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THE GODEL THEOREM

An Informal Exposition

NORWOOD RUSSELL HANSON

Gόdel demonstrates that any logical system which includes Arithmetic
must be incomplete. For within such a system there will always be (well-
formed, meaningful) formulae % , which are 'undecidable',—such that neither
% nor ~ % is a theorem. Thus no decision procedure exists for Arithmetic;
indeed if one did exist Arithmetic would be contradictory, — this is the crux
of Gόdel's proof. Hence, if Arithmetic is consistent it must be incomplete.

The original proof of this is very difficult. Most informal expositions,
however, convey too little of the power and ingenuity of GodeΓs argument.
Perhaps we can steer a middle course. Our aim will be intelligibility with-
out undue sacrifice of rigour. The actual deduction (IV) presupposes a prior
discussion of I. Decision Procedure, II. Recursive Functions and III. The
Arithmetization of Logical Syntax.

I. DECISION PROCEDURE

General Notions:

A formal mathematical system consists of symbols, and rules for their
manipulation.

Primitive (undefined) terms are the individual symbols.
Formulae are finite sequences of primitive terms.
Meaningful formulae are symbol-sequences constructed according to the

rules of the system.
Axioms (primitive formulae) are a sub-class of all the meaningful for-

mulae.
A rule of inference (R) defines the relation of 'immediate consequences

by R' between a set of meaningful formulae (premises) and a further
meaningful formula (conclusion). This R may be 'from 21 and 21D58
infer 33 '.

A finite procedure must be available for determining whether a formula
is meaningful, or whether a conclusion is an immediate consequence
of a set of premises.
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A proof consists in a finite sequence of meaningful formulae. Each of
these formulae is either an axiom or an immediate consequence of
preceding formulae. The last member of this sequence is the theorem
proved.

A provable formula (a theorem) is a meaningful formula for which a proof
exists.

The formal system is complete if for any meaningful formula 5 , either
% or - ^ is a theorem.

^Effective': Ideally, a formal system should provide an effective cri-
terion for the recognition of genuine formulae, proofs and theorems. From
direct inspection (and from following fixed directions as to symbol-manipu-
lation), it should be possible to determine 1) whether a finite sequence of
primitive terms is a (meaningful) formula, 2) whether a finite sequence of
formulae is a proof, and 3) whether a certain formula is a theorem, i.e. a
strict consequence of a given set of formulae. The test of whether a finite
sequence of formulae is a proof of the final formula is effective. We can al-
ways determine whether a formula is primitive (an axiom), or is a theorem.
Direct inspection (and the following of rules as to symbol-manipulation) is
sufficient for this. If it were not, no 'proof would be compelling; one could
always challenge a proof by asking for a proof that it was a proof, ad indefi-
nitum. However, the test of whether a given formula is a theorem (by the
criterion above, that it is a theorem if a proof of it exists), this test is not
in general effective. Failure to find a proof of % may derive from a lack of
ingenuity rather than the actual non-existence of a proof.

Decision Procedure: The problem of supplying an effective test by
means of which it can always be determined whether a formula (of a certain
system) is a theorem, constitutes the decision problem for that system. Sup-
pose that 'the system* is the propositional calculus of Principia Mathe-
matica. The decision problem here is usually solved by the truth-table
decision procedure. Thus, given a formula of the calcul s, and the assign-
ment of a truth-value to each of its variables, one can determine by a purely
mechanical process the truth-value of the entire formula. This procedure
does not depend on ingenuity (as does the actual deduction of a given for-
mula from a set of primitive formulae). One has only to apply the truth-table
rules; the decision whether a given formula is or is not a theorem is made
automatically. If for all possible assignments of truth-values, the calcu-
lated value for the entire formula is T (truth), the formula is said to be a
tautology. The test of whether a formula is a tautology is an effective test;
the number of possible alternative assignments of truth-values to variables
is finite. The truth-value of the entire formula can be calculated for every
assignment of truth-values to the variables. Hence, the test whether a
formula is a tautology provides a solution to the decision problem of the
propositional calculus, [it will appear that there is no such solution to the
decision problem of Arithmetic]
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II. RECURSIVE FUNCTIONS

