
Notre Dame Journal of Formal Logic

Volume 46, Number 2, 2005

On the First-Order Prefix Hierarchy

Eric Rosen

Abstract We investigate the expressive power of fragments of first-order logic

that are defined in terms of prefixes. The main result establishes a strict hierarchy

among these fragments over the signature consisting of a single binary relation.

It implies that for each prefix p, there is a sentence ϕp in prenex normal form

with prefix p, over a single binary relation, such that for all sentences θ in prenex

normal form, if θ is equivalent to ϕp , then p can be embedded in the prefix of θ .

This strengthens a theorem of Walkoe.

1 Introduction

In this paper we address the following question. Given two first-order prefixes p and

q , is there a sentence with prefix p that is not equivalent to any sentence with prefix

q? Walkoe [4] proved that if p and q are different prefixes of length n, then there is

such a sentence, containing a single n-ary relation symbol. Keisler and Walkoe [3]

then strengthened this result by showing that it also holds over the class of finite

structures. Our main theorem improves on Walkoe’s result. It implies that for each

prefix p, there is a sentence ϕp in prenex normal form with prefix p, over a single

binary relation, such that for all sentences θ in prenex normal form, if θ is equivalent

to ϕp, then p can be embedded in the prefix of θ . (We leave its precise statement

to Section 2.) This also resolves a conjecture of Grädel and McColm [1], explained

below.

2 Background and Statement of the Main Theorem

2.1 Terminology and definitions We adopt the following terminology and con-

ventions. We will consider (fragments of) first-order logic (FO) and infinitary logic

(L∞ω), which allows infinitary conjunctions and disjunctions. Throughout we as-

sume that formulas are in negation normal form, that is, negation symbols only bind

atomic formulas. Signatures are always purely relational and finite. A graph is a
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structure with signature {E}, E binary; it is simple if it is undirected and loop-

free. In a (directed) graph, we say that vertex a is an E-predecessor of vertex b,

if Eab ∧ ¬Eba. Throughout, we assume that any class of structures we are talking

about is closed under isomorphism.

Both structures and their universes are denoted A, B, . . . and so on. If A is a

σ -structure, and R ∈ σ , then R A denotes the interpretation of R in A. For τ ⊂ σ ,

A|τ is the reduct of A to τ , a τ -structure. If ψ(x) is a σ -formula with exactly

one free variable, then A↾ψ(x) is the substructure of A with universe ψ(A) =

{a ∈ A | A |H ψ[a]}. Given a tuple of elements ā in A, A↾ā is the substructure

of A with universe ā. A↾ā ∼= B↾b̄ means, moreover, that the function from A↾ā to

B↾b̄ that takes each ai ∈ ā to the corresponding bi ∈ b̄ is an isomorphism. The

positive diagram of a σ -structure A is the set of all atomic sentences true over the

signature σA , which contains, additionally, a constant for each a ∈ A. (In this case,

we will not distinguish between an element and its name.)

A prefix p is a non-null finite string of ∃s and ∀s. The dual of p, denoted p̄, is the

prefix obtained by swapping occurrences of ∃s and ∀s. A 6-, respectively,5-prefix

is a prefix beginning with ∃, respectively, ∀.

We recall the following basic concepts from formal language theory. An alphabet

A is a finite set of symbols and a word is a non-null finite string of symbols. (A)+

denotes the set of words over the alphabet A. A language is a set of words in (A)+.

The concatenation of two words is written p∗q . When p is a word and Q a language,

we use p ∗ Q to denote the set {p ∗ q | q ∈ Q}.

We view prefixes as words over the alphabet61 = {∃,∀}. We use L1 = ({∃,∀})+

to denote the set of all prefixes. For ϕ a first-order formula in prenex normal form,

pr(ϕ) is the prefix of ϕ. We define a partial order on prefixes as follows: p ≤ q if

and only if p can be obtained from q by removing symbols from the latter. In this

case, p is a (not necessarily contiguous) subword of q .

Given a prefix p, we define the quantifier alternation number of p, alt(p), to be

the number of quantifier blocks that p contains. Each such p, with alt(p) = n, can

be written succinctly, in the obvious way, as (s1)
i1 . . . (sn)

in , im ∈ ω and sm ∈ {∃,∀},

m ≤ n; s1 6= s2; and for l,m ≤ n, sl = sm if and only if |l −m| is even. For example,

∃∃∀∀∃∀∀∀ is written ∃2∀2∃∀3.

We also consider words over 62 = {∃,∀, ∃∗,∀∗}, which we treat as regular

expressions that denote regular languages. For example, ∃∀∗∃∀ denotes the set

{∃∀n∃∀ | n ∈ ω}. Let L2 = ({∃,∀, ∃∗,∀∗})+. A string v is in reduced form if

and only if occurrences of ∃, ∃∗ alternate strictly with occurrences of ∀, ∀∗. Let

r : (62)
+ −→ P (L1) be the map that takes a regular expression to the regular lan-

guage it denotes, and define r− : (62)
+ −→ P (L1) so that r−(v) = {q | there is a

q ′ ∈ r(v) and q ≤ q ′}, the downward closure of r(v).

The next lemma will be useful later.

Lemma 2.1 For every prefix p ∈ L1, there is a (unique) word f (p) ∈ L2 in

reduced form, so that r−( f (p)) = {q | p 6≤ q}.

Proof Define f : L1 −→ L2 as follows.

1. If p = ∃n , then f (p) = a1 . . . a2n−1, where ai = ∀∗ for i odd, and = ∃ for i

even.

2. If p = ∀n , then f (p) = a1 . . . a2n−1, where ai = ∃∗ for i odd, and = ∀ for i

even.
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3. If p = (s1)
i1 . . . (sn)

in , then f (p) = f ((s1)
i1) ∗ · · · ∗ f ((sn)

in ).

We argue by induction on the length of p. Observe that for all p, if p is a 6-,

respectively, 5-prefix, then the first symbol of f (p) is ∀∗, respectively, ∃∗. For

p = ∃, f (∃) = ∀∗, and it is clear that

r−( f (∃)) = {∀m | 0 ≤ m} = {q ∈ L1 | ∃ 6≤ q}

as desired. Likewise for p = ∀.

Now suppose that p = ∃ ∗ p′ is a 6-prefix of length n + 1, and the lemma holds

for all prefixes of length ≤ n. For each prefix q = (∀m∃) ∗ q ′, 0 ≤ m, containing at

least one ∃, p 6≤ q if and only if ∃ ∗ p′ 6≤(∀m∃) ∗ q ′ if and only if p′ 6≤q ′. Therefore

{q | p 6≤q} = {∀m | 0 ≤ m} ∪ {(∀m∃) ∗ q ′ | 0 ≤ m and p′ 6≤q ′}. Invoking the

induction hypothesis, it is clear that this set is equal to r−((∀∗∃) ∗ f (p′)). If p′ is a

6-prefix, then (∀∗∃) ∗ f (p′) is simply f (p). In case p′ is a 5-prefix, then the first

symbol of f (p′) is an ∃∗, and clearly r−((∀∗∃) ∗ f (p′)) = r−((∀∗) ∗ f (p′)); again

∀∗ ∗ f (p′) is f (p). The argument for 5-prefixes is dual. �

We are interested in fragments of FO defined in terms of prefixes.

Definition 2.2 For each prefix p, we define the prefix class FO(p) as the set {θ | θ

is a FO formula in prenex normal form such that pr(θ) ≤ p}.

More generally, we want to assign a ‘quantifier structure’ to every (FO and) L∞ω

formula, which will be a set of prefixes. The following definition is from [1].

Definition 2.3 The quantifier structure of a formula ϕ ∈ L∞ω, qs(ϕ), is defined

inductively as follows.

1. If ϕ is a literal, then qs(ϕ) = ∅.

2. If ϕ =
∧

i θ i or
∨

i θi , then qs(ϕ) =
⋃

i qs(θ).

