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An Analog of the Classical Invariant Theory
for Lie Superalgebras, Il

ALEXANDER SERGEEV

This paper is a detailed exposition of [S3] with several new results added. It also
complements and refines the results of [S2]. Meanwhile there has appeared a
paper [J1] where a particular case is considered but in more detail and where other
references are offered; see also [J2] and [Y].

1. Preliminaries

In what follows, &, stands for the symmetric group érelements. Lek be a par-
tition of the numbek and letr be ai-tableau. Recall thatis calledstandardif

the numbers in its rows and columns grow from left to right and downward. De-
note byC, the column stabilizer of, and letR, be its row stabilizer. We further

set
e = Z e(t)or, é = Z e(1)70. 0.1

teC;; 0€R; teC;; 0€R;

Let N be the set of positive integers, ltbe another, “odd”, copy oN, and
letM = N | N be ordered so that each element of the “even” adpyis smaller
than any element from the “odd” copy; inside of each copy, the order is the natu-
ral one. We will call the elements froid “even” and those fron “odd”, so we
can encounter an “even” odd element and so forth.

Let 7 be the sequence of elements friuhof lengthk. We fill in the tableau
t with elements from/, replacing element with i,. The sequencé is called
t-semistandardf the elements of do not decrease from left to right and down-
ward, the “even” elements strictly increase along columns, and the “odd” elements
strictly increase along rows.

The groupS; naturally acts on sequencésLet 2 be the free supercommuta-
tive superalgebra with unit generated{by};c;. For anyo € &;, definec(l, o) =
+1 from the equation

c,0)x; = x5-y, wherex; =x;...x;. (0.2)
Clearly,c(I, o) is a cocycle, that is,
c(l,01) = clo 7, 1)e, 0).

With the help of this cocycle, a representation@®f in T*(V) = V® for any
superspac® may be defined as
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ov; = c(I, 0 YHvy, Where

0.3
vy =v,® --Qu; anduv;, €V foreacha. ©0.3)

Let {vy, ..., vs; vi, ..., Uz} De a basis oV in the standard format (the even ele-
ments come first, followed by the odd ones). Then the elemerits all possible
sequences of lengthk and with elements from

Ry={1L...,n;1,...,m) (0.4)
form a basis off *(V).
The following theorem describes the decompositio’ 6§V ) into irreducible
(6 x gl(V))-modules.

1.1. Tueorem (cf. [S1]). The commutant of the naturgl(V )-action onT*(V)
is isomorphic taC[&,] and
"= @ sev

Adpy1=m

whereS* is an irreducible&;-module andv* is an irreduciblegl(V )-module.
The following refinement of Theorem 1.1 holds.

1.2. THeorREM. If ¢ runs over the standard tableaux of typand if I runs over
semistandard-sequences, then the family; (v;)} (resp.,{é;(v;)}) is a basis in
S* ® V*. Moreover, for a fixed the families{e, (v;)} and {¢,(v;)} spanV*.

The proof follows from results of [S1].
Let U andW be two superspaces with basgsaindw; fori € Ry andj € Ry
and where

Ry=1{1..., k1, ..,1)} Rw=1{1...p;1..,q).

The symmetric algebr& (U ® W) is generated by;; = u; ® w; fori € Ry
andj € Ry. Let I be a sequence of length with elements fromR, and letJ
be a sequence of the same length with elements ®am Let p(i,) and p(jg)
be the parities of the corresponding elements of the sequencex(Bet) =
Za>ﬂ plie)p(jg) and define an element 6f(U ® W) by setting

N
z1,J) = (D" ] Zisy- (1.1)

a=1
For a given tableauv of order N, we define polynomials
P, )= Y e@ecl, (061) HZ(otl, J),

o€R;, teC;

P(I,J) = Z e(t)el, (ro) HZ(zol, J).

o€R;, teC;

The Lie superalgebragi(U) andgl(W) act naturally onS*(U ® W), and their
actions commute.
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1.3. THEOREM. S'(U®W) = ), U* @ W*, whereU* and W* are irreducible
gl(U)- and gl(W)-modules(respectively corresponding to the partition and
where the sum runs over partitions such that.; < g for « = min(k, p) and
B =min(, q).

Proof. By Theoreml.1,

WwenN :@WAQ@S,\ and U®N =PU*® S".
Hence,
SNU W) = ((U@W)*N)o = (U @ o)
=Purew' e st @5
Al
=P oW et e 5.
o
Since(S*)* ~ $* and sinceS* andS* are irreducible, we have
0 ifAx#u,

C otherwise.
The theorem is proved. O

(8" ® $*)SV = Home,, (5%, §) = {

1.4. THeorREM. Letr be a standard tableau of type and let! and J be ¢-
semistandard sequences. Then the family, /), as well as the similar family
P.(1, J), forms a basis in the modulg* @ W*.

Proof. The natural homomorphism
¢N: U®N®W®N_>SN(U®W)

is clearly a homomorphism @fl(U) & gl(W))-modules. Itis not difficult to ver-
ify that
dn(e;(vy) ® é;(wy)) =c- P,(I,J) foraconstant.

Let ¢t be a fixedi-tableau and lef, J be twoz-semistandard sequences with
elements fromR, and Ry, respectively. Then, by Theorem 1.2, the vectors
e,(v;) ® é,(wy) form a basis of a subspade c U®N @ W®" which is also a
(gl(U) ® gl(W))-submodule. By the same theoreiny U* ® W* and it remains
to establishyy (L) # 0. For this it suffices to show that there exists/anL such
thate (1) # 0. Sincegy (ov; ® ocwy) = ¢y (v; ® wy), it follows that

on(e(v) ®e(wy)) = copy(e(v) ® wy)
= con(oe(vr) @ owy) = cPpy(esi(ov)) @ owy)
= Fcpy(es:(Vor) @ Woy).