General Notions:

x, y, z, . . . non-negative integers
π, φ, ψ, . . . functions of one or more integers

n some particular x, y or z
S the successor function;

(J_y) (3x) \ . . for all y there is an x such that . . .'
μ k 'the smallest k sucli that . . .'

tRecursive'ι The simplest example of proof by recursion is the proof
that every non-negative integer has some property π; 1) that 0 has π and
2) that if x has π then (x + 1) also has 7Γ.

* Primitive Recursive9:

1. A (monadic) function π is defined by primitive recursion in terms of
a (dyadic) function φ by the equations:

π (0) = n

π (S (*)) = φ (x, π (x))

2. And a (dyadic) 0 may be defined by primitive recursion in terms of a
(monadic) TΓ, and a (triadic) r̂, by the equations:

φ (x, 0) = π (x)

Φ (*, S (y)) = t/r (x, y, φ (x, y))

which hold for all, x and y.
3. Consider e.g., Peano's definition of addition:

x + 0 = x

x + S (y) = S (x + y)

This comes under the general form of definition by primitive recursion,
where π (x) - x, and where ψ (x, y, z) = S (*).

4. Another example is Peano's introduction of multiplication by the
pair of equations:

x xO = 0

x x S (y) = (x x y) + x

Addition is taken as previously defined, and π (x) = 0, while ψ (x, y, z) =
z + x.

5. In general a function from non-negative integers to non-negative
integers is primitive recursive if it can be obtained according to the follow-
ing scheme:

i) The function φ (x^ . . . xn) is composite with respect to ψ (x^ . . .
xn) and 77z (x_j . . . xn), — where i = 1, . . . n, — if, for all natural
numbers x^ . . . x^,
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Φ (x1 . . . x n ) = ψ {π1 ( * 2 . . . x n ) πn.(Xl . . . x n ) )

i i ) T h e f u n c t i o n φ (x^ . . . x n ) i s r e c u r s i v e w i t h r e s p e c t t o ̂  ( x , . . .
x n ~ l ^ a n ( * ^ ( χ 2 * * ' X t t + l ) ^ » ̂ OΓ ^ n a t u r a l n u m b e r s k , x 2 . . . x n ,

φ { 0 , x 2 . . . x n ) = ψ ( x 2 . . . x n )

φ (k + 2, X2 . . . χn) = 77 (*, 0 (*, X2 . . . χπ), X2 . . . *„)

Then the class of primitive recursive functions consists of just those
functions which can be generated

by substitution according to i) above
by recursion according to ii) above
from the successor function S
from constant functions C(such that C(x) = 0 for all non-negative x)

and from identity functions U (such that Vin(
χi x

n)= xj> where i 5n)

In other words, φ is primitive recursive if there exists a finite sequence
of functions φ^ . . . φn which terminates with φ such that each function of
the sequence is (with respect to preceding functions), as i) above, or as
ii) above, or is itself S, or C, or U.

6. Recursive functions have this very important property: for each given
set of values of the arguments, the value of the function can be computed
by a finite procedure.

7. A relation is recursive if the function representing it is recursive.
Hence recursive relations (i.e. classes) are decidable: for each set of
natural numbers, it can be determined by a finite procedure whether or not
the relation holds (i.e. whether or not the number belongs to the class).

^General Recursive9: The discussion of primitive recursion above was
only preparatory. It is general recursion (or its equivalent) which is re-
quired in any proof of the Gδdel theorem.

1. The notion of primitive recursion rests on what is involved in show-
ing a single function φ to be primitive recursive. But consider a situation
in which several functions are introduced simultaneously by a single set
of recursion equations (as if Peano had defined V and V simultaneously,
in terms of a function φ, by a complex of three equations).

