FORMAL NONASSOCIATIVE NUMBER THEORY

DOROTHY BOLLMAN

1. Introduction. The logarithmetic, first studied by I.M.H. Etherington (see, for example, [2]), of a nonassociative algebra has been found to bear some resemblance to the arithmetic of natural numbers. In [1], Evans has characterized this logarithmetic (i.e. the arithmetic of the indices of powers of the general element in a nonassociative algebra) by a set of axioms analogous to Peano's axioms and calls the resulting system 'nonassociative number theory."

In this paper, we shall formalize these "Peano-like" axioms and develop some of the properties of nonassociative number theory as theorems of the formal theory. In the last section it will be shown that formal nonassociative number theory, \mathbf{N}, is both essentially undecidable and incomplete. This is accomplished by showing that \mathbf{N} contains an essentially undecidable subtheory.

Few of the proofs of the theorems of \mathbf{N} have all of the steps given. However, with the metamathematical remarks given, it should be an easy matter for the interested reader to supply complete proofs.
2. An axiom system for nonassociative number theory. We define \mathbf{N} (formal nonassociative number theory) to be the first-order theory whose only individual constant is a_{1}, whose only predicate letter is A_{1}^{2}, and whose only function letters are f_{1}^{2}, f_{2}^{2}, and f_{3}^{2}. We write 1 for $a_{1}, x_{1}=x_{2}$ for $A_{1}^{2}\left(x_{1}, x_{2}\right), x_{1}+x_{2}$ for $f_{1}^{2}\left(x_{1}, x_{2}\right), x_{1} \cdot x_{2}$ for $f_{2}^{2}\left(x_{1}, x_{2}\right)$, and $x_{1}^{x_{2}}$ for $f_{3}^{2}\left(x_{1}, x_{2}\right)$. The proper axioms of \mathbf{N} are the following:
(N1) $x_{1}=x_{2} \supset\left(x_{1}=x_{3} \supset x_{2}=x_{3}\right)$
(N2) $x_{1}=x_{2} \supset\left(x_{1}+x_{3}=x_{2}+x_{3}\right)$
(N3) $x_{1}=x_{2} \supset\left(x_{3}+x_{1}=x_{3}+x_{2}\right)$
(N4) $x_{1}+x_{2} \neq 1$
(N5) $\quad x_{1}+x_{2}=x_{3}+x_{4} \supset\left(x_{1}=x_{3} \wedge x_{2}=x_{4}\right)$
(N6) $x_{1} \cdot 1=x_{1}$
(N7) $x_{1} \cdot\left(x_{2}+x_{3}\right)=x_{1} \cdot x_{2}+x_{1} \cdot x_{3}$
(N8) $x_{1}^{1}=x_{1}$
(N9) $x_{1}^{x_{2}+x_{3}}=x_{1}^{x_{2}} \cdot x_{1}^{x_{3}}$
(N10) (Nonassociative Induction):

For any wf a of \mathbf{N},
$\vdash a(1) \supset\left(\left(x_{1}\right)\left(x_{2}\right)\left(a\left(x_{1}\right) \wedge a\left(x_{2}\right) \supset a\left(x_{1}+x_{2}\right)\right) \supset\left(x_{1}\right) a\left(x_{1}\right)\right)$
By using generalization and the "particularization rule," $(x) a(x) \vdash a(t)$, where t is free for x in $A(x)$, one can easily prove the

Lemma. For any terms t, s, r and u of \mathbf{N}, the following wfs are theorems of N .

```
(N1') t=r\supset(t=s\supsetr=s)
(N2') t=r\supset(t+s=r+s)
(N3') t=r\supset(s+t=s+r)
(N4') t+r\not=1
(N5') t+r=s+u\supset(t=s^r=u)
(N6') }t\cdot1=
(N7) t}\cdot(r+s)=t\cdotr+t\cdot
(N8') }\mp@subsup{t}{}{1}=
(N9') trs}=\mp@subsup{t}{}{r}\cdot\mp@subsup{t}{}{s
```

3. \mathbf{N} as a first-order theory with equality.