We may therefore assume that the tableasi consecutively filled in along the
rows with the numbers, 2, .... Observe that the sequences andoJ remain
ot-semistandard.
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Let I = J be the sequence

1...12...2 ... Olal)\.a+1l)\.a+21)\.y,
A1 A2 Ao

where (A1, A2, ..., Aq, ..., X)) IS the partition corresponding to with o =
min(dim U, dimWp) and 8 = min(dim Uz, dimWj). It is not difficult to ver-

ify that ¢ (e;(v;) ® wy) # 0.

Sincegy is a homomorphism ofgl(U) @ gl(W))-modules, its restriction onto

L is an isomorphism. This implies the statement of Theorem 1.4 for the family
P,(1, J); for the family P,(1, J), the proof is similar. O

Let us elucidate how the results obtained can be applied to invariant theory.
Letg C gl(V) be a Lie superalgebra. By “the invariant theorygdfve mean
the description ofi-invariants in the superalgebra

Al =S(U V)& (V@ W)).

On2}’/, the Lie superalgebrag(U) andgl(W) act naturally. By Theorem 1.3

we have
wWi=Puevievrew:
Al

Therefore, to describg-invariant elements, it suffices to describe ghmvariants
in V* @ V* = Hom(V*, V*). But (V* @ V**)¥ = Homg(V*, V*); that is, the
description ofg-invariants is equivalent to the descriptiong@ghomomorphisms
of g-modulesV*.

Let us consider how the method works in the simplest example: gl(V).
Let{e; : i € Ry} be a basis oV in a standard format, witke?} the left dual basis.

Set
0= e®c, O=) (D% Qe
ieT ieT
It is not difficult to verify thatd andé areg-invariants.
Set
TPUV) = VO @V*®1,  TPrUV) =V Vi
onT?4V) andfpvq(V), the groupS, x 6, acts and its action commutes with
that of gl(V). Hence,5, x &, also acts on the space gf(V)-invariants in
TP4(V)andTP4(V).

2. Invariants of gl(V)

Setvr* = (xrla ey Xpns Xy ey xrrﬁ) andvx = (xlv*v ceey xns*; xig*a [ERE} xﬁzs*)t»
wherex,; = u, ® ¢; andx;; = ¢;* ® w,. Thatis,v,* is a row vector and; is a
column vector, so their scalar product is equalid, vy) = Y, x,;x;™

2.1. THeEoREM. The algebra ofgl(V )-invariant elements il}"/ is generated
by the element&,*, vy) for all r € Ry ands € Ry.
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Proof. Let A be a supercommutative superalgebra aralg-module. LetL, =
(L® A)pandg, = (g ® A)g.

The elements af *(L*) may be considered as functions bpwith valuesinA.
Letle Ly, = (L ® A)g = (Hom(L* A))g. Then! determines a homomorphism
é1: S(L*) —> A. Set

fU) =¢i(f) forany feS(L").

Observe thag 4 acts naturally orlL 4 and on the algebra of functions d@n .
LetV” denoteV &---@V (p summands), and set= V?&TI(V)I® (V) @
[1(V*)!. ThenS(L*) = QlZ:f and we can considdr, as the set of collections

* * % *
L= 1,...,V, V], ..., V5, V], ..., Up, vi,...,vl—),

wherev; € V ® A andv} € Homy(V ® A, A) and where the parities of these
vectors coincide with the parities of their indices.
Let us write the vectors with right coordinates and the covectors with left ones:

* * *
vy = E ea, v, = E ae;.
i i

Consider now the elements @f’/ as functions orC by setting

x}i(L) = a, xH(L) = ay.

s

Therefore, thanks to Statement 2.3 from [S2], it suffices to describe the functions
on £ contained in the subalgebra generated by the coordinate funetjcersdx;;
and by invariants with respect to G¥ ® A). Because the scalar products turn
into scalar products under thigl(U) & gl(W))-action, it is sufficient to confine
ourselves to the invariants @7

Denote byM the set of collectiongvy, ..., v,, vy, ..., v) that form bases of
V ® A. In Zariski topology, the se¥ is dense in the space of all collections.fIf
is aninvariant and’ € M then there exists@ae GL(V ® A) such thagv; = ¢; for
eachi € T. Therefore,f(L) = f(gL) = f(ex, ..., en, gV}, ..., guy) and f(L)
is a polynomial in coordinates of the;. But (gv?, ;) = (v%, g7%e) = (v% vy),
which proves the theorem. O

CoroLLARY. The nonzergl(V )-invariants in774 exist only ifp = ¢. In this
case thg5, x &,)-module of invariants is generated by the images of the canon-
ical element®®” in T7? andd in T7.

Consider now the algebra homomorphism
SWRW) - @ArHT Y u, @ wy > (v) vy). (2.2

The kernel of this homomorphism is the ideal of relations between the scalar
products.



152 ALEXANDER SERGEEV

2.2. THEOREM. The ideal of relations between scalar produgiy v,) is gener-
ated by the polynomialB, (1, J), wheret is a fixed standard rectangular +1) x

(m + 1) tableau and wherd and J are r-semistandard sequences with elements
from Ry and Ry, respectively.

Proof. By Theorem 1.35°(U @ W) = P, U* ® W* and
Wi=SURVeOVIW)=SUV)®S' (V' @W)

= (6? Ut ® V“) ® (Q?(V*)” ® W”);

(Q{i:?)gl(‘/) — @ Ut @ WH.
M fp41=m
Since homomorphism (2.1) is a homomorphisnig{ V') & gl(W))-modules, its
kernel coincides withD, ., .., U* ® W*.

Letv be a(n +1) x (m + 1) rectangle. The conditiod,,; > m + 1 means
that) O v and so by Theorem 1.3 it suffices to demonstrate Bxdt J), wherer
is a fixed standard rectangular tableau of gizbelongs to the ideal generated by
U’ wv.