3. If ϕ = ∃xθ , respectively, ∀xθ , then qs(ϕ) = ∃ ∗ qs(θ) ∪ qs(θ) ∪ {∃}, respec-

tively, qs(ϕ) = ∀ ∗ qs(θ) ∪ qs(θ) ∪ {∀}.

Observe that we have defined the quantifier structure of a formula so that it is always

a set of prefixes closed under subwords. We will reserve the term prefix set for such

sets of prefixes.

Quantifier classes are defined in analogy with prefix classes.

Definition 2.4 Let L be either FO or L∞ω, and let P be a prefix set. We define

the quantifier class L{P} = {θ ∈ L | qs(θ) ⊂ P}.

When v is a word in L2, we will abuse the notation and write L∞ω{v} and FO{v}

rather than the more cumbersome L∞ω{r−(v)} and FO{r−(v)}.

Observe that for all prefixes p, and all prefix sets P such that p ∈ P , we have

that FO(p) ⊂ FO{p} ⊂ L∞ω{p} ⊂ L∞ω{P}. (In fact it is clear that, over any finite

signature, every L∞ω{p} formula is equivalent to a FO{p} formula.) In particular,

FO(p) ⊂ L∞ω{P}. The main theorem is a strong converse to this.

Theorem 2.5 (Main Theorem) Let p be a prefix, and let P = {q ∈ L1 | p 6≤ q}.

There is a sentence ϕ p in FO(p), over a single binary relation, such that ϕ p is not

equivalent to any sentence in L∞ω{P}.

(Observe that P is simply r−( f (p)).) The following corollary is immediate.
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Corollary 2.6 Let P1 and P2 be prefix sets such that P1 6⊂ P2. Then there is a (FO)

sentence ϕ ∈ L∞ω{P1}, over a single binary relation, such that ϕ is not equivalent

to any θ ∈ L∞ω{P2}.

Theorem 2.5 clearly implies the following conjecture from [1].

Conjecture 2.7 For all prefixes p and q, if p cannot be embedded in q, then there

is a sentence containing a single binary relation with prefix p that is not equivalent

to any sentence with prefix q.

Question 2.8 (Finite structures) It is an open question whether the Grädel-McColm

conjecture holds over the class of finite structures. It is easy to show that the main

theorem itself does not, as there is a collapse of the L∞ω quantifier class hierar-

chy to L∞ω{r(∀∗) ∪ r(∃∗)}. This is because every finite structure of size n can be

described up to isomorphism by a sentence in FO{∃n,∀n+1}, so every class of finite

structures is defined by a countable disjunction of such sentences, which is a sentence

in L∞ω{r(∀∗) ∪ r(∃∗)}.

2.2 Definability and games

Definition 2.9 Let L be a logical language. Given structures A and B , we write

A ⇒L B if and only if for every θ ∈ L, if A |H θ , then B |H θ .

The following definitions and result in this section are essentially from [1]. Below

we restrict our attention to fragments of the form L∞ω{q}, for q a word in L2, as we

will not need to consider the more general case, which is quite similar.

Definition 2.10 Let v = a1 . . . an be a word in L2, that is, v ∈ {∃, ∃∗,∀,∀∗}+.

Given structures A and B , the L∞ω{v}-game from A to B is an n-round game played

between a Spoiler (S.) and a Duplicator (D.), with four types of rounds depending on

whether ai is ∃,∀, ∃∗, or ∀∗.

[∃ round] The S. plays a (single) pebble on A. The D. then plays a pebble on B .

[∀ round] The S. plays a pebble on B . The D. then plays a pebble on A.

[∃∗ round] The S. plays a pebble on A. The D. then plays a pebble on B . The S.

may repeat this as often as he wants to. That is, he is permitted to play

arbitrarily many ‘∃ moves’ in a single ∃∗ round.

[∀∗ round] Like an ∃∗ round, with the S. playing instead on B .

The S. wins if at any point the pebbles do not determine a partial isomorphism from

A to B .

An equivalent description of this game can be given as follows. The players play an

ordinary (infinite) Ehrenfeucht-Fraïssé game, with the following additional restric-

tion placed on the S.’s moves. We associate with each play of the game through n

rounds a prefix pn of length n, pn = s1 . . . sn , such that for all i ≤ n, si = ∃ if the

S. played on A in the i th round, and = ∀ otherwise. In each round n, the S. must

choose a structure to play on so that the associated prefix pn is in r−( f (v)). (If this

set is finite, then he is only permitted to play some fixed finite number of rounds.)

Proposition 2.11 (Grädel and McColm [1]) Let A and B be structures, and let v

be a word in L2. D. has a winning strategy in the L∞ω{v}-game from A to B if and

only if A ⇒L∞ω{v} B.
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2.3 Amalgamation classes and homogeneous structures In this section, we

present the model theoretic background used to construct structures in the proof

of the main theorem. (For more information, see, for example, Hodges [2].) Re-

call that a structure A is homogeneous if every partial isomorphism between finite

substructures of A can be extended to an automorphism of A.

Definition 2.12 Let K be a class of finite structures over a finite relational lan-

guage. K is an amalgamation class if it satisfies the following properties.

1. (downward closure) If B ∈ K and A ⊂ B , then A ∈ K .

2. (joint embedding) If A1, A2 ∈ K , then there is a B ∈ K with substructures

A′
i
∼= Ai , i = 1, 2.

3. (amalgamation) If A0, A1, A2 ∈ K and fi : A0 −→ Ai , i = 1, 2, are

embeddings, then there are a B ∈ K and embeddings

gi : Ai −→ B such that g1 ◦ f1 = g2 ◦ f2.

If A is a structure, then Sub(A) is the set of all finite structures B isomorphic to a

substructure of A. The following result is due to Fraïssé.

Theorem 2.13 Let A be a homogeneous structure. Then Sub(A) is an amalgama-

tion class. Conversely, if K is an amalgamation class, then there is a unique, up to

isomorphism, finite or countable structure, such that Sub(A) = K .

In this case, A is called the Fraïssé limit of K , denoted Fr(K).

Definition 2.14 Let K be a class of finite structures that is downwardly closed.

Then A is a constraint of K if and only if A 6∈ K , but for all proper substructures

B ⊂ A, B ∈ K .

Definition 2.15 Let J be any class of finite structures. Define Cl(J) = {A | A is

a finite structure that has no substructure isomorphic to any B ∈ J}.

Let J be any set of finite structures such that for all distinct A, B ∈ J, A does not

embed as a substructure in B . Observe that Cl(J) is the unique downwardly closed

class whose set of constraints is exactly J. We now define a property of structures

that can be used to show that Cl(J) is, additionally, an amalgamation class.

Definition 2.16 Let A be a σ -structure. Then A is irreducible if and only if for all

a1, a2 ∈ A, a1 6= a2, there are a k-ary relation R ∈ σ and a k-tuple ā in A containing

a1, a2, such that A |H Rā.

Observe that every A of cardinality 1 is, by default, irreducible.

The next lemma is straightforward.

Lemma 2.17 Let J be a set of finite, irreducible σ -structures. Then Cl(J) is a

(strong) amalgamation class.

Proof It is clear that Cl(J) is downwardly closed. We now argue that it has the

joint embedding property. Let A1, A2 be two structures in Cl(J) and assume that

their universes are disjoint, A1 ∩ A2 = ∅. Define B to be the disjoint union of A1

and A2, that is, the model with universe A1 ∪ A2 such that for all relations R ∈ σ ,

RB = R A1 ∪ R A2 . Clearly any irreducible substructure of B is either a substructure

of A1 or of A2. Therefore B is also in Cl(J).
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A similar argument shows that Cl(J) has the amalgamation property. Again with-

out loss of generality, let A0, A1, A2 be structures in Cl(J) such that A0 ⊂ Ai and

fi : A0 → Ai is the identity map, for i = 1, 2, and A1 ∩ A2 = A0. Define B to

be the model with universe A1 ∪ A2 such that, as above, for all relations R ∈ σ ,

RB = R A1 ∪ R A2 . Arguing as before, we get that B is also in Cl(J). �

Combining this lemma with Fraïssé’s theorem provides an easy way to (describe

and) produce homogeneous structures.