2. Suppose ψ (y) and π (x) are given (primitive) recursive functions.
And suppose we seek to define the function φ (x> y) by the relations:

φ (0, y)=ψ (y) ,

<£(*+ I,0) = τr(x) ,

φ (x + 2, y + 1) = φ (x, φ (x + 2, y))

[This is an example of definition by induction with respect to two variables
simultaneously.] But, as so defined, the function φ is not in general re-
cursive in the limited sense of 5, ii above. To obtain precision with respect
to such functions φ we must generalize our idea of 'recursive'; we must
make the scheme of 5 above more general. The consideration of various
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sorts of functions defined by inductions leads to this question: what would

one mean by the expression * every recursive function'?

3. As a first approximation this definition may help:

if φ denotes an unknown function, and ψ. . . . ψ are known func-

tions, and if the ψys and the φ are substituted in, or for, one another (in

the most general manner) and certain pairs of the resulting expressions are

equated, then if the resulting set of functional equations has one and only

one solution for φ, φ is a (general) recursive function.

Thus if in φ (x, 0) = ψχ (x)

φ (0, y l) = ψ2 (y)

φ(l,y D = ψ3(y)

φ(x2,y 1) = ψ4 (φ (*, y + 2), φ (%, φ (*, y + 2)))

there proves to be but one and only one solution for φ, then φ is general

recursive.

4. More exactly, φ (x) is general recursive if

i) there are two primitive recursive functions π and ψ such that

(Ly)(lχ)(ψ(y,χ) = θ), and

ii) φ (x) = π (μ k, ψ (x, k) = 0)

Thus φ (x) is general recursive if there exists a set of equations from

which it could be mechanically deduced that for

Φ (0) = k0

^General Recursive* and %Effective*\ This 'mechanical' feature of de-

termining whether a function φ (x) is general recursive is very important.

It begins to suggest how the ideas of 'effectiveness* and 'decision proce-

dure' tie in with certain aspects of general recursive functions. We will

anticipate the next two sections with a few general remarks here.

We require a decision procedure to be mechanical, — independent of an

individual's ingenuity. Unless it provided an effective, mechanical way of

computing the truth-value of all of its possible formulae the propositional

calculus would not be said to possess a decision procedure, which (in the

form of the truth table) it does. But we have just seen that a function φ (x)

is general recursive only if it can be derived mechanically from an existing

set of equations by the most general recursive methods. This immediately

suggests the following possibility: A formal system will be described as

'complete' only if it fulfills certain requirements. It might be possible to

express these requirements in terms of the properties of some suitably speci-

fied (numerical) function φ which, if φ can be shown to be general recursive

this will be tantamount to demonstrating the completeness of the system.

That is, the system will possess a φ capable of indicating whether (for any
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well-formed formula £V) $ or ~ £$: is a theorem, [if, however, φ is demon-
strably not derivable from the equations of the system, the latter will have
been shown to lack a decision procedure, and hence will be incomplete.]

With the aid of Gδdel's ingenious device of representing formulae and
sequences of formulae by means of numbers (to be explained in the next
section), it is possible to define 'effectiveness* in the more exact sense
suggested above. This is done by making the idea correspond to that of
the recursiveness of numerical functions. Hence the decision problem of
Arithmetic is just the problem of determining a general recursive function
of an argument such that if the argument of the function is the Gόdel number
of a (well-formed) formula 'fa then the value of the function must be either
0 (i.e. % is a theorem or axiom) or 1 (% is not a theorem or axiom, but
~ ££ zs), but not both of course. The traditional assumption had been that
in any consistent formal mathematical system every well-constructed «' was
decidable, i.e. either δ or ~ jξ could be proved to be a theorem or an axiom.
It was also assumed that for every such system there could be discovered a
technique (like the truth-table procedure) by the use of which one could de-
termine of any ^ > whether it or ~ § w a s a theorem or axiom of the system.
This was the assumption that every such system was complete.

