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THREE AXIOM NEGATION-ALTERNATION FORMULATIONS
OF THE TRUTH-FUNCTIONAL CALCULUS

GEORGE GOE*

There are numerous formulations of the calculus of truth functions (so-
called propositional logic) of the traditional axioms-plus-rules-of-deriva-
tions type in current use. Yet each has a combination of features of its own
which gives it certain advantages for particular purposes, if only didactical,
or simply makes it the favorite of some logicians as a matter of personal
taste. It may still be of service, therefore, to record some more such sys-
tems which might be profitably used. The purpose of this communication is
to note the existence of very simple such logistic formulations of the truth-
functional calculus in which alternation is the primitive binary connective,
but which, unlike the familiar Hubert-Ackermann system, have only three
axioms (or axiom-schemata).

There are several negation-alternation primitive bases for the truth-
functional calculus with three or fewer axioms already recorded in print,
but they are hardly, if ever used; apparently, it is felt that objectionable
features in them make the reduction of the number of axioms from the
Hilbert-Ackermann system, or the retention of alternation as the primitive
binary connective, for whatever merit is seen in it, not worthwhile.1 A dili-
gent search has failed to reveal that any of the systems to be presented here
have been proposed before; they are all very similar to each other, and we
will hence treat one, which we will refer to as the system Σo, as basic and
consider the others as variations of it.

We will use familiar vocabulary and formation rules for the object lan-
guage, with ζ~' and V as our primitive connectives; for the abbreviation of
wffs, besides the omission of parentheses, we will have occasion to employ
only ' D ' as a defined connective in the usual manner.

As is the case for all such logistic systems, there are of course two
versions of Σo (and of each of its variations), namely with a finite or an in-
finite axiom set respectively. For the purpose of this presentation we adopt
a finite axiom set—there is no intent thereby to express a preference for
this approach over the one using axiom schemata in all contextso Our rules
of derivation then are the usual substitution and modus ponens. We will, of
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course, use simultaneous substitution and other customary abbreviated pro-
cedures to indicate how the proofs are constructed rather than record the
latter line by line.

The axioms of Σo are:

Aol: p D (# v p)

A02: (pv(pv q)) => (q v p)

AQ3: (p D tf) => ((r v p) z> (r v q))

The first noteworthy point is that ζp v ~/>* can be proved from Aol and
Ao£ alone, namely by a single application of modus ponens after substituting
*~ρ9 for V in the first, and ζ~p' for <p', 'p' for V in the second. We
therefore record as our first proved theorem:

Tl: pv~p

In view of A03, the rule of hypothetical syllogism clearly holds in our
system as a derived rule of derivation, and we may use it in recording the
proofs in abbreviated form.

By hypothetical syllogism from A02 and the result of substituting (p v qy

for (p9 and ζp9 for ζq9 in Aol, we derive:

T2: {p v q) D (q v p)

From Tl and T2, by substitution and modus ponens, we derive ζ~p'v p9,
or, more briefly:

T3: p D p

By substitution and hypothetical syllogism from Aol and T2 we obtain:

T4: pZ) (p vq)

Notice the leeway that we have so far had in the order in which we could
have recorded the proved theorems. We could now also very simply prove
such basic theorems as e~~p Ό p9 and ζ{p D q) D (~q Z)~p)9, but being here
primarily interested in establishing the completeness of our system rapidly,
we will rather follow another path.

From T4 and A03, after the proper substitutions in the latter, we derive,
by modus ponens:

(P v p) D (p v (p v q))}

From this formula and AQ2, by hypothetical syllogism we obtain:

(pvp)Ό {q v p)

We combine once more this result with that of the proper substitutions in
A03 to derive, by modus ponens:

(q v (p v p)) D (q v (q v p))

Using hypothetical syllogism again on this last wff and the result of the
proper substitutions in A02, we next obtain:
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(q v (p v p)) D (/> v 4)

We now substitute ζ~(p v p)' for 'q' in the conditional just derived, and then

drop the antecedent, which is derivable by substitution from T3. We are

left with (pv~(p v pY, and a final application of modus ponens on this last

wff and the result of the proper substitutions in T2 gives us c~(p v p) v p',

or, more briefly:

T5: {pv p) Ώp

It is now clear that our system is complete, since T5, T4, T2 and AQ3

are the axioms of the Hilbert-Ackermann system, which is known to be

complete.