Proposition 2.18 Given any set of finite irreducible structures J, Fr(Cl(J)) is a

homogenous structure.

Observe that for any countable homogeneous structure A, there is a unique set, up

to isomorphism, of pairwise mutually nonembeddable finite structures J such that

A = Fr(Cl(J)). The following simple lemma will be important in Section 3.3.

Lemma 2.19 Let A be a countable homogeneous structure, and let J be a set of

finite structures such that A = Fr(Cl(J)). Suppose that ā is a k-tuple of distinct

elements in A and ψ ′(x̄, x̄ ′) is a quantifier-free formula, with x̄ = x1, . . . , xk, and

x̄ ′ = xk+1, . . . , xk+l . Then there is an l-tuple ā′ of distinct elements in A, disjoint

from ā, such that A |H ψ ′[ā, ā′] if and only if there is a structure B of size k + l, with

universe b̄ ∪ b̄′, b̄ and b̄′ tuples of length k and l, respectively, such that A↾ā ∼= B↾b̄,

B |H ψ ′[b̄, b̄′], and no substructure of B is isomorphic to any of the constraints

C ∈ J.

3 Proof of the Main Theorem

Before presenting the technical details, we outline the structure of the proof. First

we define, for each prefix p, countable structures A p and Bp . These are constructed

as reducts of homogeneous structures produced as Fraïssé limits of amalgamation

classes. We then define sentences ϕp ∈ FO(p), for all prefixes p, and prove that

A p |H ϕp and Bp 6|H ϕp. Finally we prove, using a game theoretic argument, that for

each p, A ⇒L∞ω{P} B , where P = {q ∈ L1 | p 6≤ q}. Clearly, this shows that ϕp is

not equivalent to any L∞ω{P} sentence, as desired. The last step is the longest and

most difficult part of the proof.

The argument divides naturally into two cases depending on whether or not

alt(p) = 1. It is much simpler for alt(p) = 1 though already this case contains all

the basic elements of the more general situation.

Observe that it suffices to prove the theorem for 6-prefixes. For p a 5-prefix, it

is clear that we can let ϕp = ¬ϕp (recall that p̄ denotes the dual of p, a 6-prefix).

3.1 The construction Let p = ∃n1 . . . (sk)
nk be a6-prefix, alt(p) = k. We divide

the construction into two cases, depending on whether or not k = 1.

It will be helpful to introduce the following defined predicates. Recall that the

n-clique Kn is the simple, complete graph of size n. (The 1-clique has one vertex

and no edges.)

Definition 3.1 We define the following formulas.

[Cliquen] Let Kln(x1, . . . xn) =

(
∧

i≤n

¬Exi xi ) ∧ (
∧

i< j≤n

(Exi x j ∧ Ex j xi )).
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[Arrowm,n] Let Arm,n(x1, . . . , xm, y1, . . . , yn) =

Klm(x̄) ∧ Kln(ȳ) ∧ (
∧

i≤m, j≤n

(Exi y j ∧ ¬Ey j xi )).

Generally, when the length of the tuples is clear from the context, we will omit the

subscripts and write simply, for example, Kl(x̄) and Ar(x̄; ȳ). We say that a j -tuple

ā in A is a j -clique if A |HKl j [ā]. Given tuples ā, b̄ in A, ā arrows b̄ just in case

A |H Ar(ā; b̄). Observe that if ā arrows b̄, then ā and b̄ must be disjoint.

Let D1 be the graph with one vertex and a loop, and let D2 be the graph with two

vertices, a, b, and a single directed edge from a to b. Observe that G = Cl({D1, D2})

is the set of all finite, simple graphs, and Fr(G) is the (countable) random, or Rado,

graph.

Case 1 alt(p) = 1 Let p = ∃n . For n = 1, let ϕp = ∃x Exx . Let A∃ be the

countable infinite graph with exactly one edge which is a loop. Let B∃ be the empty,

countable infinite graph with no edges. Clearly A∃ |H ϕp and B∃ 6|H ϕp .

Now suppose that n ≥ 2. We choose ϕp to be ∃x1 . . . xnKl(x̄), which says that

there is a substructure isomorphic to Kn . We define Bp directly as the universal

countable homogeneous Kn-free graph. (Letting JB
p = {D1, D2, Kn}, Bp is simply

Fr(Cl(JB
p )).) It is clear that Bp 6|H ϕp . We will define A p as the E-reduct of a

countable homogenous structure with signature σp = {E, S}, S unary. Let JA
p be

the set of constraints JA
p = {D1, D2}∪ {C | C|E ∼= Kn and C |H ∃x¬Sx}, and

let A+
p = Fr(Cl(JA

p )). Finally, let A p = A+
p |E . It is not hard to see that A+

p ↾S is

isomorphic to the random graph. In particular, A p |H ϕp, as desired.

The following easy fact will be needed later.

Fact 3.2 For each n-tuple ā in A p, if ā is an n-clique, then every ai ∈ ā is in S.

Case 2 alt(p) ≥ 2 Given p = ∃n1 . . . (sk)
nk , let σp =

{E} ∪ {Pi | 1 ≤ i ≤ k, Pi is unary} ∪ {Ri | 1 ≤ i ≤ k − 1, Ri is ni + 1-ary}

∪{Si j | 1 ≤ i < k, 1 ≤ j ≤ ni , Si j is j -ary} ∪ {Sk1}, Sk1 unary.

Using ideas from Section 2.3, we produce homogeneous σp-structures, A+
p , B+

p , and

then define A p and Bp to be A+
p |E and B+

p |E , respectively. Below, we use Si ,

1 ≤ i ≤ k − 1, for the set {Si1, . . . , Sini } and let S̄ =
⋃

i<k S̄i ∪ {Sk1}.

The interpretation of a j -ary relation symbol Q in a structure A is simple if for all

j -tuples ā in A, if A |H Qā, then ā consists of j distinct elements, and for every pair

of j -tuples ā, ā′ consisting of the same j elements, A |H Qā if and only if A |H Qā′.

(For example, the interpretation of a binary relation symbol E is simple just in case

it determines a simple graph.)

Definition 3.3 Let C p be the class of finite σp-structures A such that

1. A is loop-free, that is, A |H ∀x¬Exx ;

2. A is partitioned by the Pi s—for all i ≤ k, S A
i1 ⊆ P A

i ; S A
k1 = P A

k ;

3. for a, b ∈ A, if Eab ∧ Eba, then there is an i ≤ k, Pi a ∧ Pi b;

4. for a, b ∈ A, if Eab ∧ ¬Eba, then there is an i < k, Pi a ∧ Pi+1b;

5. for each i < k, ni -tuple ā = a1, . . . , ani in A, and b ∈ A, if A |H Ri (ā, b),

then

(i) Kl(ā);
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(ii) the elements in ā are pairwise distinct and are each in Pi ;

(iii) b ∈ Pi+1;

(iv) for each a ∈ ā, A |H Eab;

(v) for each ni -tuple ā′ containing exactly the same elements as ā, Ri (ā
′, b);

6. for each relation symbol Si j , S A
i j is simple;

7. for each relation symbol Si j , and each j -tuple ā, if A |H Si j ā, then

(i) Kl(ā) and Pi a, for each a ∈ ā;

(ii) for all subsequences ā′ ⊂ ā of length j ′, Si j ′ ā′;

8. for each i < k, A satisfies the sentence ψi =

∀x1 . . . xni y1 . . . yni+1
(

∧

m≤ni

Pi xm∧

∧

m≤ni+1

Pi+1 ym ∧ Ar(x̄; ȳ) →
∧

m≤ni+1

Ri (x̄, ym)).

The following lemma is easy to establish.

Lemma 3.4 C p is an amalgamation class defined by a finite set of irreducible

constraints.