Gό'del proved that there is no general recursive function of the type
specified above. If there were, Arithmetic would be inconsistent. There
are Arithmetic formulae § which, though well-formed and hence mathemati-
cally meaningful, are yet not decidable; neither % nor ~ % can be demon-
strated as a theorem. Hence can be no generally effective decision proce-
dure for Arithmetic, — Arithmetic is incomplete. The next section will make
possible an elucidation and proof of these important theses.

III. THE ARITHMETIZATION OF LOGICAL SYNTAX

Any proof of Gόdel's Theorem requires the use of two logics. One of
these is the logic of the formal system which includes Arithmetic, ('the
Arithmetic system'). This is the system about which the Theorem is proved.
The other logic is that in which the Theorem is proved.

One of GόdeVs discoveries was of a single notation in which both
these logics could be expressed. In what follows, the meaning of the sym-
bols involved is immaterial. It is even desirable that questions of meaning
should be ignored or suppressed. Notions which have to do with the purely
formal aspects of the Arithmetic system may be called 'metamathematical'.
In other words, we are going to undertake a metamathematical proof of a
theorem (Godel's) about the Arithmetic system. Gόdel expresses the logics
of both the Arithmetic and the meta-arithmetic systems in one notation, as
follows: we require a logic consisting of these symbols:

0 'zero' (the number)

S *. . . is the successor of . . .'

= *. . . equals . . .'



100 NORWOOD RUSSELL HANSON

~ 'not . . .'

v '. . . or . . . '

. '. . . and . . .'

-» '. . . implies . . .'

= '. . . implies and is implied by . . . '

I 'all . . . such that'

3 'there is at least one . . . such that*

μ 'the smallest . . . such that*

( 'bracket' (opening)

) 'bracket* (closing)

plus an infinite set of variables in each of an infinite set of types

(e.g. for propositions, A, B, C . . . for numbers, x, y, z . . . for

functions, π, φ, ψ,. . . for classes, Π, Φ, Ψ, . . . etc.)

Numbers are now ordered these symbols:

0 1

S 2

3

4

v 5

6

7

= 8

1 9

a io

μ 11

( 12

) 13

Pa primes greater than 13 to variables of type ce

Next, numbers must be assigned to formulae, as follows: suppose

Xj9 *2> * ' ' xn t o ^ e t n e numbers of the symbols of formula % (in the order

in which they occur in % ). And let Pv P2, P3, . . . Pn be the first n primes

(in order of increasing magnitude). Then the number assigned to % will be

P 2

X j , times P*2y t i m e s pζ?>^ % % # t i m e s p*n
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For example, let us arithmetize in this manner the formula

<*) G y) (S (y, *))

['Every number has a successor'] According to our numbering scheme above
the symbols of this formula may be numbered thus:

( * ) ( 3 y ) ( S ( y * ) )

12, 289, 13, 12, 10, 17, 13, 12, 2, 12, 17, 289, 13, 13.

so that the number of the formula itself is

212 times 3289 times 513 times 712 times II10 times 1317 times 1713 times

1912 times 232 times 2912 times 3117 times 37289 times 4113 times 4313

an enormous number, — but nonetheless uniquely computable as the number
of the formula in question. Let us call this the Gόdel number ('the G-num-
ber') of (x) Q y) (S (y, x)). For every possible formula within this logic a
Gόdel number is thus assigned. (This could be proved) And once a Gόdel
number is assigned to a formula, the formula can always be found as follows:

Factor the number into its prime factors.
Then the number of 2-s occurring in the factorization is the number

of the first symbol of the formula, the number of 3-s occurring
is the number of the second symbol of the formula, the number
of 5-s occurring is the number of the third symbol of the for-
mula . . . etc.

