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A THEOREM FOR DERIVING CONSEQUENCES OF THE AXIOM
OF CHOICE

FRANCIS J. TYTUS

I. Introduction This paper is addressed to the problem of proving
results directly from the Axiom of Choice. A general theorem on mappings
in partially-ordered sets will be proved, and proofs of Zorn’s Lemma and
the Well-Ordering Theorem will be given as corollaries to this theorem.
The following concepts will be used.

A partially-ovdered set is a set on which is defined a reflexive, trans-
itive, anti-symmetric binary relation <. A chain is a totally-ordered
subset of a partially-ordered set. If a partially-ordered set has a smallest
and/or a greatest element, these will be represented respectively by 0 and
1. The least-upper-bound, if it has one, of a subset T of a partially-
ordered set will be represented by UT. It should be noted that if every
subset of a partially-ordered set X has a least~upper-bound, then 0 = ¢
and 1 = U X are in X, where ¢ is the void set.

A choice function on a set S is a function which assigns to each non-
void subset T of S an element of T. The Axiom of Choice states that a
choice function may be defined on any set.

The {following additional notation will be employed. Set-theoretic
inclusion will be represented by C, and strict inclusion by c. The power-
set of a set S will be represented by P(S). If f is a function defined on a set
S, then f(T) will represent the set of images under f of the elements of 7,
for each subset T of S. In particular,f(¢) = ¢. If £ is a family of subsets
of a set S, then UJ and nJ will represent respectively the union and
intersection of the members of 4. In particular, U¢ = ¢ and n¢ =S.
Finally, the difference of sets S and T will be represented by S\T.

II. The Main Theorvem

Theorem 1: If X is a partially-ovdered set in which each subset has a
least-uppev-bound, and g is a function from X into X which satisfies the
Sfollowing condition:
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i) g(3) sx implies g(y) <g(x), for x,yin X,
then theve is a subset V of X which satisfies the following two conditions:

(ii) Ug(W) is in V, for every W C V,
(i) x <y or g(3) <«x,for x,y in V.

Proof: Let A be the family of all subsets T of X for which u gW)isin T,
whenever W CT. The family { contains X, and hence is non-void. Now let
V= nJ. It follows immediately from the definition of ¥ that V is in , and
that if 7 is a subset of V which is also in {,then T = V. The following two
lemmas complete the proof of the theorem.

Lemma 1: Suppose, for some fixed y in V, that x <y implies g(x) <y,
whenever x is in V. Then x <y or g(y) < x, whenever x is in V.

Proof: Let T be the set of all elements x of V for whichx <y or g(3) <x.
We wish to show that T is in £, and hence that T = V. Let W be an arbi-
trary subset of 7. Now if ¥ <y for every x in W, then g(x) <y for every x
in W, and Ug(W) <y, and LIg(W) is in T. Otherwise there is some %, in
W such that xo = or g(3) <x,. If % =¥, then g0) = glvo) < Llgw). I g(»)
< x4, then, by (i), we have g(3) <g(x,) < Ug(W). Hence Ug(W) is again in
T. Q.E.D.

Lemma 2: Ify is in V, then x <y implies g(x) <y, whenever x is in V.

Proof: Let T be the set of all elements ¥ in V for which x <y implies
g{x) <y, whenever x is in V. We again wish to show that T is in <, Let W
be an arbitrary subset of T, and suppose that x < Llg(W), where x is in V.
By Lemma 1 we have x <y or g(3) s<x, for every y in W. If g(3) sx for
every y in W, then U g(W) < x, which is impossible. Hence there is some
yoin W such that x < y,. If ¥ = y,, then g(x) = g(3%) < Llg(W). On the other
hand, if x < y,, then g(x) < y,, and by (i) we have 2(3) < g(3) < Ueg(W). m
either case |Jg(W)is in T. Q.E.D.

The following two propositions give some useful additional properties
of V.

Proposition 1: If x,y ave in V, then either g(y) <x, ov x =y, or g(x) < y.

Proof: Suppose that g(y) € ¥ and ¥ # y. Then, by (iii), we have x < y.
Hence y £ x, and, again by (iii), we have g(x) <y, Q.E.D.

Proposition 2: If g(x) £ x, for every x in X\{1}, then L e( v\{1}) = 1.

Proof: If u 2(V\{1}) £ 1, then we have g(Llg(V\{1})) < Ll gt v\{1}), which is
impossible. Q.E.D.

III. Zorn’s Lemma We will now use Theorem 1 to prove Zorn’s Lemma,
in the following form, from the Axiom of Choice.

Zorn’s Lemma: Any partially-ovdeved set K without maximal elements
contains an unbounded chain.
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Proof: Let X be P(K), partially-ordered by the inverse of set-theoretic
inclusion. Let f be a choice function on K, and let g be the function on P(K)
defined by:

{xeK|AT)<x} , T#9¢
g(T) =
¢ ’ T=¢ .