Sketch of Proof Each of the eight conditions above on finite structures A ∈ C p is

equivalent to saying that A has no substructure isomorphic to one or more irreducible

structures. For example, (1) holds of A if and only if it has no substructure isomor-

phic to D1 (the graph with one vertex and a loop). It is an easy exercise to show that

this is true also of the remaining conditions. �

Let J p be the minimal such set of irreducible structures. We now define a number of

irreducible σp-structures which will serve as additional constraints.

Definition 3.5

1. For each i < k, define M
p
i to be the structure with universe {1, 2, . . . , ni +1}

and positive diagram {Pi m | 2 ≤ m ≤ ni + 1} ∪ {Pi+11} ∪ {S(i+1)11} ∪

{Ri (ā, 1) | ā is an ni -tuple containing exactly {2, . . . , ni + 1}} ∪
⋃

j≤ni
{Si j m̄ | m̄ is a j -tuple of distinct elements in {2, . . . , ni + 1}}.

2. Let N p be the σp-structure with universe {1} and positive diagram {P11, S111}.

We are now ready to define the structures A p and Bp .

Definition 3.6

1. Let JA
p = J p ∪ {M

p
i | i < k} and let

JB
p = J p ∪ {M

p
i | i < k} ∪ {N p}.

2. Let A+
p = Fr(Cl(JA

p )) and B+
p = Fr(Cl(JB

p )).

3. Let A p = A+
p |E and Bp = B+

p |E .

By Corollary 2.18, A+
p and B+

p are indeed homogeneous structures. Observe, on the

other hand, that the reducts A p and Bp are not.

We make a number of observations about these structures. For any element a in

A+
p or B+

p , define height(a) to be the unique i ≤ k such that Pi a. When ā is a tuple

of elements that all have the same height, we sometimes write simply height(ā),

instead of height(a1), a1 ∈ ā.
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Observations Observations 3.7, 3.9, and 3.8(a) and (b) hold equally for both A+
p

and B+
p ; 3.8(c) does not.

Observation 3.7

(a) For all a, b, if there is an undirected, respectively, directed, edge from a

to b, then height(a) = height(b), respectively, height(b) = height(a) + 1.

Furthermore, a has no E-predecessors if and only if height(a) = 1.

(b) For all j -ary relations T ∈ σp, j ≥ 2, and all j -tuples ā, if T ā, then for all

a, a′ ∈ ā, |height(a)− height(a′)| ≤ 1.

Observation 3.8 (The substructures (A+
p ↾P j ), j ≤ k)

(a) For all j ≤ k, (A+
p ↾Pj )|E is the countable random graph.

(b) Let j < k, l < n j , and ā be an l-tuple in (A+
p ↾Pj ).

If A+
p |H S j l ā, then ā is an l-clique.

For all m ≤ n j − l, there is an m-tuple ā′ of elements in Pj such that

S j (l+m)(ā, ā′) if and only if S j l ā. (See Definition 3.3.7.)

(c) There is an n1-tuple ā in S1n1
in A+

p . For all m ≤ n1, the relations S1m are

empty in B+
p . (See Definitions 3.3.7 and 3.5.2.)

Observation 3.9 (Arrowing)

(a) For all tuples ā and b̄, if ā arrows b̄, then height(b̄) = height(ā)+ 1.

(b) For i < k, let ā be an ni -clique in Pi , b an element in Pi+1. Then, Ri (ā, b)

if and only if there is an ni+1-clique b̄, b ∈ b̄ such that Ar(ā; b̄). (See Defini-

tion 3.3.8.)

(c) For i < k, ā an ni -tuple, b an element, if Ri (ā, b) and Sini ā, then b is in

Pi+1 ∧ ¬S(i+1)1. (See Definition 3.5.1.)

(d) For i < k, let ā be an ni -tuple in Pi , b̄ an ni+1-tuple in Pi+1. If Ar(ā; b̄),

then either ¬Sini ā or every b ∈ b̄ is not in S(i+1)1. (See Definition 3.5.1.)

(e) For i < k − 1 and each ni -clique ā of elements in Pi , there is an ni+1-clique

b̄ not in S(i+1)ni+1
, each b ∈ b̄ in Pi+1 , such that ā arrows b̄. Furthermore,

there is an ni+1-clique c̄ in S(i+1)ni+1
such that ā arrows c̄ if and only if ā is

not in Sini .

For i = k − 1 and each ni -clique ā of elements in Pi , there is an nk-clique

b̄ of elements in Pk such that ā arrows b̄, if and only if, ā is not in Sini . (See

Definitions 3.3.8, 3.5, and 3.6.)

Observation 3.10

(a) A+
p ↾¬(P1 ∧ S11) ∼= B+

p .

(b) A+
p ↾¬P1

∼= B+
p ↾¬P1.

3.2 The sentences ϕ p We define, for each prefix p, a sentence ϕp ∈ FO(p) and

prove that for the structures A p and Bp defined above, A p |H ϕp and Bp 6|H ϕp .

Recall that for each p with alt(p) = 1, ϕp has already been defined: ϕ∃ = ∃x Exx

and for n ≥ 2, ϕ∃n = ∃x1 . . . xnKl(x1, . . . , xn).

We first explicitly define the sentences ϕp , for alt(p) = 2. We then give an

inductive definition for prefixes p with alt(p) ≥ 3. For p = ∃l∀m , let ϕp =

∃x1 . . . xl∀y1 . . . ym

(

Kl(x̄) ∧
∧

i≤l

¬(Ey1xi ∧ ¬Exi y1) ∧ ¬Ar(x̄; ȳ)
)

.
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Now assume that p = ∃n1 . . . snk is a prefix with alt(p) = k ≥ 3. We define a

sequence of formulas θk−1, θk−2, . . . , θ1; ϕp will be the sentence obtained by putting

θ1 into prenex normal form. Variables will be indexed so that xi j is bound by the j th

quantifier in the i th block: ϕp = ∃x11 . . . x1n1
∀x21 . . . , and so on. We often use x̄i

for xi1, . . . , xini .

For each i ≥ 2, the free variables in θi will be exactly xi1, . . . , xini . For k

odd, we define θk−1 = ∃xk1 . . . xknk Ar(x̄k−1; x̄k), x̄i = (xi1, . . . , xini ). For k even,

θk−1 = ∀xk1 . . . xknk ¬Ar(x̄k−1; x̄k).

Now suppose that θk−1, . . . , θi have already been defined and that i > 2.

For i odd, we let θi−1 = ∃x̄i (Ar(x̄i−1; x̄i) ∧ θi (x̄i )). For i even, we let θi−1 =

∀x̄i (Ar(x̄i−1; x̄i ) → θi (x̄i )).

Finally, let θ1 =

∃x̄1

(

Kl(x̄1) ∧ ∀x̄2

(

∧

j≤n1

¬(Ex21x1 j ∧ ¬Ex1 j x21) ∧ (Ar(x̄1; x̄2) → θ2(x̄2))
)

)

.

Observe that for all i < k, every quantifier in θi occurs positively, that is, in the scope

of no negations. It is easy to see that, when θ1 is put into prenex normal form, we

obtain a sentence ϕp with pr(ϕp) = p.

The following idea is critical in the next two important lemmas. Though we

consider the structures A p and Bp, the description appeals constantly to the expanded

structures A+
p and B+

p . That is, because the universes of A p and Bp are the same as

those of A+
p and B+

p , respectively, we can refer to the atomic σp-type of elements

and tuples of the reduced structures. For example, we say that an element a in A p

is a Pi -element or is in Pi , if A+
p |H Pi a. (We also say that an element a ∈ A p is

an S-element if there is some i ≤ k such that A+
p |H Si1a.) Homogeneous structures

are particularly convenient to work with because the isomorphism type of a tuple is

determined by its atomic type. In particular, Lemma 2.19 will be extremely helpful

(both implicitly and explicitly).

Lemma 3.11 For all prefixes p, A p |H ϕp and Bp 6|H ϕp .