Thus if the G-number of (x) (j| y) (S (y, x)) is factored into its prime
factors there would be twelve 2's in the factorization, hence 12 would be
the number of the first symbol of the formula, — ' ( ' . There would be two
hundred and eighty nine 3's, so 289 is the number of the formula's second
symbol, — '#', . . . and so on. Similarly to each proof β̂ we order the in-
teger which corresponds to the sequence of the integers ordered to the mem-
ber-formulae of ^ . Then a one-to-one correspondence is determined between
formulae (proofs) and a subset of the positive integers. After G-numbers
have been assigned thus to formulae and proofs, one may proceed to define
various metamathematical classes and relations of positive integers, — in
fact there is one corresponding to each class and relation of formulae. (This
too could be proved).

x then is a G-number if there is a formula, or proof, to which x corre-
sponds in the following manner:

if Φ is a property of formulae, we can find a property φ of numbers
such that a given formula $ has the property Φ if and only if
the G-number of S (in this case, x) has the property φ.

If the property Φ of formulae is properly chosen we can express within
the Arithmetic system the proposition 'the number x has the property φ' P
Furthermore, if x is the G-number of a formula S of the Arithmetic system,
then we are also expressing in that system a. metamathematic statement
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about a formula of that system. All this can be put in for form of the fol-
lowing basic lemma:

Let *φ (x)9 be expressible in the Arithmetic system. Then, if that
system is suitably specified, see 'Proof IV, 3), it contains a formula §
with a number n such that % expresses *φ (n)'. And since (in this system)
n has the property φ if and only if 0 8 has the property Φ, it follows that
% expresses ' 5 has the property Φ*. This is an expression in the arith-
metic system which expresses a statement about a formula of the system.
With this lemma, and the technique of Arithmetization, we can now proceed
to express in the notation of the Arithmetic system many metamathematical
statements about the system.

For example, suppose I wish to assert that the Arithmetic system is
free from contradiction. And suppose that φ is such that x φ y shall mean
that x and y are G-numbers and that the proof of which x is the G-number is
the proof of the formula of which y is the G-number. Then, as a proposition
of the Arithmetic system 1 can write:

(x, y, z) [~ (x φ z and y φ Neg. (z))]

i.e., for all natural numbers x, y, and z, it is not the case that x represents
a proof of the formula ^ , while y represents a proof of ~ %; — z is the G-
number of %. This formula, of course can be arithmetized still further (as
was (x) (I y) (S (y, x)) above). As stated, it has a uniquely computable
G-number. We are now prepared to prove GόdePs Theorem, — and to this
important task we turn directly.

IV. INFORMAL PROOF

1. Assume that there is a decision procedure in Arithmetic; — assume, that
is, that any formal system which includes Arithmetic is complete^ Then,
every well-formed formula u of the system is decidable. Every % either
is, or is not, a theorem, — and this is, in principle, demonstrable.

2. Then, according to our account of decision procedure (I) and recursive
functions (II), there is a general recursive function φ such that for any
(well-formed) formula ?5 of which n is the G-number, either

φ (n) = 0 (i.e. the expression of which n is the ^
Godel number is a theorem)

i.e. every
or V well-formed

'% is decidable
φ (n) = 1 (i.e. the expression of which n is the

Godel number is not a theorem >

but not both, of course, — not if Arithmetic is to be consistent. Accord-
ing to an important lemma of Godel all general recursive functions are
expressible in the notation of the Arithmetic system. Thus φ (n) can be
expressed in purely arithmetic notation.
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3. It was stated earlier that the Arithmetic system must be 'suitably spec-
ified*. It must, that is, fulfill the following condition:

Ψ (P> P) = a is expressible (is well-formed) in the system, — where
\jj (x, y) is the function described as follows.

4. ψ (x, y) is the G-number of the formula % got by taking the formula of
which x is the G-number and replacing in that formula every free occur-
rence of v with the number y.

Furthermore, the arithmetical analogue of the syntactical operation
of substitution can be defined rigorously within the notation of the Arith-
metic system, according to the program set out in section III. So the
operation of replacement (substitution) required in 4. is expressible in
arithmetic.