Lemma 1: The function g satisfies condition (i) of Theorem 1.

Proof: Suppose that g(T) 2 U, where T,U are in P(K). We wish to show that
g(T) 2 g(U). This is clearly true if U = ¢. I U # ¢, then by assumption f(U)
is in g(7T), that is, f(T) < f(U). Consequently we have g(T) 2 g(U), by the
transitivity and antisymmetry of < in K. Q.E.D.
Now let % represent the sub-family V of P(K) which is provided by
Theorem 1. The following two lemmas complete the proof of Zorn’s
Lemma.

Lemma 2: A(7 \{¢}) is a chain in K.

Proof: This lemma follows immediately from Proposition 1 and the reflex-
ivity of < in K. Q.E.D.

Lemma 3: A(7\{¢}) is unbounded.

Proof: Since ¥ satisfies the hypothesis of Proposition 2, we have ng(7/ \
{¢}) = ¢. Consequently any upper bound of /(7 \{¢}) must be in A2 \{p}). But
for any Te? \{¢} we have g(T) = ¢, since K has no maximal elements, and
consequently we have f(T) < f(g(T)). Hence f(T) is not an upper bound for
Ffr\{gh. Q.E.D.

1V. Second Form of The Main Theovem In this section and the next a
slightly weaker form of the main theorem will be employed. I g isa
mapping on a partially-ordered set X for which ¥ <g(x), for every x in X,
then clearly g satisfies condition (i) of Theorem 1. It is also clear by
Proposition 1 that the set V of Theorem 1 is totally ordered, if g satisfies
this stronger condition.

Lemma 1: If T is a subset of the set V of Theorem 1,then either T has a
lavgest element, or else Ug(T) < Ur.

Proof: I T has no largest element, then UT # 9, for every ¥ in T. Hence
if y is in T, then there is some x in T such that x <y, so g(y) sx < UT.
Consequently we have Ug(T) < Ur. Q.E.D.

Lemma 2: Ifx < g(x), for every x in X, wheve g is the function of Theorem
1, and T is a subset of V, then eithev T has a lavgest element or else

Ugm = Ur.

Proof: Clearly we have Ur < Ug(T), so Lemma 2 follows immediately
from Lemma 1. Q.E.D.
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Corollary: If in Theorem 1 we have x < g(x), for every x in X, then U T is
in V, for any subset T of V.

We may now state the following weaker form of Theorem 1:

Theorem 2: If X is a partially-ovdeved set in which each subset has a
least uppev-bound, and g is a function on X such that x < g(x), for every x
in X, then theve is a chain V in X such that:-

@ U7 is in v, for every T c v,

o) gW)cv.

As a first application of Theorem 2 we will derive a variant of Zorn’s
Lemma from the Axiom of Choice. First we prove a fixed point theorem.

Theorem 3: Suppose that X is a partially ovdered set in which each subset
has a least-upper-bound, and that g is a function on X such that x < g(x),
Jor every x e X, If Y is a subset of X such that:

@ Ucisin Y, for every chain C in Y,

b) g¥)c7y,
then there is some y in Y such that y = g(y).

Proof: Consider the element U(V N Y) of Y, where V is the set V deter-
mined by Theorem 2. Since V N Y is a chain in Y, it follows that g( Uwn
Y))is in V N Y, so we have g( Uvnry < Uwny), Q.E.D.

Zorn’s Lemma: If X is a partially-ovdered set in which each subset has a
least-uppey-bound, and Y is a non-void subset of X such that UC isinY,
whenevey C is a non-void chain in Y, then Y is a maximal element,

Proof: We wish to show that Theorem 4 is a consequence of the Axiom of
Choice. Define a function g on X as follows: If ¥ is a non-maximal element
of Y, using the Axiom of Choice let g(x) be an element of Y such that x <
g(x). Otherwise let g(x) = x. It is clear that g satisfies the hypotheses of
Theorem 3, and that an element y of ¥ is maximal in Y if and only if g(y) =
y. Consequently the result follows from Theorem 3. Q.E.D.

V. The Well-Ovdering Theovem Theorem 2 will now be used, in conjunc-
tion with the Axiom of Choice, to prove the Well-Ordering Theorem. A
binary relation on a set S (i.e., a subset of S X S) is said to be a well-order
relation on S if it is a total-order relation and every non-void subset of S
has a smallest element with respect to it. We will call a binary relation on
a set S a quasi-well-ovder on S if every non-void subset of S has a smallest
element with respect to it. Such a relation need not be a partial-order. It
follows immediately from the Axiom of Choice that a quasi-well-order can
be defined on any set: if f is a choice function on a set S, then the relation

U [{A(T)} x T] is clearly a quasi-well-order on S. Our intention is to
P+TCS
‘“shrink’’ this relation down to one which is both a quasi-well-order and

anti-symmetric.