Lete, be the corresponding minimal idempotent and)dte the minimal idem-
potent for a standard tableawf sizev. DecomposingR, into the right cosets
relative toR, and decomposing, into the left cosets relative t6,, we obtain a
representation of; in the form}_ ,e,0;. This implies thatP,(1, J) is the sum of
polynomials of the formy; P, (I;, J;)¢;, that is, it belongs to the ideal generated
by the P,(1, J). O

hence

3. Invariants of s[(V)

First, let us describe certain tensor invariants. Obviouslyglall )-invariants are
alsos[(V)-invariants; we will thus describe only ts&V )-invariants that are not
gl(V)-invariants. Denote by, = 6®* the invariant inT** and by, = 6®* the
invariant in7**, and for a given sequendewith elements fronR, set

* * *
v =€, R e, vy =¢,Q -Qe¢;.

Let us represemt( (V) in the formg = g_ & go ® g+, wheregp = gz and where

g+ are thegp-modules generated by the positive and negative root vectors.
Let{X,}oer- and{Xz}scr+, WhereR* are the sets of positive (negative) roots,

be some bases gf andg.., respectively; sek_ = [ X, andX; =[] Xg. The

elementsY . are uniquely determined up to a constant factor because the subalge-

brasg. are commutative.

3.1. LEmMA. Let M be ago-module and let = ind§,(M) be the induceds-
module. Then each of the correspondenges X, X _m andm — X_X m is
a bijection of M %0 onto M 9.
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Proof. As follows from Lemma 4.2, dim/% = dim M 9. Hence, it suffices to
show that the correspondeneer— n = X, X_m is an injective map o 9°

to M9. The injectivity is manifest, so we need only check that the imagg is
invariant. Clearlyg,n = gon = 0. It therefore suffices to verify that _,n =0

for every simple rootv. This is subject to a direct check with the help of the mul-
tiplication table ingl(V). O

3.2. Lemma. Let Vi and V5 be finite-dimensionago-modules. Sef Vi =
g_V,=0. Then

indgo®g+ Vi® indgo®g_(V2) o~ indgo(Vl ® Vo). (3.2.1

is an isomorphism ofji-modules.

Proof. Since the dimensions of both modules are equal, it suffices to show that
the natural homomorphism

indg (V1® V2) — indj g4, (V1) ® iNdg ey (V2) (3.2.2)

is surjective—in other words, that the module generatet,l® 'V, coincides with
the whole module.
The module on the right-hand side has a natural filtration induced by filtrations
of the modules infl 5, (V1) and ind} o, (V2). Let theX, be a basis ofi, and
the X_, a basis ofy_. Consider the modul® generated by; ® V,, that is, by
the elements of filtration zero and the element

w=X_o...X_ 4010 Xg,... Xpv2.
We have
w=X_4X 0, . X1 ® Xp, ... Xp,V2)
EX 4 X 1 ®X_ o Xp, ... Xpv2
=X o (X_gp oo X1 ® Xp; ... Xp,v2)

X o X1 ® <ZX51... Xﬂifl[X,al, Xﬁi]Xﬁi+1"' Xﬂ,vz).
i

Since each summand is of filtratien k + I, they all belong (by the inductive
hypothesis) ta¥; hence, so isv € W. O

Letr be atableau consisting af columns and + & rows, filled in as follows: first

we fill in the tableau; that occupies the first rows and next the tableay that

occupies the remaining rows; both tableaux are filled in consecutively columnwise.
Lets be a tableau consisting afrows andk + m columns, filled in as follows:

first we fill in the tableau; that occupies the firét columns and next the tableau

to that occupies the remaining columns; both tableaux are filled in consecutively

columnwise.
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Let I; be the sequence obtainedtyold repe_tition of the sequenced, ..., n.
Let J; be the sequence consistingkofopies ofl in a row,k copies of2 in a row,
..., k copies ofm in a row.

3.3. THEOREM. In T(mthmntbmyy the element

ey X ét(v}kk & Gnm & UJk)

is ansl(V)-invariant.

Proof. Let N be any positive integer, and consider the mapT¥V(V) —
TNN(Vg) such thay (Vi) = ¢(V;') = 0. Clearly,¢ is an(Sy x Sy)-module
homomorphism because it is induced by projection¥ @and V* onto their even
parts.

TakeX . andX_ from Lemma 3.1 and consider the map

v TVNWVe) — TV N(V), vor> X X _vo.

Clearly,y is an(6Gy x Gy)-module homomorphism.

Let us now consider the restrictions of the mapand«s onto 7V N(V )8!
andT™N(Vy)e' Vo), respectively. Itis evident thatsends the first of these spaces
into the second one, whereas (by Lemma #.Hends the second of these spaces
into the first one. Theorem 1.1 implies that, @y x &y)-modules, the spaces
TNV ) V) and TV:-N(Vg)8'(Ye) have simple spectra.

Let S* ® S* ¢ TVN(V)?'V) and S} ® S§ ¢ TN (V)9 "o correspond to a
typical diagrami (both are nonzero; i.ed, > m andi,+1 = 0). Then the sim-
plicity of the spectrum, together with Lemma 3.1, implies thand ¢ are (up
to a constant factor) mutually inverse isomorphisms of the modifies S* and
5§ ® S§.

Let

C=|JrCyxCp and R, =|Jo(R, xRy,
T o
be the decomposition of the column stabilizgmof the tableau into the left cosets
relative to the product of the column stabilizerstpfindz,, and likewise for the
row stabilizerR;. Then

e = E e(t)re, ey, e, = E o€y, e,.
T o

It is easy to verify that
9+(Vp) = g-(Vg) = g+ (V{) =g (V) =0. (3.3)

The vectorX , e;(v;, ® vj,) is nonzero, belongs to a typical module, and is a
highest one with respect to, @ (go), where(go), is the set of strictly upper
triangular matrices with respect to the fixed basis/gf But (3.3) implies that
es(v;, ® vj ) is also highest with respect to. @ (go)+ and lies in the same mod-
ule. This shows that