5. Thus ψ (x, y) is the G-number of a well-formed formula $ and may be
dealt with as follows:

replace x with p
replace y with p

Thus:

ψ (x, y) = ψ (p, p)

Thus ψ (p, p) is the G-number of %
6. But, by the same argument, — now replacing p with v:

ψ (p, p) = ψ (v, v)

Thus ψ (v, v) is the G-number of %
7. So ψ (v, v) is a number (by 6)

And φ is expressible in arithmetic notation (by 2)
Then, if φ (n) = 1 is a well-formed formula of arithmetic (which by 1 and

2 it surely is) then

φ ίψ (v, v)] = 1 is a well-formed formula of Arithmetic.

8. But since φ [iff (v, v)] = 1 is an Arithmetic formula, it must have its own
G-number (Cf. section III above), — and we shall say that this number
is p.

The G-number of φ [ψ (v, v)] = 1 then, is p.

9. Again, v may be replaced by p, giving

Φ iψ (P> P)] = l

an Arithmetic formula whose G-number is q.

Recapitulation

φ [ψ (v, v)] = 1 has p as its G-number
and

φ ίψ (p, p)] = 1 has q as its G-number
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So that if the formula of which q is the G-number were a theorem we could

assert (by 2)

Φ (q) = 0

From this we could assert, as a theorem, the formula

φ iψ (p, P)\ = 1

which is, after all, just the formula of which q is the G-number, — a formula

we have just supposed to be a theorem. (These moves are important for

steps 13 and 14 below).

10. Refer now to step 4: it described §r as the formula got by taking the

formula of which p is the G-number (we now know this to be φ [ψ (v, v)] =

1) and replacing in that formula every free occurrence of v with the num-

ber p. The result of this substitution would be

φ ίψ {p. p)] = l

so this is the formula % .

11. But ψ (x, y) is the G-number of % (by 4)

Hence φ (p, p) is the G-number of o (by 5)

However, q is the G-number of \ξ (by 9)

Therefore,

Ψ (p> P) = q

(by the 'principle' that two numbers which are the G-number of the same

formula are the same number, Cf. section III).

Recapitulation

(by 8) φ [ψ (v, v)] = 1 has p as its G-number

(by 9) φ [ψ (p, p)] - 1 has q as its G-number

(by 11) [ψ (p. p)] = q

12. Refer now to our assumptions in steps 1 and 2.

There is a decision procedure in Arithmetic; every well-formed %

is such that, if n is its G-number.

either φ (n) = 0 Λ , L L

^ 1 but not both
. , x . Γ (i.e. Arithmetic is consistent)

or φ (n) = 1 J

Well, φ [ψ (p, p)\ = 1 is a well-formed ^ (by 7), and q is its G-number.

So either φ (q) = 0, or φ (q) = 2.

13. Suppose that

φ (q) =0 (i.e. the 5 of which q is the G-number is a theorem)

(hence by 9)

Φ [ψ (P> P)\ = ί U e this is j u s t ^ e assertion as a theorem of the %

of which # is the G-number)
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(but then substituting, by 11)

φ (q) = I (the % of which q is the G-number is not a theorem)

13, however, proves only that φ (q) ~ 1, by the simple principle of

reductio ad absurdum:

if (φ (q) - 0) entails - (φ (q) = 0), then ~ (φ (q) = 0).

[i.e. [φ (q) = 1]]

We may at this point regard φ (q) = 1 as a theorem, a formula which we

can prove even when we assume its contradictory (as was done in 13).

To establish the incompleteness of the Arithmetic system (i.e. that

the system lacks a decision procedure) we must also prove:

[(φ (q) = 1) -> - (φ (q) = ! ) ]->- (φ (q) = 2),

[i.e. φ(q) = 0]

This we now proceed to do, making the reductio ad absurdum argument

of 13 'complex*.

14. (by 13)

φ (q) = 1 (i.e. this is a theorem which states that the % of

which q is the G-number is not a theorem)

(hence by substituting, 11)

φ ίψ (P> P)\ - 2 (i.e. since q - ψ (p, p) we have here the same the-

orem.) But since the G-number of this theorem

is q (by 9)

it follows that

Φ (q) = 0

15. Thus if *φ (q) - 0' is represented by κ<$\ we have proved that

[ ( $ - - $ ) - - $ ] and [ ( - $ - $ ) - » $ ]

If there were a decision procedure in the Arithmetic system (if there

were a φ such that when n is the G-number of a well-formed ^ , either φ (w) =

0 or φ (n) - 1) then Arithmetic would be radically inconsistent.