Proposition 1. If t, r, and s are terms of \mathbf{N} then the following wfs are theorems of \mathbf{N}.
(a) $t=t$
(b) $t=r \supset r=t$
(c) $t=r \supset(r=s \supset t=s)$
(d) $r=t \supset(s=t \supset r=s)$
(e) $1 \cdot t=t$
(f) $t=r \supset t \cdot s=r \cdot s$
(g) $t=r \supset s \cdot t=s \cdot r$
(h) $t=r \supset t^{s}=r^{s}$
(i) $t=r \supset s^{t}=s^{r}$
(j) $t \neq 1 \supset\left(E x_{1}\right)\left(E x_{2}\right)\left(t=x_{1}+x_{2}\right)$

Proof:
(a) Use ($\mathrm{N} 1^{\prime}$) and ($\mathrm{N} 6^{\prime}$).
(b) Use (N1') and part (a).
(c) Use ($\mathrm{N} 1^{\prime}$) and part (b).
(d) Use parts (c) and (b).
(e) Apply (N10) to the wf $a\left(x_{1}\right): 1 \cdot x_{1}=x_{1}$.
(f) Apply (N10) to the wf $a\left(x_{3}\right): x_{1}=x_{2} \supset x_{1} \cdot x_{3}=x_{2} \cdot x_{3}$.
(g) This can be proved by several applications of (N10).

An outline of the proof is as follows. Apply (N10) to the wf $a\left(x_{2}\right)$: $1=x_{2} \supset x_{3} \cdot 1=x_{3} \cdot x_{2}$ and thus prove

$$
\vdash\left(x_{2}\right)\left(1=x_{2} \supset x_{3} \cdot 1=x_{3} \cdot x_{2}\right)
$$

Denote by $\mathcal{B}\left(x_{1}\right)$ the wf

$$
\left(x_{2}\right)\left(x_{1}=x_{2} \supset x_{3} \cdot x_{1}=x_{3} \cdot x_{2}\right)
$$

Then prove that

$$
\beta\left(x_{1}\right), \beta\left(x_{4}\right), x_{1}+x_{4}=x_{5}+x_{6} \vdash x_{3}\left(x_{1}+x_{4}\right)=x_{3}\left(x_{5}+x_{6}\right)
$$

Then

$$
\mathcal{B}\left(x_{1}\right), \mathcal{B}\left(x_{4}\right) \vdash \mathcal{C}\left(x_{5}+x_{6}\right)
$$

where $C\left(x_{2}\right)$ is the wf

$$
x_{1}+x_{4}=x_{2} \supset x_{3} \cdot\left(x_{1}+x_{4}\right)=x_{3} \cdot x_{2}
$$

By (N4) and a tautology,

$$
\vdash \mathcal{C}(1)
$$

Hence by tautologies and (N10),

$$
\mathcal{\beta}\left(x_{1}\right), \mathcal{\beta}\left(x_{4}\right) \vdash\left(x_{2}\right) \mathcal{C}\left(x_{2}\right)
$$

Hence

$$
\beta\left(x_{1}\right), \beta\left(x_{4}\right) \vdash \beta\left(x_{1}+x_{4}\right)
$$

and by (N10),

$$
\vdash\left(x_{1}\right) \beta\left(x_{1}\right)
$$

(h) Apply (N10) to the wf $A\left(x_{3}\right): x_{1}=x_{2} \supset x_{1}^{x_{3}}=x_{2}^{x_{3}}$
(i) The proof is similar to that of part (h). This time denote by $\mathcal{B}\left(x_{1}\right)$ the wf $\left(x_{2}\right)\left(x_{1}=x_{2} \supset x_{3}^{x_{1}}=x_{3}^{x_{2}}\right)$ and denote by $C\left(x_{2}\right)$ the wf $x_{1}+x_{4}=x_{2} \supset x_{3}^{x_{1}+x_{4}}=x_{3}^{x}$. (j) Apply (N10) to the wf $a\left(x_{3}\right): x_{3} \neq 1 \supset\left(\mathrm{E} x_{1}\right)\left(\mathrm{E} x_{2}\right)\left(x_{3}=x_{1}+x_{2}\right)$

Proposition 2. \mathbf{N} is a first-order theory with equality, i.e.

$$
\vdash \mathrm{x}_{1}=\mathrm{x}_{1}
$$

and

$$
\vdash x_{1}=x_{2} \supset\left(a\left(x_{1}, x_{1}\right) \supset a\left(x_{1}, x_{2}\right)\right)
$$

where $a\left(x_{1}, x_{1}\right)$ is any wf and $a\left(x_{1}, x_{2}\right)$ is the result of replacing some, but not necessarily all, free occurrences of x_{1} by x_{2}, with the proviso that x_{2} is free for the occurrences of x_{1} which it replaces.