Xies(vy ®vy ) =c-es(vy ®v)), wherec #0.
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Further, from Lemmas 3.1 and 3.2 it follows that the vector
X_Xy[es(vy, ® vy ) ® er(vy, ® vy)]
is g-invariant becauses(v}‘k ® vy ) ®er(vr, ®vy) is gg-invariant. We make use
of the fact thatX+ét(v;*m ®v;)=0to deduce that
w=X_Xi[e;(v; ®v])®é(v, ®vy)l
= X_[[Xye(vf, @} )] ® & vy, @vy,)]

= const: X _[e; (v, ® v} ) ® & vy, ® vy,)]

= const: Z e(r)o x T(X_[ese5,(v], ® v} ) ® &8, (vy, @ vy)])

o,T

= const: Z e(t)o x r(exl(v;‘k) ® X,[esz(v}‘m) ® E,l(vlm)]é,z(v]k))

o,T

= const: Z e(r)o x (e (v]) ® X_ X [e, (v} ) ® &, (vy,)]er,(vs))-

Moreover,

B (ess X EuOum)) = e, X 8@ @) = ey x & (Y v} @01,
whereL runs over all the sequences of length composed from the integers 1
ton. But, as is not difficult to see,

5, X é,1< Z v ® UL> = const- ey, (v; ) ® é,(vy,,)
and hence y R

X_X.ieg,(v; ) ® éy(vy,) = const ey, x e, (Onm).
Therefore,

w = const: Zs(r)a X T(e5,(v]) ® €5, X &y (Opm) ® €1,(v)))
=& X ét(vz &® é\nm ® vl)v

which proves the theorem. O
Proof of the following theorem is similar.

3.4. THEOREM. The elemeng, x & (v, ® Oy @ v}) in T Hmmmthn(Y) s
sl(V)-invariant.

3.5. CoroLLARY. LetL be the sequence with elements fibin Set
p(Ly =Y pl) and a(L,L)=)_ pl)pQ).
i<j
In the notation of Theorems 3.3 and 3.4, the invariant elements can be expressed
in the form

€5 X &V} ® O ®y) = Y (=DPPH Do (vF @0}) @& (v ®vy,)  (3.5.1)
L
and
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e x &(v, ® 0}, ®@v3) =Y (=D “ e (v, @) ® () ®v]).  (35.2)
L

where the sums run over all the sequentex lengthnm with elements fronRy, .

Proof. Itis easy to verify thaf,, = 3", (=)*D+7Dy* @ v, which immedi-
ately implies (3.5.1). Formula (3.5.2) is similarly proved. O

Recall from (0.4) and (0.5) the definition &, Ry, Ry. For any sequences
andJ, denote byl x J the sequence obtained by appendintp the end ofl. Let
now I be the sequence of length + m)n with elements fromk, andJ the se-
guence of lengtlik + n)m with elements fronRy; let I be the sequence of length
(k + n)m with elements fromR, andJ the sequence of lengitt + m)n with
elements fronRy,. For any sequenck of lengthnm with elements fronRy, we
define:

P, xL)eS'UV), P(LxJ,J)eS(V*QW);
P(I,LxJ)eSU®V), P(yxL,J)eS(V*QW).

3.6. THEOREM. The algebra ofs((V)-invariant elements irl;"/ is generated
by the elements

(i) (v vs), wherer € Ry ands € Ry;

(i) F(1,J) =3, (=D*EDP(I, I x L)P(L % Ji, J), wherel is ans-semi-
standard sequencg, is a t-semistandard one, and runs over all the se-
quences of lengthm with elements fronRy ; and

(iiiy Foo(I,7) =Y, (—)eELrWeO+pp (1« L, J)P,(I, L*J;), where
I is ans-semistandard sequenckijs az-semistandard one, andruns over
all the sequences of lengtiw with elements fronRy, .

Proof. For Young tableaux andu, we have
(V@ V) V) = Homg vy (VH, V7).

The dimension of this space is equal to either O or 1. Itis equal to 1 onlyif £a)
w or (b) botha andu contain an x m rectangle and, foranye Z, A, = u; +k
fori=1...,n andk; =M} +kforj=1...,m.

To prove the theorem it suffices to show that, for thesend i, the module
V*® V** contains an invariant that can be expressed via the invariants listed in the
theorem. By [S2], such an invariant exists. Under the canonical homomorphism
of the tensor algebra onto the symmetric one, the invariants of the(igp+tiii)
turn into a system of generators. The theorem is proved. O

To the invariant element i ("+0.m(+b (V) there corresponds an invariant op-
erator7""+th (V) — Tm+h(v) . To describe it, observe that, can be repre-
sented ag¥’; = [[,.,(Cy, x C;,)m, the decomposition into right cosets relative
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to the product of the column stabilizers of tableayandr,; let Z be a collection
of their representatives. Define

Dy Tm(nJrk)(V) — T"™(V), Dy, (11 Q@ vp) = (_1)P(Jk)F(v1)vl . v}kk (v2).

3.7. LemmaA. Let £ correspond tae; x é,(vy, @ Opm ® vjk) as an invariant op-
erator. Then

L(e,(v)) = const: L(vy) = e (vlk ® Dj e, Z 8(7T)JTUL>. (3.7)

neZ

Proof. To6,,, there corresponds the identity operator id®"" — v ®" Hence,
t0 6, ® vj there corresponds the operafoy, : y@mnth) . y@nm and tov;, ®
Onm @V, there corresponds the operaigr® D, ; finally, toe, x &,(v;, ®6,, ® vy)
there corresponds the operatpfv;, ® D,,)e,. Therefore,

L(e,(v1))
= e, (v, ® Dy)ef(vr) = cres (v, @ Dy)e(vy) = c1- L(vg)

= c16s (vlk ® Dy, Z e,le,zs(n)nvL> = c16, <v1k ®enDje, Z s(n)m)L>

b T

= c1e5ep <v,k ® Dje, Z s(rr)m)L> = c1c0€4 (v,k ® Dje, Z s(n)nvL>.

T T

The last equality follows frona,e,, = ce;. O

Let us consider the case = 1 in more detail. LetL be a sequence of length
nm + m with elements fromRy, considered as atableau.