Hence if the Arithmetic system is consistent * then it cannot contain a

decision procedure. Arithmetic formulae % can always be constructed such

that neither % nor ~ % is a theorem.

This is Gδdel's Theorem and we may now take it as proved. A few

general remarks about the importance of this discovery will conclude this

exposition. A corollary of the Theorem is that in every formal arithmetical

system a real number can be constructed which cannot be defined in the sys-

tem. This is a proposition which few mathematicians before 1930 would

have countenanced. An enormously important consequence of the Theorem

(which is implicit in steps 13-15 above, but will not be proved separately) is

this: the consistency of a formal mathematical system can never be demon-

strated by the methods of that system.
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Historically, this proposition is significant as having destroyed the
metamathematical program known as 'Formalism*. Following Hilbert, the
Formalists denied that the meaning of mathematical theorems accrues to
them in any essential way from the nature of logic, a thesis to which the
names of Frege, Russell and Whitehead had been appended.17 For the For-
malists pure mathematics is simply the science of the formal structure of
symbols. The 'meaning* of mathematical theorems consists in exhibiting
the structure of the systems in which they are theorems. So Hilbert and his
collaborators came to conceive of all of mathematics in the form of rigorous-
ly symbolized theorems, deduced from (partially) uninterpreted axioms. The
validity of these deductions was thought to be guaranteed by a second sci-
ence, — 'metamathematics', — whose subject-matter is mathematics proper,
and whose aim is to demonstrate the self-consistency of mathematics (using
only elementary and indubitable methods of arithmetic). Could metamathe-
matics but achieve this, mathematics proper would ensure its own validity.
It could be regarded as an internally rigorous formal system of completely
indeterminate external reference. It would exhibit by the multiplicity and
interconnexion of its own symbols the structure of all possible formal sys-
tems. It looked as if Hubert's program might succeed. A general proof of
the consistency of Arithmetic was obviously the first requirement. And,
indeed, this began to seem thoroughly demonstrable. It appeared that the
consistency of elementary number theory (arithmetic, including logic), could
be proved by a metamathematical inquiry which used only a part of the as-
sumptions of the theory.

As has been shown, Gδdel, making these same assumptions, demon-
strated the impossibility of proving the consistency of any elementary num-
ber theory within the theory itself. Instead, any consistency-proof requires
new methods which are not expressible in the system itself. In the history
of mathematical thought Gό.del's discovery must rank with the Pythagorean's
proof of the incommensurability of the diagonal to the side of a square. Both
discoveries demanded profound readjustments in the very conception of the
nature of mathematics. One further remark will conclude this paper. Gόdel's
Theorem should not be interpreted as a proof that there are mathematical
problems which are finally and definitely undecidable. It asserts only that
the concept decidable always refers to a definite formal system. If % is
undecidable in one particular system, the possibility is always open of
constructing a more comprehensive system. However, there is no single
system in which all arithmetic formulae could be decided, or in which all
arithmetical concepts could be defined.

'All mathematics can be formalized; but mathematics can never
be exhausted in any single system, — it requires an infinite se-
ries of discourses which get progressively more comprehensive.'^

So Gδdel's Theorem might be paraphrased: there is no completely for-
mal mathematical system.
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NOTES

1. Gδdel, K., Uber die formal unentschiedbare Satze der Principia Mathe-
matica und verwandter Systeme I, — Monatshefte fur Mathematik und
Physik, vol. XXXVIII (1931).

2. Russell, B., and Whitehead, A. N., (1910, 1925).

3. For E. L. Post (1936) and A. M. Turing (1937) an effective method of
solving a set of problems exists if one could build a machine which
would solve any problem of the set without human intervention (other
than the insertion of the question and (later) the reading of the answer).