Proof Suppose that alt(p) = 2, p = ∃l∀m . ϕp says that there is an l-clique of

elements, each having no E-predecessor, that does not arrow any m-tuple. Consider

A p . We claim that for any l-tuple ā in A, if ā is in S1n1
, then it is such an l-clique.

Such tuples exist, by Observation 3.8(b) and (c). By Observation 3.7(a), no a′ in

P1, and hence no a′ ∈ ā, has an E-predecessor. By Observations 3.9(a) and (e), ā

arrows no m-tuple. Thus A p |H ϕp , as desired. Next we show Bp 6|H ϕp . Suppose

that b̄ in Bp is an l-clique and no b′ ∈ b̄ has an E-predecessor. As above, b̄ is in

P1 but, in contrast to A p, b̄ must not be in S1n1
, also by Observation 3.8(c). By

Observation 3.9(e), there is an m-tuple c̄ such that b̄ arrows c̄. Thus Bp 6|H ϕp.

We now suppose that alt(p) = k ≥ 3. First we claim that for all even, respectively,

odd, i, 2 ≤ i ≤ k − 1, and all ni -tuples ā in A p such that ā is an ni -clique of Pi -

elements, then A p |H θi [ā] if and only if ā is not in Sini , respectively, A p |H θi [ā]

if and only if ā is in Sini . Likewise for Bp (the argument is identical). We argue

by downward induction on i , starting with i = k − 1. If i is even, then k is odd, so

θi = ∃x̄kAr(x̄k−1; x̄k). The claim now follows immediately from Observation 3.9(e).

Likewise for i odd.
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Assume now the claim holds for i , i − 1 ≥ 2, and i is odd. Recall that for i

odd, θi−1 = ∃x̄i (Ar(x̄i−1; x̄i) ∧ θi(x̄i )). Suppose that ā is an ni−1-clique of ele-

ments in Pi−1 . By Observation 3.9(a), for each ni+1-clique b̄, if ā arrows b̄ then

height(b̄) = i . Invoking the induction hypothesis, A p |H θi−1[ā] if and only if there

is an ni -clique b̄ of elements in Pi such that ā arrows b̄ and b̄ is in Sini . By Obser-

vation 3.9(e), A p |H θi−1[ā] if and only if ā is not in S(i−1)ni−1
. The argument is

similar for i − 1 even.

It remains to show that A p |H θ1 and Bp 6|H θ1 (recall θ1 ≡ ϕp). The sentence

θ1 says that there is an n1-clique ā of elements, each with no E-predecessor, such

that for every n2-tuple b̄, if ā arrows b̄, then θ2[b̄]. As in the case alt(p) = 2, we

claim that any n1-tuple ā of P1-elements in A p such that A p |H S1n1
ā witnesses that

A p |H θ1. We know already that such a tuple must form a clique and that no a ∈ ā

has an E-predecessor. So it only remains to show that for any n2-tuple b̄, if ā arrows

b̄, then A p |H θ2[b̄]. Suppose that b̄ is an n2-tuple such that ā arrows b̄. By the

definition of arrowing, and Observation 3.9(a), this implies that b̄ is an n2-clique of

elements in P2. Above, we showed that for any such tuple, A p |H θ2[b̄] if and only

if b̄ is not in S2n2
. Finally, note that Observation 3.9(e) says that every n2-tuple b̄

arrowed by ā is indeed not in S2n2
, as desired.

To establish that Bp |H ¬θ1, using the above reasoning, it suffices to observe that

every n1-clique ā of P1-elements in Bp is not in S1n1
(by Observation 3.8(c)) and

hence arrows an n2-tuple b̄ in S2n2
(by Observation 3.9(e). Then Bp 6|H θ2[b̄], as

shown above, so Bp |H ¬θ1. �

3.3 The central argument All that remains is to prove the following lemma.

Lemma 3.12 For each prefix p, A p ⇒L∞ω{ f (p)} Bp .

Proof By Proposition 2.11, it suffices to show that the D. wins the L∞ω{ f (p)}-

game from A p to Bp. We again consider two cases, depending on whether or not

alt (p) = 1. Without loss of generality, we assume that the S. always plays on a

previously unpebbled element.

Case 1 alt(p) = 1 For p = ∃, recall that f (∃) = ∀∗, A∃ is the countable graph

with one loop, and B∃ is the countable graph with no edges at all. Observe that the

L∞ω{∀∗}-game from A∃ to B∃ is an ordinary infinite Ehrenfeucht-Fraïssé game in

which the S. may only play on B∃. The D.’s strategy is simply never to play on the

element of A∃ with a loop. It is clear that she wins.

For p = ∃n, n ≥ 2, f (p) = (∀∗∃)n−1∀∗, a word of length 2n−1 containing n ∀∗s

and n − 1 ∃s. Thus, the L∞ω{ f (p)}-game from A p to Bp is a (2n − 1)-round game

during which the S. is permitted to play (n − 1) pebbles on A p . (In particular, he is

not able to play, through the course of the entire game, n pebbles on an n-clique of

S-elements in the relation S Ap .) We claim that the D. can win by using the following

strategy.

(i) In each round, play so as to maintain a partial isomorphism between the peb-

bled elements.

(ii) In each (odd numbered) ∀∗ round, never play on an S-element of A p .

Observe that this strategy implies that for all m ≤ n, after round 2m − 1, there are

at most m − 1 pebbles on S-elements of A p . We argue by induction on the length of

the game (number of rounds and number of moves).
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Each odd numbered round is an ∀∗ round, during which the S. may play pebbles

on Bp an arbitary number of times. By the induction hypothesis, the active pebbles,

on j -tuples ā and b̄, determine a partial isomorphism from A p to Bp . Suppose that

the S. now plays on some b′ in Bp. Let ψ(x̄ , x j+1) be the quantifier-free type of

the ( j + 1)-tuple (b̄, b′), that is, a maximally consistent quantifier-free formula such

that Bp |H ψ[b̄, b′]. In order to maintain a partial isomorphism, it suffices for the

D. to play on an element a′ ∈ A p such that also A p |H ψ ′[ā, a′]. Furthermore, to

carry out part (ii) of the strategy described above, a′ must also not be in S. Define

ψ ′(x̄, x j+1) = ψ(x̄ , x j+1)∧¬Sx j+1. Let C be the unique σp-structure of size j +1,

with universe (c̄, c′), such that A↾ā ∼= C↾c̄ and C |H ψ ′[c̄, c′]. It is clear that C does

not embed any of the constraints in JA
p (e.g., C contains no n-clique because Bp does

not). So by Lemma 2.19, there is an a′ ∈ A p , not in S, such that A p |H ψ ′[ā, a′].

The D. places a pebble on this a′.

Each even numbered round is an ∃ round, during which the S. plays one pebble

on A p . By the induction hypothesis, because the D. never plays a pebble on A p

in S, there are less than n pebbles on A p in S so that the tuple ā of elements in

A p on which there are pebbles cannot contain an n-clique. As Bp is the universal

homogeneous Kn-free graph, it is clear that the D. can choose some b′ ∈ Bp so as to

maintain a partial isomorphism. (To make the argument more explicit one can apply

Lemma 2.19 as above.) Therefore, the D. does indeed have a winning strategy.

Case 2 alt(p) ≥ 2 Let p = ∃n1 . . . snk , s ∈ {∃,∀}, alt(p) = k ≥ 2. Recall that

f (p) = f (∃n1)∗ · · ·∗ f (snk ) is a word of length
∑

i≤k 2ni −1. It will be convenient

to view the rounds of the L∞ω{ f (p)}-game as being divided into k levels by the

subwords f (sni ), s ∈ {∃,∀}. Thus, the first (2n1 − 1) rounds are level 1, the next

(2n2 − 1) rounds are level 2 and so on. We write round 〈 j,m〉 for the mth round in

level j . More precisely, 〈 j,m〉 = (
∑

i< j 2ni − 1)+ m.

We claim that the D. wins by playing according to the following strategy.