In each columr., mark an “odd” element so that all the elements marked—say,
l=(y,...,1,)—aredistinct. The paifL, /) will be called amarkedtableau. We
introduce the following notatiore; for the parity of theth column;d; for the par-
ity of the last element in thah column;b; for the parity of the column under the
ith marked elementp;| for the number of elements in thith column under the
ith marked element; argll) for the sign of the permutatian= (I, ..., 1,). Set
e(L,]) = (-1)1PDg(l) and set

e(Ly=cx+cs+--+da+ds+---, q(L) =by+ by +bo+|ba|+--- .
3.8. THEOREM. The invariant operator is of the form

L(e;(vy)) = const- L(v;) = const- ¢(L) Z e(L,Des(v, ®vp\p),  (3.8)
(L,
where the constant factor does not depend.on

Proof. Since for the representatives of the coset&pf,/&,, we can take a col-
lection of cycles, we may assume in (3.7) that
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T =71... T, mmw; =mm; forany i, j.

Hence;r2 = 1 FurthermoreDy,e;, Y e(m)mv; # 0 if and only if the last row of
7L for somer is, up to a permutation, a permutation{@f ..., /n}.

The set of marked tablead., /) is in one-to-one correspondence with the set
of pairs (L, 7) such that the last row ofL is, up to a permutatior{1, ..., m}.
Indeed, from the pai¢L, /) determiner = n1...mw,, wherern; is the cycle that
shifts the elements under th marked element one cell up along the column and
places the marked one at the bottom. If the marked element lies in the last row,
we setr; = 1.

Conversely, givemr we markr (k1), ..., w(k,), where(ks, ..., k,,) is the last
row of L. Hence, (3.7) implies that

L) =) 8(L.Des(v, @ vLy)),
(L,D)

whered(L, 1) is a sign depending ofL, /). Direct calculation of this sign leads
us to (3.8), proving the theorem. O

4. Absolute Invariants of osp (V)

Let A = U(osp(V))[¢] be the central extension with the only extra relatidn=

1 Then, introduce om the co-algebra structure di(osp(V)) and setting: +—

& ® ¢. Assuming that acts onV as the scalar operator of multiplication by,
we may consideV as anA-module. Using the co-algebra structurednone can
determine a natural-action in77-4(V) and2(}’/. We can therefore speak about
A-invariants in these modules.

4.1 LEmMA. Letgl(V) =g=g_ P go D g (asin Section Band letM be a
go-module. Set. M = 0. Then there is an isomorphism o&p(V )-modules

indg g, (M) = ind33hy) (M). (4.2)
Proof. See [S2, Lemma 5.1]. O

4.2. LEmMa. Letgbe alie superalgebra, and let the representatioqgin the
maximal exterior power ofj; be trivial. Then there is an isomorphism of vector
spaces

indgo(M)g >~ M9, (4.2)

Proof. See [S2, Lemma 5.2]. O

REMARK. Statements similarto Lemmas 4.1and 4.2 hold als&fosp(V))[¢]-
modules. One can refine Lemma 4.2 and prove thap, & M is gg-invariant, then
the corresponding-invariant vector is of the forng; ... &,vo 4+ terms of lesser
degree.
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The presence of an evesp(V )- andA-invariant form onV determines an isomor-
phism of A-modules and algebra¥;’/ = 27+*4*!. Therefore, we may assume
thatk =/ = 0. By definition, the Lie superalgebrap(V) preserves the vector

n

-
* * * * * *
e e : €—— e — e~ e
Z ! ® ”_’+l+ Z( m—j+1® J J ® m—j+l)’
i=1 j=1

where dimV = (n|2r). Therefore, the scalar products

n r
_ * ok _1\P®) * * ok *
(e v) = DX, + (D) Z(xm—jﬂ,sxj,z xj,sxm—jﬂr)’ (4-3)
i=1 j=1
wheres, t € Ry areosp(V)- and A-invariants.

4.3. THEOREM. The algebra ofA-invariant elements il”7 = S (V* Q W) is
generated by the elements, v;) for s, t € Ry.

Proof. See [S2, Thm. 5.3]. O

Let 7 be a sequence of lengtlt 2vith elements fronRy,. Determine an element
X(I) € S (S?(W)) by setting

X(I) = Xigig + -+ Xigg_ging»

wherex;; is the canonical image of the element® w; € S2(W).
Lets be atableau of orderk2with rows of even lengths. Then tiewen Pfaffian
is defined:
Pf.(I) = Z e()el, (ct) HX(otl). (4.4)

teC,0€R,;

4.4. THEOREM. (@) S*(S?(W)) = @W*, where the length of each row of is
even.

(b) Lett be ai-tableau filled in along rows with the numbet2, .... Then the
family Pf,(1) for thet-standard sequencdsis a basis of W*.

Proof. (a) OnT?*(W) = W®?k the groupSy and its subgrouii; = &y o Z%
act naturally; that isS; permutes pairg2i — 1, 2i) whereasZ% permutes inside
each pair. Clearly§*(S?(W)) = T2(W)C*.

On the other handf (W) = @@ S* ® W*, soT?*(W)% = (S*)C @ W*.
Hence, in the decomposition §f(S?(W)) we enter onlyWw? for which (§*)°* £
0 and their multiplicity equals dig$*)¢*. However,

($1)% = Homg, (indg* (id), $*),

so the multiplicity of W in S%(S2(W)) is equal to that ofs* in indgf(id). By
[H] this multiplicity is equal to 1 if the lengths of all rows afare even and to O
otherwise. This proves (a).
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(b) Consider now the natural map? (W) — Sk(S?(W)). For the tableau
from the conditions of the theorem and the sequehdée vectors, (w;) form
a basis ofW*. Hence the images of these vectors (which are exactly the Pf
form a basis oW* c S¥(S2(W)). O

Consider the algebra homomorphism
S'(S2W)) = S (V*®W), xy > (v5, V). (4.5)

Its kernel is the ideal of relations between scalar products.