Proof: This follows from Proposition 1, parts (a), (b), (c), (d), (f), (g), (h), and (i), (N2), (N3), and Proposition 2.26 of [3].

4. Some theorems of \mathbf{N}.

Proposition 3. For any terms r, s, and t of \mathbf{N} the following wfs are theorems of \mathbf{N}.
(a) $t \neq r \supset t+r \neq r+t$
(b) $t \neq t+r$
(c) $t+(r+s) \neq(t+r)+s$
(d) $\quad\left(\mathrm{E} x_{1}\right)\left(\mathrm{E} x_{2}\right)\left(x_{1} \cdot x_{2} \neq x_{2} \cdot x_{1}\right)$
(e) $t \cdot(r \cdot s)=(t \cdot r) \cdot s$

Proof:
(a) By (N5)

$$
\vdash x_{1}+x_{2}=x_{2}+x_{1} \supset x_{1}=x_{2}
$$

Hence by a tautology,

$$
\vdash x_{1} \neq x_{2} \supset x_{1}+x_{2} \neq x_{2}+x_{1}
$$

(b) Apply (N10) to the wf $a\left(x_{1}\right):\left(x_{2}\right)\left(x_{1} \neq x_{1}+x_{2}\right)$
(c) $\mathrm{By}(\mathrm{N} 5)$

$$
\vdash x_{1}+\left(x_{2}+x_{3}\right)=\left(x_{1}+x_{2}\right)+x_{3} \supset x_{1}=x_{1}+x_{2}
$$

Hence

$$
\vdash x_{1} \neq x_{1}+x_{2} \supset x_{1}+\left(x_{2}+x_{3}\right) \neq\left(x_{1}+x_{2}\right)+x_{3}
$$

and by part (b) and Modus Ponens,

$$
\vdash x_{1}+\left(x_{2}+x_{3}\right) \neq\left(x_{1}+x_{2}\right)+x_{3}
$$

(d) Prove that

$$
\vdash((1+1)+1)(1+1)=(1+1)(1+1) \supset 1+1=1
$$

Hence

$$
\vdash 1+1 \neq 1 \supset((1+1)+1)(1+1) \neq(1+1)((1+1)+1)
$$

Then by (N 4) and Modus Ponens,

$$
\vdash((1+1)+1)(1+1) \neq(1+1)((1+1)+1)
$$

and hence

$$
\vdash\left(\mathrm{E} x_{1}\right)\left(\mathrm{E} x_{2}\right)\left(x_{1} \cdot x_{2} \neq x_{2} \cdot x_{1}\right)
$$

(e) Apply (N10) to the wf $a\left(x_{3}\right): x_{1} \cdot\left(x_{2} \cdot x_{3}\right)=\left(x_{1} \cdot x_{2}\right) \cdot x_{3}$

Hence addition in N is noncommutative and anti-associative and multiplication in \mathbf{N} is noncommutative and associative. The following proposition shows that both the right and left cancellation laws hold.

Proposition 4. For any terms t, r, and s, the following wfs are theorems of N .
(a) $t \cdot r=s \cdot r \supset t=s$
(b) $t \cdot r=1 \supset(t=1 \wedge r=1)$
(c) $t \neq 1 \supset t^{r} \neq 1$
(d) $\quad\left(t^{r}=t \wedge t \neq 1\right) \supset r \equiv 1$
(e) $t \cdot r=t \cdot s \supset r=s$