The D.’s strategy

(i) (1) For all a ∈ A p, b ∈ Bp, if there is a pair of pebbles on (a, b), then

height(a) = height(b).

Furthermore, let ā in A p, b̄ ∈ Bp , be corresponding m-tuples of pebbled

elements, all of height = i , and m ≤ ni . Then either Sim ā if and only

if Sim b̄ or, in case i is odd, respectively, even, Sim ā and ¬Sim b̄, respec-

tively, ¬Sim ā and Sim b̄. Moreover, if ā, b̄ were completely pebbled by

the end of level j , and j < i , then in fact Sim ā if and only if Sim b̄.

(2) Suppose that round 〈 j, 2m〉 or 〈 j, 2m+1〉 has just been completed, j < k

and odd, 0 ≤ m < n j . Then for all m′,m < m′ ≤ n j , there is not a pair

of correspondingly pebbled m′-tuples of elements ā in A p , b̄ in Bp , all

of height = j , such that A+
p |H S jm′ ā and B+

p |H ¬S jm′ b̄. Likewise, for

j < k and even, there is not a pair of correspondingly pebbled m ′-tuples

ā in A p, b̄ in Bp such that A+
p |H ¬S jm′ ā and B+

p |H S jm′ b̄.

(ii) For each j < k, at the completion of level j the active pebbles, on ā in A p

and b̄ in Bp , induce a partial isomorphism between the (σp \ {S̄1, . . . , S̄ j })-

reducts of A+
p and B+

p . That is,

(A+
p ↾ā)|(σp \ {S̄1, . . . , S̄ j }) ∼= (B+

p ↾b̄)|(σp \ {S̄1, . . . , S̄ j }).

In particular, the D. plays so as to respect all the relations Ri .
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(iii) The D.’s strategy during level k is somewhat different. We describe the case

for k odd (k even is similar, essentially ‘dual’).

As in the case of previous levels, during round 〈k, 1〉 (an ∀∗ round), the S.

may perhaps be able to play so that there are (arbitrarily many) pairs of corre-

sponding pebbles so that the A p pebble is on an element in Pk−1 ∧ ¬S(k−1)1

and the Bp pebble is on an element in Pk−1 ∧ S(k−1)1. In particular, he may

play so that there is an nk−1-tuple of pebbles on an nk−1-clique b̄ in Bp of

Pk−1-elements in S(k−1)nk−1
such that the corresponding pebbles are on an

nk−1-clique ā in A p of Pk−1-elements not in S(k−1)nk−1
.

The significant difference between the above tuples ā and b̄ is the follow-

ing. In A p, there is an nk-clique ā′ (in Pk) such that ā arrows ā′, but there is

no such matching nk -clique in Bp (by Observation 3.9(d) again). Thus the S.

would win if he was allowed to play nk more pebbles on A p . Fortunately, he

may only play nk − 1 more. Further, the S. can, in round 〈k, 2〉, and subse-

quent rounds 〈k, 2m〉,m < nk , force the D. to ‘break’ Rk−1-types. That is, if

he plays a pebble on some a0 ∈ A p such that Rk−1(ā, a0), then there is no b0

in Bp such that Rk−1(b̄, b0) (by Observation 3.9(c)).

We now introduce some more terminology. Call a pair of correspondingly

pebbled nk−1-tuples of Pk−1-elements ā′ in A p , b̄′ in Bp , switched just in

case that ¬S(k−1)nk−1
ā′ and S(k−1)nk−1

b̄′. We will also say that each of the

tuples ā′ and b̄′ is itself switched. A pair (a, b) of correspondingly pebbled

Pk-elements in A p and Bp is distinguished if there are correspondingly peb-

bled switched nk−1-tuples ā′, b̄′, such that ¬S(k−1)nk−1
ā′ ∧ Rk−1(ā

′, a) and

S(k−1)nk−1
b̄′ ∧ ¬Rk−1(b̄

′, b).

We are now prepared to describe this part of the strategy.

(∃) round In each (∃) round 〈k, 2m〉, 1 ≤ m < nk , we modify the D.’s strategy so

that it no longer requires that she always respects the relation Rk−1. (But she will still

play so as to preserve a partial isomorphism on the {E, P1, . . . , Pk , R1, . . . , Rk−2}-

reducts of the pebbled parts of A+
p and B+

p .) In any such (∃) round, if the S. plays on

an element a′ in Pk in A p, then the D. plays on some b′ in Pk in Bp in accordance

with the following restrictions.

1. She maintains the partial {E}-isomorphism between pebbled elements.

2. If ā′, b̄′ are correspondingly pebbled tuples of Pk−1-elements that are not

switched, then Rk−1(ā
′, a′) if and only if Rk−1(b̄

′, b′).

(Observe that if ā′, b̄′ are switched, then necessarily ¬Rk−1(b̄
′, b′), so the D. ‘has no

choice’ here.) (2) is thus a weakened condition on ‘respecting’.

(∀∗) round On the other hand, in each (∀∗) round 〈k, 2m + 1〉, 0 ≤ m < nk , in

which the S. plays a pebble in Pk , the D. still plays so as to ‘respect’ Rk−1. More

precisely, since the mapping between previously pebbled elements may not ‘pre-

serve’ Rk−1, this means the following. Let b′ ∈ Bp, a′ ∈ A p be the Pk-elements on

which the S. and the D. have played, respectively, in this round. Then for any pair

ā, b̄, in A p, Bp, of (nk−1 + 1)-tuples of correspondingly pebbled elements, such that

a′ ∈ ā and b′ ∈ b̄, Rk−1ā if and only if Rk−1b̄.

Observe that the pair (a′, b′) are not distinguished, as defined above.

Outside of Pk Finally, if the S. plays on some element not in Pk , then the D.

plays as described above in parts (i) and (ii). In particular, she preserves partial
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({E}∪ P̄ ∪{R1, . . . , Rk−2})-isomorphism between the pebbled elements. Again, re-

garding Rk−1, she plays so as to respect Rk−1 in the weaker sense explained above.

This completes the description of the strategy.

The D. does win if she can successfully carry out this strategy since it entails that

at the completion of level k, the end of the game, the pebbles determine a partial iso-

morphism between A p and Bp , the E-reducts of A+
p and B+

p , as desired. It remains

to show that this is possible.

Proving that the D. wins We argue by induction on the number of rounds. The

induction hypothesis is that the D. has, through round r , been able to carry out the

above strategy successfully.

Before giving the argument, we make a general observation. By Obser-

vation 3.7(b), if T ∈ σp , ā ∈ A p or Bp, and T ā, then for all a, a′ ∈ ā,

|height(a) − height(a′)| ≤ 1. This implies the following point, which simpli-

fies the D.’s choice of moves. Suppose that the S. has just played a pebble on an

element of height i, i ≤ k. By Condition (i), the D. should play on an element of

the same height in the other structure. We claim that, in making her choice, she only

needs to consider the pebbles that are on elements of height i − 1, i , or i + 1. This is

because the strategy is defined in terms of preserving partial isomorphisms between

reducts of the σp-structures A+
p and B+

p , and no tuple in any σp-relation contains an

element of height i and one of height j , when | j − i | > 1.

Part I—Round r occurs in level j , j < k

Case A Suppose the S. plays a pebble in Pi , where i is< j and even. (The argument

for i odd is similar.)

By the induction hypothesis, the D. has maintained Conditions (i.1) and (ii) of the

strategy. By the preceding note, we can restrict our attention to (the pebbled elements

in) the substructures of A p and Bp with universe Pi−1∨Pi∨Pi+1. Let ā, b̄ denote

the (corresponding) tuples of currently pebbled elements in A p↾(Pi−1∨Pi∨Pi+1)

and Bp↾(Pi−1∨Pi∨Pi+1), respectively. We know that ā and b̄ realize the same

({E} ∪ P̄ ∪ R̄)-type. Also, for each j ∈ {i − 1, 1, i + 1} and each pair of m-tuples

ā′, b̄′, m ≤ n j , of correspondingly pebbled elements in A p, Bp, such that every el-

ement in ā′ and in b̄′ has height j , if ā′ and b̄′ do not realize the same S̄-type, then

either j = i and ¬Sim ā′ and Sim b̄′ or | j − i | = 1 and S jm ā′ and ¬Sim b̄′.