4.5. THEOREM. The ideal of relations between scalar products is generated by
polynomialsPf, (1), wheret is a (2r + 2) x (n + 1) rectangle filled in along rows
and/ is at-standard sequence with elements fr@m.

Proof. By Theorem 4.3,

S(V* ® W)A — @(V*A)A ® WA — @ W)L.
A An+1=2r
The kernel of homomorphism (4.5) is therefore equak®y ..., W*. We
show that this kernel is contained in the ideal generateddy where is a
(2r +2) x (n + 1) rectangle.
Let © D A and lete, be the corresponding idempotent; then= " 7;¢;0;.
Hence,

e() =Y mielop]) =Y eni(tio;J).
Thus, Pf(J) = Z[’j fij Pf..+(J;;) and we are done. O

5. Relative Invariants osp(V)

The invariants obsp(V) are, first of all, the ones generated by scalar products.
To describe the other invariants, let us describe a certain invariant in the tensor
algebra. Let din¥ = n|m. Fori € Ry, definei by setting

~ { n—i+1 ifiis“even”,
1 = JE—

m—i+1 ifiis“odd”.
Let I = ijis... iz, be a sequence of even length with elements fym and let
I* be the set consisting of the palis,_1, i2,) for « < p such thato, 1 # Ig.
Let ¢t be a rectangular x m tableau consecutively filled in along columns from
left to right and let/ be a sequence with elements frayn. We fill in the tableau

with elements fronT as follows. Replace with i,. Let 7 be the set of sequences
I such that all rows of (except the last row) are of the form

iiy...id, for r=1im;
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the last rowJ should be such that if € J thenj € J andJ consist of pairwise
distinct “odd” elements.

Let/ € 7. Setr = %m and letv be the total amount of marked pairs from
the last row consisting of pairwise conjugate “odd” elements that do not belong
to N(L). Letny, ..., n, be the multiplicities with which these pairs enter the last
row, and seiV = ny + - - - + n,. Leto; be the/th elementary symmetric function.

Set
s+v

K() = Z(N +1)2"79r — q)! N9oy_s(n1, ..., ny)

q=s

andd(I) = d(1)d(I3) ... d(I2_1), whered (J) = (=1)*V:9 (cf. (1.1)).

5.1. THEOREM. In V&Y Jies anosp(V )-invariant element

Vipr= Y d(DKI)es(vy @ vy). (5.11)
IeT
Proof. Set
. {1 if p)=0o0ri <iandp(i)=1
c(i,i)= . -
-1 ifi>iandp@i)=1
The map

V= V5 e clii)el
is an isomorphism induced by the invariant bilinear form, and
Oy = Z c(i, l~')e,- ® e;
i€Ry
is anosp(V)-invariant.
Letr be a rectangulagn + 1) x m tableau as in Theorem 3.8 and Ieibe a

t-sequence such that, after being filled, each tovg of the formjiji... j. j,.
Denote byT; the set of such sequencésThen

= > d(J)e();. (5.1.2)

JeT1
whereJy, ..., J»_1 are the columns of the tableaand
d(J) =d(J)d(J3)...d(J2 1), c(J)=c(J)c(J3)...c(Jor-1)

whereas (Jo) = [];c,, c(i. 1)
The element (5.1.2) is aswp(V )-invariant; applying to it the operatat from
Theorem 3.8 yields anothesp(V)-invariant:

LO) = Zd(J)C(J)E(v/)—Zd(J)C(J)S(J)S(J Des(vy ®vyy),  (5.1.3)

J,1

G- 9® Ln+Dm

where
e() =[] eWaiaxJa), e, D) =signl) [] e(aiax Jai, loia%12i).

1<i<r 1<izr
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For the collection(Jy; 1, J2;, I2;-1, I2;), define the sequendgy;_1, I;) as fol-
lows. If I;_; andly; lie in the same row then just strike them outj4f_; and
I5; lie in distinct rows then we strike them out and place their conjug:iéﬁs,,
andl,;, in the last row in the same columns. The sequehdakes the form
(I, Io, ..., I7,_1, I,). Itis not difficult to verify that

es(vy ®@ vy\) = sign)e(J, Deg(vy, @ v)  and d(J) = (=D"dI)e(J).

Therefore,
L) = (1" Z signe(Nd ) es(vy, ® vy).
J,l

The constant factor (the sign) can clearly be replaced with aZlislbf the above
form then, in the last row, for some valuesidhe pairs(/,;_1, I2;) are conjugate
whereas all the remaining values iofre odd and pairwise distinct—call them
I* = {kl, ceey kzp}. Set

o) = signky, ..., ko )(=D” [ cliza-1, iza),

c(i20—1,i2¢)#0

where sigtiky, ..., k2,) is the sign of the permutation. The@/)e(l) = ¢(I) and
hence
LOns) =Y _cDd)es(v, @ vy),

7,0

where the sum runs over paig, /) that give the sequence To complete the
proof, it suffices to calculate the number of such pairs; this leadstd)5 O

5.2. THEOREM. The algebra ofosp(V)-invariants is generated by the polyno-
mials

(1) (vy,v,) fors,t € Ry and
(i) R(J) =Y, d(I)K(I)Pf,(Iy* I, J) for everyl e T and everys-standard
sequencd with elements fronRy, .

Proof. Let f be anosp(V )-invariant that is no#i-invariant. Letf depend om —1
even and 2 odd generic vectorsy, ..., vs. Thenthere exists ac OSpV ® A)
such thatg Span(vy, ..., v5) = Sparey, ..., e3;).

Let he, = —e, andhe; = ¢; fori # n; then beth) = —1 and f(hgl) =
— f(gL). Onthe other handf(hgL) = f(gL) and hencg’ = 0. This means that
osp(V)-invariants other than scalar products may only be of typeorrespond-
ing to a typical module. Thus, in the same vein asAeinvariants, we see that
dim(V*+)eseV) — 1 jf (a) A is typical and (b) its firsk rows are of odd lengths
whereas the remaining rows are of even lengths. If we do not consider the scalar
products, then no invariants exist for the other (atypigal)

Under the canonical homomorphisfif(V*) ® TK(W) — SK(V* ® W) the
moduleV** @ W* turns into its copy, and a basis of the first copy becomes a basis
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of the second one. This shows thatiis ann x (2r 4+ 1) rectangle then the poly-
nomials R(J) from the theorem constitute a basis 0f* ® W*, a subspace of
SKVE@W).