A THEOREM FOR DERIVING CONSEQUENCES 295

Proposition 3: An anti-symmelric quasi-well-ovder velation A on a set S
is a well-ovder on S.

Proof: We wish to show that A is a total-order. Since any one-element
subset of S has a smallest element, A is reflexive. Since any two-element
subset of S has a smallest element, any two elements of S are comparable.
Since any three-element subset of S has a smallest element, it follows from
the anti-symmetry of A that A is transitive. Q.E.D.

Well-Ordering Theorem: There is a well-ovder velation on any set S.

Proof: Let X be P(S), partially-ordered by the inverse of inclusion. Let f
be a choice function on S, and let g be the function on P(S) defined by:

T{AT)} , T#9¢
g(T) =
o, T=¢.

Now let ¥ represent the sub-family Vof P(S) which is provided by Theorem

2,and let 4 = U [{7(")} x V]. The following two lemmas complete the
vea\{o}

proof.

Lemma 1: A is a quasi-well-order on S.

Proof: Suppose that T is a non-void subset of S. We wish to find a Win
7 \{¢} such that 7(W)isin T and T S W. Let W be the intersection of all V
in % for which T C V. Wis in 7, by (a) of Theorem 2. If f(W) were not in
T, then we would have T C g(W) C W, which would contradict the definition
of W. Q.E.D.

Lemma 2: A is anti-symmetric,

Proof: Suppose that ¥ <y andy < %, for x,y in S. Then there is some V in
7 such that x = f(V) and » is in V, and there is some Win % such that y =
f(W) and x is in W. If f(V) # F(W), then £A(V) is in g(W)\g(V), and A(W) is in
g(V\g(W), which contradicts the comparability of g(V) and g(W). Hence
x= f(V)=f(W) =y. Q.E.D.

V1. Alternate Proof of the Well-Ovdeving Theorem In this section an addi-
tional property of the set V of Theorem 1 will be proved and then used to
give a different proof of the Well-Ordering Theorem. For each y in V, let
Iy = {xe Vlx <y}

Lemma: Suppose, in Theorem 1, that x < g(x), for every x in X, Then I, is
well-ovdeved by <, for every y in V.

Proof: Let T be the set of all elements y of V for which I, is well-ordered
by <. We wish to show that T is in the family J of Theorem 1. Let W be
an arbitrary subset of T. We wish to show that Iyy,y) is well-ordered.
Suppose that M is a non-void subset of Iy,w). K M = {Ug(W)}, then
clearly M has a smallest element. Otherwise there is some 7 in M such
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that < |} g(W), and, since V is totally-ordered, there must be some y in W
such that m < y. Since I, is well-ordered, the set of all elements of M
smaller than m is contained in I, and hence has a smallest element. This
element is a smallest element for M, since V is totally-ordered. Q.E.D.

Proposition 4: Suppose, in Theorem 1, that x < g(), for every x is X.
Then V is well-ovdeved by <,

Proof: Suppose that M is a non-void subset of V. Let y be an element in
M. The set of all elements of M smaller than y is contained in Iy and hence
has a smallest element, by the lemma. This element is a least element of
M. Q.E.D.
To show that any set S can be well-ordered, we again use the X, f, g, and 7
of the proof of the Well-Ordering Theorem in the preceding section. Since
v \{¢} is well-ordered, by Proposition 4, it suffices to show that the re-
striction f |7 \{9} of ftow \{¢} is a one-to-one correspondence between
7\{g} and s.

Proposition 5: The function f maps ¥ \{¢} into S.

Proof: We will use Proposition 2. Suppose that x is an element of S which
is not in f(¥\{¢}). Let % be the family of all sets V of % such that ¥ is in
V. I % is an arbitrary sub-family of %, then, since ¥ is not in 7 (7' \{¢}), »
is in g(V), for every V in %, and consequently x is in ng(U),so ng(U) is in
%. Hence %= ¥, by the technique of Theorem 1, and we have

xeNrecNe@\oh £ ,

which contradicts Proposition 2. Q.E.D.
Proposition 6: The restriction f|7\{¢} of f to ¥\{¢} is one-to-one.

Pyoof: Suppose, for V, W in ¥\{¢}, that f(V) = AW). Then we have g(V) D
wand g(W) P V, so by (iii) of Theorem 1 we have V 2 V and V2W. Hence
V=w. Q.E.D.

It is clear that the two well-order relations that have been defined on
S, the second being the image under f of the well-order on 7 \{gb} are the
same.

Columbus, Ohio