There are various kinds of moves the S. can make.

A(i) The S. plays on an element b′ in Si1 in Bp. We must show that the D. can

choose an element a′ in A p while respecting the strategy described above. To

this end, we use Lemma 2.19 to show that there is an a′ in Pi ∧ ¬Si1 such that

(B+
p ↾(b̄, b′))|(σp \ S̄) ∼= (A+

p ↾(ā, a′))|(σp \ S̄). It is easy to see that this shows that

the D. can make a move that respects the conditions of her strategy.

Let θ(x̄, x ′) be the complete atomic (σp \ S̄)-type of (b̄, b′), and let ψ(x̄, x ′) be

a conjunction of every negated atomic formula of the form Slm ȳ, ȳ ⊂ x̄ ∪ {x ′} and

x ′ ∈ ȳ. We define θ ′(x̄, x ′) = θ(x̄, x ′)∧ψ(x̄ , x ′). Then there is a unique σp-structure

C , with universe (c̄, c′), such that C↾c̄ ∼= A p↾ā and C |H θ ′[c̄, c′]. Observe that there

is a natural (σp \ S̄)-isomorphism from (B+
p ↾(b̄, b′))|(σp \ S̄) to C|(σp \ S̄), taking

each bl ∈ b̄ to the corresponding cl ∈ c̄ and b′ to c′. By Lemma 2.19, it suffices to

show that no constraint in JA
p is isomorphic to a substructure of C .
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Say that a constraint D in JA
p ∪JB

p is S̄-symmetric just in case for all σp-structures

D′, if D|(σp \ S̄) ∼= D′|(σp\ S̄), then also D′ in JA
p and in JB

p . In particular, it is clear

from the definitions of JA
p and JB

p that the only constraints that are not S̄-symmetric

are the structures M
p
l , l < k, and N p from Definition 3.5.

Suppose, for the sake of contradiction, that there is a substructure D ⊂ C that

is isomorphic to a constraint in JA
p . We claim that D cannot be S̄-symmetric. As

B+
p ↾(b̄, b′)|(σp \ S̄) ∼= C|(σp \ S̄), there is a D′ ⊂ B+

p ↾(b̄, b′), with D|(σp \ S̄) ∼= D′|

(σp \ S̄). Since D′ ⊂ Bp, this implies that D′ 6∈ JB
p , so that D is not S̄-symmetric,

as desired.

Consequently, if there is a substructure D ⊂ C isomorphic to a constraint in JA
p

it must be isomorphic to one of the structures M
p

l from Definition 3.5. Furthermore,

this substructure must include the element c′, since (the universe of C is c̄ ∪{c′} and)

C↾c̄ is isomorphic to a substructure of A+
P , so it cannot embed any such constraint.

But this is not possible, as every element in any of the M
p

l , l < k, is an S-element

(that is, in some relation S j1, 1 ≤ j ≤ k), while c′ is not. So we have shown that no

substructure of C is isomorphic to a constraint of JA
p , as desired.

A(ii) The S. plays on an element a′ in Si1 in A p . We argue as above, using

Lemma 2.19 to show that the D. can choose a b′ in Pi ∧ Si1 so as to satisfy Con-

ditions (i) and (ii) of her strategy. Recall that ā, b̄ are the (corresponding) tuples of

currently pebbled elements in A p↾(Pi−1∨Pi∨Pi+1) and Bp↾(Pi−1∨Pi∨Pi+1), re-

spectively. Let g be the natural bijection from ā to b̄ that takes a pebbled element in

ā to the element in b̄ on which the corresponding pebble is located.

Let θ(x̄, x ′) be the complete atomic (σp \ S̄)-type of (ā, a′). Define ψ1(x̄, x ′) to

be the conjunction of (positive !) atomic S̄i formulas satisfied by (ā, a′), and ψ2(x̄)

to be the conjunction of atomic S̄ formulas satisfied by b̄. Finally, we let θ ′(x̄, x ′) be

the unique σp-type extending θ ∧ψ1 ∧ψ2 such that every atomic formula that occurs

as a conjunct of θ ′ is a conjunct of θ,ψ1, or ψ2. One can easily check that it suffices

for the D. to pebble an element b′ ∈ Bp such that Bp |H θ ′[b̄, b′].

Again, there is a unique σp-structure C , with universe (c̄, c′), such that

C↾c̄ ∼= Bp↾b̄ and C |H θ ′[c̄, c′]. There is also a natural isomorphism h from

A+
p ↾(ā, a′)|(σp \ S̄) to C|(σp \ S̄). By Lemma 2.19, it now suffices to show that

no constraint in JB
p embeds in C . If some constraint in JB

p is isomorphic to a

substructure of C , then, as in A(i), it is not S̄-symmetric and can only be one of the

structures M
p
l . In fact, it must be either M

p
i or M

p

i−1 , since these are the only such

structures with an element in Pi . Here the element c′ is in Si , so we cannot argue

quite as we did in A(i).

We show that M
p
i does not embed in C . Suppose for contradiction that D ⊂ C

and D ∼= M
p
i . We will show that this implies that M

p
i is also a substructure

of A p↾(ā, a′), which is not possible. Let {d1, . . . , dni +1} be the universe of D,

d̄ = (d1, . . . , dni ). We can assume that dni+1 is in S(i+1)1, so every d ′ ∈ d̄ is in

Pi and Sini d̄ (because D ∼= M
p
i ). Let al = h−1(dni+1), for some al ∈ ā, and let

bl = g(al). Observe that a′ ∈ h−1(d̄) (where h−1(d̄) = (h−1(d1), . . . , h−1(dni )).

First, we claim that al ∈ S(i+1)1. Otherwise, if al 6∈ S(i+1)1, then also

bl 6∈ S(i+1)1, by Condition (i) of the strategy. Then clearly ¬S(i+1)1xl is a

conjunct of θ ′, which contradicts the fact that dni+1 is in S(i+1)1. Furthermore
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A p |H Ri (h
−1(d̄), al), because C |H Ri (d̄, dni+1) and h is a (σp \ S̄)-isomorphism

from (A p↾(ā, a′))|(σp \ S̄) to C|(σp \ S̄).

Finally, we want to show that in fact A p |H Sini (h
−1(d̄)). It is then easy to see

that this implies that the substructure of A p with universe {h−1(d) | d ∈ D} is

isomorphic to M
p

i , yielding the desired contradiction. Because C |H Sini d̄, there is

a conjunct Sini ȳ of θ ′, ȳ ⊂ x̄ ∪ {x ′}, with x ′ ∈ ȳ (because a′ must be in h−1(d̄)).

Clearly Sini ȳ cannot be a conjunct of ψ2, since x ′ does not occur in this formula, so

we can conclude that Sini ȳ ∈ ψ1 and, thus, that A p |H Sini (h
−1(d̄)).

The argument to show that M
p

i−1 does not embed in C is a simple variant of the

previous one, and straightforward.

There are a number of other cases that we do not treat explicitly, though we note the

following facts. One, if the S. plays instead in Pi ∧ ¬Si1, in either A p or Bp, then it

is easy to show that the D. can maintain her strategy by also playing on an element in

Pi ∧ ¬Si1. Two, the argument for i odd is essentially identical. When i = 1, things

look slightly different, since the formula P1x ∧ S11x is not satisfied in Bp, but it is

easy to see that this makes no real difference: whenever the S. plays on an element

in P1 ∧ S11 in A p , the D.’s strategy allows her to choose an element in P1 ∧ ¬S11 in

Bp in response.

Case B S. plays in Pj . Assume that j is even (odd is identical). We have the

D. play precisely as she did in the preceding Case A, so it only remains to show that

in doing so she also respects Condition (ii) of the strategy. It suffices to establish the

following claim.