4. This is equivalent to saying that every recursive function is an effec-
tively computable function, i.e. a function which can always be derived
mechanically from some existing set of equations. This was proved by
Church (1936) . . [it is in fact possible (due to a method discovered by
Frege, — 'Begriffsschrift' p. 60, — but claimed later by both Peirce and
Dedekind) to prove the actual existence of any function φ which satis-
fies the conditions expressed by an admissible set of recursive equa-
tions, φ may then be defined as: the function φ such that the recursion
equations with suitable quantifiers prefixed, hold. The reader may find
this fact helpful in IV, Cf. Kalmar (1940).]

5. Or rather, of any logical system which includes Arithmetic.

6. That these 5 are well-formed follows from this: they are formulae built
up recursively ('step by step') from elementary arithmetical propositions
which are obviously well-formed, — indeed, pre-eminently so, for they
are just tautologies. If these are not well-formed, then there is no
stable conception whatever of what it is for a proposition to be well-
formed. The undecidable 5 which Gδdel constructs are, as it were,
recursively reducible to these indubitable propositions.

7. *φy can denote 'is divisible by y', 'is a prime number', 'is the nth prime',
'is the nth member of the sequence of positive integers which x repre-
sents', — and many more complicated (recursively-defined, arithmetical-
ly-expressible) properties. E.g. Let 'Subst (& CY denote the expression
obtained from §[ by substituting c for each free occurrence of b in %.
Then ψ (x, y) may be a number having the property φ such that ψ (x, y)
is the G-number of the formula 5 , where ^ is the result of Subst (Sβ^),
— y being the G-number of the variable p, x being the G-number of the
formula 58. A φ with exactly this force is actually used in our informal
proof; it is explained more fully in IV. It is mentioned here only to in-
dicate that it is a φ rigourously expressible in the Arithmetic notation
above.]

8. I.e. the formula of which n is the G-number.

9. Hinted at but not proved in section III, and assumed without discussion
here.
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10. This is no great assumption since ψ (p, p) = q, (or its equivalent), could

be expressed in any logical system which might plausibly be said to

include Arithmetic. 2 + 2 = 4 would be one possible specification of

Ψ (P. P) = q.

11. p (the G-number) need not be distinguished from p (the ordinary arithme-

tic number). They have the same numerical value, i.e. they are the same

number, as was explained in III.

12. For details of this see Gδdel (1931), defs. 1-31, pp. 182-184.

13. δ will not actually be formulated until step 10, when its relations with

previous steps will have become clear.

14. Doubts as to the well-formedness of φ [φ (v, v)] = 1 may be resolved

when it is seen that this formula is of exactly the same logical form

(though not of the same logical type) as 4 — 3 = 1. Substitute *2* for

the vs in the formula such that ψ (v, v) = 2 + 2; then we have only to

interpret *φy as minus S (v) to get the simple result 4 — 3 = 2 (which is

arithmetically well-formed if any formula is).

15. Which no one would deny; indeed this has been an article of faith under-

lying the whole of the proof above.

16. Cf. Hilbert, D. (1899, 1904, 1918, 1925, 1928).

17. Hilbert formalizes logic and arithmetic together, without taking logic as

prior. In itself this is not opposed to the Frege-Russell-Whitehead view,

since the choice of primitive symbols in the formalization can be made

in more than one way. But for Hilbert, many of the theorems of the sys-

tem are ideale Aussagen, — mere formulae without meaning in themselves.

Frege and Russell, however, would give a meaning (as propositions of

logic) to all formulae of the system. This is the central difference be-

tween the Formalist and the Logistic schools.

18. Incidentally, GόdePs assumptions do not differ markedly from those of

Russell who 'solved* paradoxes of the Epimenides* variety by the re-

striction that no meaningful proposition can assert anything about itself.

Godel does construct propositions which assertions about themselves,

but which, — since they are arithmetic formulae which involve only re-

cursively defined functions, — are undoubtedly meaningful.

19. Carnap (1934).
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