Proof:
(a) Apply (N10) to the wf $a\left(x_{2}\right): x_{1} \cdot x_{2}=x_{3} \cdot x_{2} \supset x_{1}=x_{3}$.
(b) Apply (N10) to the wf $a\left(x_{2}\right): x_{1} \cdot x_{2}=1 \supset\left(x_{1}=1 \wedge x_{2}=1\right)$.
(c) Using part (b) along with (N8) and (N9), apply (N10) to the wf $a\left(x_{2}\right)$: $x_{1} \neq 1 \supset x_{1}^{x_{2}} \neq 1$.
(d) Apply (N10) to the wf $a\left(x_{1}\right): x_{1} \neq 1 \supset\left(\mathrm{E} x_{3}\right)\left(x_{2}^{x_{1}}=x_{2}^{x_{3}+1}\right)$ to prove

$$
\vdash\left(x_{1}\right)\left(x_{1} \neq 1 \supset\left(\mathrm{E} x_{3}\right)\left(x_{2}^{x_{1}}=x_{2}^{x_{3}+1}\right)\right.
$$

Then use parts (a) and (c) to prove

$$
\vdash\left(x_{1} \neq 1 \wedge x_{2}^{x_{1}}=x_{2}\right) \supset x_{2}=1 .
$$

Then by a tautology,

$$
\vdash\left(x_{2}^{x_{1}}=x_{2} \wedge x_{2}=1\right) \supset x_{1}=1 .
$$

(e) Apply (N10) to the wf $a\left(x_{3}\right):\left(x_{1}^{x_{2}}\right)^{x_{3}}=x_{1}^{x_{2} \cdot x_{3}}$ to prove

$$
\vdash\left(x_{3}\right)\left(\left(x_{1}^{x_{2}}\right)^{x_{3}}=x_{1}^{x_{2} \cdot x_{3}}\right)
$$

Then

$$
x_{1}=x_{1} \cdot x_{3} \vdash\left(x_{2}\right)\left(x_{2}^{x}{ }_{1}=\left(x_{2}^{x_{1}}\right)^{x_{3}}\right)
$$

and hence

$$
x_{1}=x_{1} \cdot x_{3} \vdash(1+1)^{x_{1}}=\left((1+1)^{x_{1}}\right)^{x_{3}}
$$

By (N4) and part (c),

$$
\vdash(1+1)^{x_{1}} \neq 1
$$

Hence by part (d)

$$
x_{1}=x_{1} \cdot x_{3} \vdash x_{3}=1
$$

and thus

$$
\vdash \mathcal{B}(1)
$$

where $\mathcal{B}\left(x_{2}\right)$ is the wf $\left(x_{3}\right)\left(x_{1} \cdot x_{2}=x_{1} \cdot x_{3} \supset x_{2}=x_{3}\right)$. Then

$$
x_{1} \cdot\left(x_{2}+x_{4}\right)=x_{1} \cdot x_{3}, x_{3}=1 \vdash x_{2}+x_{4}=1 .
$$

Hence by (N4) and a tautology,

$$
x_{1} \cdot\left(x_{2}+x_{4}\right)=x_{1} \cdot x_{3} \vdash x_{3} \neq 1
$$

Then using proposition 1 , part (j), prove that

$$
\mathcal{B}\left(x_{2}\right), \mathcal{B}\left(x_{4}\right), \vdash \mathcal{B}\left(x_{2}+x_{4}\right)
$$

Hence by (N10),

$$
\vdash\left(x_{2}\right) \not \mathcal{P}\left(x_{2}\right)
$$

5. Essential undecidability and incompleteness of N. Following the methods of [4], we shall establish that \mathbf{N} is essentially undecidable and incomplete by showing that \mathbf{N} contains an essentially undecidable subtheory.