For an arbitrary. containing am x (2r + 1) rectangle, we now apply the same
arguments as in the proof of Theorem 2.2. O

6. Invariants of pe(V)

Suppose that diiW = (n|n). Let thee? be a basis o, and let thez* be the dual
basis ofV; with respect to an odd nondegenerate form/oiﬁhenpe(V) preserves
the tenson (e] ® ef + ¢f ® ¢}).

Observe that the scalar products

(vs, V) = Z(—l)p("‘)(x; ®ei, +ei ®ej) foranys,res

arepe(V)-invariants. Moreover, the presence of the odd form determines an iso-
morphism of algebras ang(V)-modules(}/ = 2A7*"4**; hence, as in the or-
thosymplectic case, we may assume that! = 0.

The compatiblez-grading ofgl(V) induces compatibl&-gradings ofpe(V)
andspe(V):

g=9-DgoD g+,

whereg_ = A%(V), g+ = S2(V*) andgo = gl(V) orsl(V). (There is another,
isomorphic, representation that we will not use in this papet g_ ® go ® g+,
whereg_ = A?(V*), g, = S?(V), andgo = gl(V) orsl(V).)

LetX,, 1<« < 3n(n+1), be abasis of, and letYs, 1 < B < 3n(n — 1),
be a basis ofi_. Set

X,= [ Xte. v.= ] W
1=a< In(n+D) 1=p<in(n-1)
Observe that the weight of ; with respect to the Cartan subalgebra is equal to
(n+1) )¢ and that the weight of _ is equal to—(n — 1) ) ¢;.

6.1. LEMmMA. LetL = mdfw@m(M) = indgo@gf(N) be a typical irreducible

g = gl(V)-module. Then there exists an isomorphism of vector spaces
L5Pe(V) — ppspe(Vig — pspe(Vg
given by the formulas

M—>L m—Y m and N— L, n— X n.

Proof. Consider the two gradings @f,

Ly = Spar{f(X*a)n :ne N and degf = k)
and

L, = Spar(f(Yp)m : me M and degf = k).

Itis clear thatL] = L
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If 1 is aspe(V)-invariant, thenX,/ = 0 (for1l < o < %n(n + 1) and! =
X+ f(Xy)n forn € N. Therefore] = Z,z%n(nH) It, wherel € LT. We simi-

larly establish thalt = lesi%n(n_l) I, wherel € L. Hencey_ Ir=

rz%n(n-&—l) r
p— H H = + _ -
lexg%n(n_l) I . Taking into account the equality, = L , ,, we deduce that

le L;(HD = Lgn(nil) and that = X . n = Y_m for somen € N andm € M.

Moreover, it is clear that: andn arespe(V )z = sl(Vg)-invariants.
Conversely, ifm andn aresl(Vg)-invariants, then a direct check shows that
X nandY_m arespe(V)-invariants. O

6.2. THEOREM. Thealgebraobe(V)-invariantsis generated by the scalar prod-
ucts(v,, v,) fors, r € Ry.

Proof. See [S2, Sec. 6.2]. O

6.3. Letl be asequence of lengtth 2omposed of elements froRy,. Determine
the element’ (1) € E*(S2(W)) = S*(I1(S?(W))) by setting

Y{) = (_1)ﬁyi1i2 o Yigeoaions

wherey;; is the canonical image of the element® »; and

B= Y (k—a)(ize-1+iz).

1<a<k

Let A be a partition of the forntasy, ..., ap, 01 — 1, ..., @, — 1) in the notation
of Frobenius (se@M]). Let ¢ be a tableau of the forrh filled in so that the un-
derdiagonal columns (including the diagonal cells) are filled in consecutively with
“odd” numbers while the rows to the right of the diagonal are consecutively oc-
cupied by “even” numbers. For a tableau of such a form and a sequetice
periplectic Pfaffiaris defined as

PPf(I) = Z e(t)e, (61) HY(otl). (6.3.1)

t€C;,0€R;

6.3.1. THEOREM. FoOr the tableau just described, the familyPf,(1) for thet-
standard sequencdsis a basis in the modul&@* c E*(S?(W)).

Proof. From the theory of.-rings it follows thatE*(S?(W)) = @ W*, where
the sum runs over the of the described form. One can easily verify that, for the
tableau as indicated in the formulation of the theorem andfetandard sequence
I, the imagee,(w;) in E*(S?(W)) is nonzero. Hence, for a fixed tableauthe
canonical magg' % (W) — E*(S2(W)) performs an isomorphism ef(7%(W))
with W* ¢ E*(S?(W)). This implies the theorem. O

Consider now an algebra homomorphism

E(S’(W)) = S (V*@W), vy — (vy, v)). (6.3.2)
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6.3.2. THEOREM. The kernel of(6.3.2)is generated by polynomiaBPf,(1),
wherer is of the form of a(n + 1) x (n + 2) rectangle and is filled in as de-
scribed in the previous section and whdrés a r-standard sequence with ele-
ments fromRyy .

Proof. Clearly,

pe(V)
(Sk(V* ® W))pe(V) — ( @ V*)\ ® W*)\.) — @ W*}\’
AlAp41=n AlAn41=n
where is of the same form as stated in the theorem. Since (6.3.2}i6V8)-
module homomorphism, its kernel @, ., ..,., W**. That this kernel is gen-
erated by the elements of the least degree is proved by the same arguments as for
osp(V). O

7. Invariants of spe(V)

First, let us describe certain tensor invariants. Tgbe the set of matriced
whose entries are equal to either 1 or 0, with zeroes on the main diagonal and such
thata;; + a; = 1 for all off-diagonal entries. Set; = ) a,,, where the sum
runs over all the elements strictly below ttth row.
We defing/A| recursively as follows: for = 2 set|A| = 0 and forn > 2 set

n—2
1
Al = A"+ ) ainAs+ Y aman+ Y _aij+ gtn—=Dn =2,

i=1 1<j<i<n i>j

whereA* is obtained fromA by striking out the last row and the last column.