The axioms in our system are independent. We can establish the inde-

pendence of Aol, AQ2, and A03 in Σ o by means of the same matrices which

serve to show the independence of the second, third, and fourth axioms re-

spectively in the Hilbert-Ackermann system.

We will now consider possible variations of our system Σo, keeping the

rules of derivation fixed, and modifying only its axioms, really only the first

two.

The system Σx has the following axioms:

Ail: p D(/> vq)

Aλ2: (qv{pv q)) => (p v q)

Aι3: {p Ώq) D (( r v p) z> ( r v q))

As in our first system, 'pv~p' can be proved in Σ1 from the first two a x -

ioms alone, by modus ponens, after substituting ζ~p* for ζq' in both of them,

but the proof of a variant of the third axiom of Principia is slightly longer

than before: we must first apply modus ponens to Axl and the result of

substitutions in AX3 to obtain '{q v p) D (q v (p v q))', and then use hypotheti-

cal syllogism on this wff and AX2. For the rest, the development of Σx

closely parallels that of Σo, though the unabbreviated proof of ((p v p) z> p'

is yet another couple of lines longer in it than in Σ o . These are minor dif-

ferences, and one might conceivably feel that in some respects Σx is the

more elegant of two systems.

For the record, we note the following other variations of our original

system which preserve its completeness, displaying only their axioms, for

the rules of derivation remain the same:

Σ2:

A21: p D(/> v q)

A22: (p v{p v q)) Z) (q v p)

A23: (p D q) D ((r v p) D ( r v q))

Σ 3 :
A31: p D (q v p)

A32: (pv (q v p)) z> (p v q)

A33: {pDq) D ((r v p) D ( r v q))
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Σ4:

AA1: P^(p vq)

A42: ((q v p) v q) D (p v q)

A43: (p D #) D. ((r v />) D (r v #))

5* Λ5i: p ' ( f vq)

A52: ((p v q) v q) ^ (q v p)

A53: (pΏq) 3 ((r v />) D (r v #))

It appears to this writer that the axioms in at least some of these last
systems are in themselves somewhat less elegant or simple sounding than
those in Σo or Σ x . All of these last four systems lack the elegant feature,
present in Σo and Σl9 of permitting 'p v ~p9 to be proved from the first two
axioms alone, and there is no compensatory feature for this loss in their
development: in each of them, though in different degrees, it takes more
steps to prove all theorems which are not axioms and that we recorded as
proved theorems in Σo that were needed to prove our theorems in that sys-
tem. It seems therefore that there is no reason why one would prefer Σ2,
Σ3, Σ4, or Σg to either Σo or Σ1 §

NOTE

1. In the 2nd edition of A. N. Prior's Formal Logic (Oxford: At the Claren-
don Press, 1962), p. 305, are listed five such three-axiom negation-
alternation systems, respectively labeled as (a), (b), (c), (d), and (e); it
appears that these are all those recorded to date. As for the probable
reasons for their non-adoption: in (a) and (e) the axioms are intricate,
with three distinct statement letters in each; the axioms in (c) and (d),
while not actually longer than the first, second, and fourth axiom of the
Hilbert-Ackermann system respectively, have a certain artificial com-
plexity which contrasts unfavorably with the latter's naturalness and in-
tuitiveness, or with the magnificent simplicity of the Lukasiewicz three-
axiom negation-conditional system to which especially (d) resembles;
(b) may possibly be regarded as free of the latter defect, but the early
proofs in the development of the calculus in this system are excessively
elaborate (cf. H. Rasiowa, "Sur un certain systeme d'axiomes du calcul
des propositions" [Norsk Mat. Tidskrift, v. 31, pp. 1-3 (1949)], in which
the completeness of the system was first proved, or A. Church, Intro-
duction to Mathematical Logic [Princeton, N. J., 1956], p. 138, ex. 25.5).

Prior also lists two-axiom and one-axiom negation-alternation sys-
tems for the truth-functional calculus {loc. cit.), all due to C. R. Mere-
dith. The axioms, of course, become even more complex with the further
reduction in their number, though substitution and modus ponens are still
the rules of derivation.
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