Claim 3.13 Suppose that after round 〈 j, 2m + 1〉, 0 ≤ m ≤ n j − 1, there are

l-tuples, l ≤ n j , ā in A p, b̄ ∈ Bp , of correspondingly pebbled Pj -elements such that

¬S j l ā and S j l b̄. Then every b ∈ b̄ was pebbled by the S.. In particular, l ≤ m.

To verify the claim, we examine the above construction in Case A. If the S. plays

a pebble not in S j1, in either structure, then the D. does so too, and neither element

can be in any tuple that is in any relation S j l , l ≤ k. It only remains to consider the

case when the S. plays a pebble on an element a′ in S j1. The D. then also plays on

some b′ ∈ S j1, as described above. Suppose that there are correspondingly pebbled

l-tuples ā in A p , b̄ ∈ Bp, of Pj -elements such that ¬S j l ā and S j l b̄. By the properties

of S̄ j , we know that ¬S j (l+1)(ā, a′). So we must show that also ¬S j (l+1)(b̄, b′). But

this is clear from the definition of θ ′(x̄, x ′) in Case A(ii).

Case C S. plays in Pi , and i > j .

This case is rather straightforward, and we give a less formal and more intuitive

argument. Given that the D. is committed to following the strategy described above,

we consider how it is possible for the S. to ‘force’ the D. to play a pebble so that there

is a pair a, b of correspondingly pebbled elements in A p, Bp such that a ∈ Si1 if and

only if b 6∈ Si1, for some i < k. If the S. plays in P1, this is easy, since there are

no elements in P1 ∧ S11 in Bp . He simply plays on an element a ∈ A p in P1 ∧ S11.

On the other hand, in order to accomplish this for elements of height i + 1 > 1

(assume i + 1 even), there must be a pair of correspondingly pebbled ni -tuples ā, b̄

in A p, Bp such that Sini ā and ¬Sini b̄. In this case, the S. can pebble a b′ ∈ Bp such

that S(i+1)1b ∧ Ri (b̄, b′). In A p , there is no a′ such that S(i+1)1a ∧ Ri (ā, a′) (see

Observation 3.9(c)), so the D. will choose some a′ such that ¬S(i+1)1a ∧ Ri (ā, a′).
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But by Conditions (i) and (ii) of the D.’s strategy (and Case B above), at no point

during level j ≤ i of the game is there a pair of correspondingly pebbled ni -tuples

ā, b̄ in A p, Bp such that Sini ā and ¬Sini b̄. Thus, the D. cannot be compelled to

‘break’ S̄i -types, i > j , during level j of the game.

Part II—Round r occurs in level k This part is also divided into a number of

cases. We assume, without loss of generality, that k is odd. Note that Condition

(iii) of the strategy ensures the following property of a play of the game. For each

m, 0 ≤ m ≤ nk − 1, after rounds 〈k, 2m〉 and 〈k, 2m + 1〉, there are at most m distin-

guished pairs (a, b) of pebbled Pk-elements in A p and Bp . (Recall the definition of

a distinguished pair given in the description of Condition (iii) of the D.’s strategy.)

Let ā = (a0, . . . , at ), b̄ = (b0, . . . , bt ), be the (corresponding) tuples of currently

pebbled elements in A p↾(Pk−1∨Pk) and Bp↾(Pk−1∨Pk), respectively. Let g be the

bijective mapping from ā to b̄ that takes a pebbled element as, s ≤ t , in ā to the

element bs, s ≤ t , in b̄ on which the corresponding pebble is located.

Case A S. plays in Pk .

A(i) S. plays on an element a′ in A p in an (∃) round 〈k, 2m〉,m ≤ nk − 1.

By the induction hypothesis, there are less than nk −1 distinguished pairs of pebbled

elements in ā, b̄ at the end of round 〈k, 2m〉. In particular, ā ∪ {a′} does not contain

a switched nk−1-tuple ā0 and an nk-tuple ā1, each a ∈ ā1 distinguished, such that ā0

arrows ā1. (This is the crucial point.)

Let θ(x̄, x ′) be the complete atomic {E} ∪ P̄-type of (ā, a′) in A+
p . Let h be the

map that takes x ′ to a′ and each xs ∈ x̄ , s ≤ t , to the naturally corresponding element

as ∈ ā which ‘instantiates it’. Let ψ1(x̄, x ′) be the conjunction of all atomic Rk−1-

formulas Rk−1(ȳ, x ′), ȳ ⊂ x̄ such that the nk−1 + 1-tuple (ā0, a′) of A p elements

instantiating (ȳ, x ′), (= h(ȳ) ∪ {a′}), satisfies Rk−1(ā0, ā), and ā0 is not a switched

tuple. Let ψ2(x̄) be the complete σp-type of b̄ in Bp. Finally, let θ ′(x̄, x ′) be the

unique complete σp-type extending θ ∧ ψ1 ∧ ψ2 ∧ Sk x ′ such that every conjunct of

θ ′ that is an atomic formula either is Sk x ′ or occurs as a conjunct in θ,ψ1, or ψ2. (It

is easy to check that this is well defined.)

It is easy to see that the D. will satisfy the conditions of her strategy if she can

choose an element b′ in Bp such that θ ′[b̄, b′]. Again, it suffices to show that the

unique σp-structure C with universe (c̄, c′) satisfying θ ′[c̄, c′] does not embed any

constraint in JB
p . By previous ideas, the only constraints for which it is nontrivial

to verify this are M
p

k−1 and the structure with universe (d̄, d̄ ′) such that d̄ is a tuple

of Pk−1-elements, d̄ ′ is a tuple of Pk -elements, and Ar(d̄; d̄ ′). The argument that

neither structure embeds in C is by now straightforward.

A(ii) S. plays on an element b′ in Bp in an (∀∗) round.

Let θ(x̄, x ′) be the complete atomic {E} ∪ P̄-type of (b̄, b′) in Bp . Let ψ1(x̄, x ′)

be the conjunction of all atomic Rk−1-formulas Rk−1(ȳ, x ′), ȳ ⊂ x̄ such that the

(nk−1 + 1)-tuple (b̄0, b′) of Bp elements instantiating (ȳ, x ′) satisfies Rk−1(b̄0, b̄).

Let ψ2(x̄) be the complete σp-type of ā in A p . As before, we define θ ′(x̄, x ′) to be

the unique complete σp-type extending θ ∧ ψ1 ∧ ψ2 such that every conjunct of θ ′

that is an atomic formula occurs as a conjunct in θ,ψ1, or ψ2.

The argument proceeds as in the previous cases. Once again, it suffices for the

D. to choose an element a′ in A p such that A+
P |H θ ′[ā, a′]. It is easy to show that
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this is possible. We only make the following observation. Suppose that ā′, b̄′ is a

switched pair of corresponding nk−1-tuples of pebbled Pk−1-elements; by definition,

¬S(k−1)nk
ā′ and S(k−1)nk

b̄′. Recall that the relevant difference between ā′ and b̄′

is that there is no b0 in Bp such that Rk−1(b̄
′, b0), though there is an a0 in A p ,

Rk−1(ā
′, a0). Informally, this means that, when the S. plays on b′ in Pk , he in fact

has a more limited choice of moves than the D., so the D. will have no trouble

adequately answering him. (Again observe that (a′, b′) will not be a distinguished

pair—this explains the bound on the number of distinguished pairs mentioned at the

beginning of Part II.)

Case B S. plays in Pk−1.

The argument is straightforward, following the pattern of earlier cases. We only

note that it is easy to check that if the S. does play in Pk−1, he cannot, by doing so,

transform a previously pebbled nondistinguished pair of elements a ∈ A p, b ∈ Bp,

into a distinguished pair. (This is a consequence of the D.’s strategy of ‘respecting’

Rk−1 when the S. plays in Pk−1.)

Case C S. plays in Pj , j ≤ k − 2.

In this case, the argument is exactly that of Part I.

This completes the proof of the theorem. �
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