71. Lemma. Theelement_ = [],_;(E; ;—E; ) is equal toZAeTl(_—l)“”EA,
where the product runs over the lexicographically ordered set of pairy, E4 =
I E-“’]’ and the last product is taken over the rows of the matrikom left to
right and downward.

Proof. Clearly,Y_ is the product O%n(n —1) factors. In each factor, select either
E; ;orE; ;. FOrE; ;, seta; ; =1landg;; = 0; forE i, seta; j = Oanda,, =1

We thus obtaln a matrlx with the desired propertles The sign is established after
reordering of the sequence of thg:

ai12a21a13a31... 41,01 .- An—1nAp,n—1
= a12a13...41, ... Ap—1nAp1Qn2 - .. Ay n—1.

This is performed by induction. First, the pairs a,; are moved to the end in
increasing order; this accrues the exponent of the sign g\ntm —D(n — 2).
Then we reorder the elements with indicesrn; this adds|A*|. Then we re-
arrange the elements of the sequenggr,1a2,an2 ... Ayn—1,an ,—1 iNtO the se-
quenceiy, ... y—1,Anidn2 - . - Ay n—1; this addsZM ainay; 1o the exponent. Fi-
nally, the elements,, ..., a,_1, are placed onto the end of tth row, adding
Z?:‘f ain A}. Besides, ifi > j thenE; ; entersY_ with a negative sign; this adds
2inj i U
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The numbers andj will be referred to agonjugateif i = j, that is, if they are
equal but belong to copies &f of distinct “parity”.

Let 7> be the set of sequences of lengthconsidered as x n tableaux filled
in along columns and with the following properties: the numbers symmetric with
respect to the main diagonal are conjugate;(ihg)th position is occupied with
one of the numbersor j; and the main diagonal is filled in with “odd” numbers
1,....1.

For everyL € 7>, determine the matrixd = (a;;) by settinga;; = p(l;;). Set

n(L) = #(“even”elementsirL) andm (L) = m(A) = Y, is «evendij- LEtE(L) =
(—=1)!AH+n@) and
1\
mi(L) = ((n + B where [; = Za,-j.

(n+k—I)"...(n+k—1)"

J

7.2. THEOREM. The elements

e,(Z(—l)k"’(L)g(L)mk(L)vz ® v7k> for LeT;
and
e,(Zs(L)mo(L)vf ® v;‘k) for LeT;

are spe(V)-invariant.

Proof. Let r be an(n + k) x n rectangle filled in along columns, and set=
v .- Denote byw{l1 s wf” the tensor obtained from by replacing the elements

occupying positions,, ..., i, with numbersj, ..., j,, respectively. Then
er (s jw) = (=)' Ye, (w])(n + k),

wherei is any of the numbers of the positions occupiediby
If E4, =1 E:j’ with the product ordered by increasing indigeshen
(vl —1 (n + k)! JLs-eeslil
er(Ea,w) = (=1 ! tk—D! l)!er(wil,.“,i; ),
where{jy, ..., jit = {j lan,; #0hL 1 =3, anj, andip < --- <ip.
Assume thatiy, ..., i;} =f{a+ j1—1,...,a + j, — 1}, wherea is the number
of the first element in theth column of tableau. We thus have

— (_nlatjat+i (n +k)| ‘il""’j]
€,~(EA”U)) - ( 1) (}’l + k — l)!er(wzl ..... i )
By continuing the process we obtain
[(n+k)1"

e, (Eqw) = (-D*W e (v],).-

(n+k=I)!...(n+k—1,)!
The indexs(A) = a1+ ---+a, +n(A,) + n(A,—1) + - - - + n(A1), whereg; is
the number of the first element in tid column and:(A;) is equal to the sum of
the numbers of the places occupied by thells;oincides with/, , ;, everywhere
unlessa;; = 1, in which case th&ij)th entry of/, is occupied by;.
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Since
(0 Y) = t(c7%0) = s(a) = J(@),

we deduce that

if I andJ are two sequences andifinds are two tableaux of the same
form such that, after filling with the elements frothands with the ele-
ments from/, one obtains geometrically identical pictures, them= s
impliesol = J.

Therefore, ifot = r then we have
Y_ ef(v}‘nv}kk) =Y_ e"’l’(v;—l(l,,+k))
=Y_0 a0 7] ) (ks 0) = c(Juri, 0)0 7 Y-e, (V] ),

because(J,,, o) = sign(o)—thanks to the fact that, ;, contains only “odd”
elements. Hence,

Y7 e (v] v])

- - i (n+K)1" .
= sign(o)o 1e,<;(_1) o(A) T —[11’;! (}3 py—— v,A>

. [((n+ )" _
— _1\¢é(A) 1, %
_S'gr‘((’)e’<§:( A P S ”’A)

- [(n+K)']"
_ _1\é(A) * *
_Slgr(a)e,( EA (-1 k=Dl (n k_ln)!c(IA,o)vJA@)ka),

where

c(n,0) = Azl -k + Al k- =k Y ay
i is “even”
and whereJ, coincides withJ, everywhere unless;; = 1, in which case the
(i, jH)th position is occupied by. This completes the proof of Theorem 7.2

7.3. THEOREM. The algebra ofspe(V )-invariant polynomials is generated by
the following elements
(i) (va, vp) for a, B € Ry; and, fork > 1and sums that run ovek € 75,
(i) PPfi(J) = Y, ()& D" Dg(Lymy_1(L) P(L * Ji, J) for anyz-standard
sequencd;
(i) PPf_x(J) =Y, e(LYmo(L)P,(L x I;41, J) for anys-standard sequence

The proof is similar to that of Theorem 5.2. O
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