs 241

References

[A] M. Abate, Diagonalization of non-diagonalizable discrete holomorphic dynamical
systemsAmer. J. Math. 122 (2000), 757-781.
[B] A. F. Beardon,lteration of rational functionsSpringer-Verlag, Berlin, 1991.
[C] E. M. Chirka, Complex analytic set¥luwer, Dordrecht, 1989.
[F] P. Fatou,Substitutions analytiques et quations fonctionelles deux variaAles,
Sci. Ecole Norm. Sup. (1924), 67-142.
[FS] J. E. Fornaess and N. Sibor§pmplex dynamics in higher dimension, I,
Astérisque 222 (1994), 201-231.
[H1] M. Hakim, Attracting domains for semi-attractive transformations©f, Publ.
Mat. 38 (1994), 479-499.

[H2] , Analytic transformations o{C”, 0) tangent to the identityDuke
Math. J. 92 (1998), 403-428.
[H3] , Transformations tangent to the identity. Stable piece of manifolds,

preprint.

[N] Y. Nishimura, Automorphismes analytiques admettant des sous-vareites de points
fixes attractives dans la direction transversale Math. Kyoto Univ. 23 (1983),
289-299.

[R] D. Ruelle,Elements of differentiable dynamics and bifurcation thedigademic
Press, Boston, MA, 1989.

[U1] T. Ueda,Local structure of analytic transformations of two complex variables, I,
J. Math. Kyoto Univ. 26 (1986), 233—-261.

, Local structure of analytic transformations of two complex variables, II,
J. Math. Kyoto Univ. 31 (1991), 695-711.

[W] B. J. Weickert,Attracting basins for automorphisms @2, Invent. Math. 132
(1998), 581-605.

[U2]

Dipartimento di Matematica
Universita di Roma “Tor Vergata”
Via della Ricerca Scientifica
00133 Roma

Italy

rivi@mat.uniroma2.it