Let \mathbf{Q} be the first-order theory whose only individual constant is a_{1}, whose only predicate letter is A_{1}^{2}, and whose only function letters are f_{1}^{2} and f_{2}^{2}. As usual, we write 1 for $a_{1}, x_{1}=x_{2}$ for $A_{1}^{2}\left(x_{1}, x_{2}\right), x_{1}+x_{2}$ for $f_{1}^{2}\left(x_{1}, x_{2}\right)$, and $x_{1} \cdot x_{2}$ for $f_{2}^{2}\left(x_{1}, x_{2}\right)$. The nonlogical axioms of Q are the following.
(Q1) $\quad x_{1}=x_{1}$
(Q2) $x_{1}=x_{2} \supset x_{2}=x_{1}$
(Q3) $x_{1}=x_{2} \supset\left(x_{2}=x_{3} \supset x_{1}=x_{3}\right)$
(Q4) $\quad x_{1}=x_{2} \supset\left(x_{1}+x_{3}=x_{2}+x_{3} \wedge x_{3}+x_{1}=x_{3}+x_{2}\right)$
(Q5) $\quad x_{1}=x_{2} \supset\left(x_{1} \cdot x_{3}=x_{2} \cdot x_{3} \wedge x_{3} \cdot x_{1}=x_{3} \cdot x_{2}\right)$
(Q6) $\quad x_{1}+1=x_{2}+1 \supset x_{1}=x_{2}$
(Q7) $1 \neq x_{1}+1$
(Q8) $\quad x_{1} \neq 1 \supset\left(\mathrm{E} x_{2}\right)\left(x_{1}=x_{2}+1\right)$
(Q9) $x_{1}+\left(x_{2}+1\right)=\left(x_{1}+x_{2}\right)+1$
(Q10) $x_{1} \cdot 1=x_{1}$
(Q11) $x_{1} \cdot\left(x_{2}+1\right)=x_{1} \cdot x_{2}+x_{1}$
It can be shown (see [4], p. 67) that Q ('"Robinson's system'") is essentially undecidable.

Denote by $x_{1} \cong x_{2}$ the following wf of $\mathrm{N}:(x)\left(x^{x_{1}}=x^{x_{2}}\right)$ and denote by $x_{1} \not \not x_{2}$ the wf $\sim(x)\left(x^{x_{1}}=x^{x_{2}}\right)$.

For each wf a of Q, let a^{\prime} be the wf of \mathbf{N} obtained from a by replacing each occurrence of $=$ by \cong. Let N^{\prime} be the first-order theory whose "nonlogical" symbols are those of \mathbf{N}, and whose axioms are the set of wfs a^{\prime}, where a is an axiom of Q.

Lemma. \mathbf{N}^{\prime} is a subtheory of \mathbf{N}.
Proof: Each axiom of \mathbf{N}^{\prime} is a theorem of \mathbf{N} :
(i) $\vdash x_{1} \cong x_{1}$

This follows from Proposition 1, part (a).
(ii) $\vdash x_{1} \cong x_{2} \supset x_{2} \cong x_{1}$

This follows from Proposition 1, part (b).
(iii) $\vdash x_{1} \cong x_{2} \supset\left(x_{2} \cong x_{3} \supset x_{1} \cong x_{3}\right)$

This follows from Proposition 1, part (c).
(iv) $\vdash x_{1} \cong x_{2} \supset\left(x_{1}+x_{3} \cong x_{2}+x_{3} \wedge x_{3}+x_{1} \cong x_{3}+x_{2}\right)$

This follows from Proposition 1, parts (f) and (g) and (N9).
(v) $\vdash x_{1} \cong x_{2} \supset\left(x_{1} \cdot x_{3} \cong x_{2} \cdot x_{3} \wedge x_{3} \cdot x_{1} \cong x_{3} \cdot x_{2}\right)$

From the proof of Proposition 4, part (e),

$$
\vdash\left(x_{1}\right)\left(x_{2}\right)\left(\left(x^{x_{1}}\right)^{x_{2}}=x^{x_{1} \cdot x_{2}}\right) .
$$

Then $\vdash x_{1} \cong x_{2} \supset\left(x_{1} \cdot x_{3} \cong x_{2} \cdot x_{3}\right)$ follows from Proposition 1, part (h).
Furthermore,

$$
x_{1} \cong x_{2} \vdash\left(x^{x_{3}}\right)^{x_{1}}=\left(x^{x_{3}}\right)^{x_{2}}
$$

and hence

$$
x_{1} \cong x_{2} \vdash x_{3} \cdot x_{1} \cong x_{3} \cdot x_{2}
$$

The desired result then follows by a tautology.
(vi) $\vdash x_{1}+1 \cong x_{2}+1 \supset x_{1} \cong x_{2}$

This follows from (N9) and Proposition 4, part (a).
(vii) $\vdash 1 \not \equiv x+1$

By (N4), Proposition 4, part (d), and a tautology,

$$
\vdash(1+1)^{1} \neq(1+1)^{x_{1}+1}
$$

Hence

$$
\vdash \sim(x)\left(x^{1}=x^{x_{1}+1}\right)
$$

(viii) $\vdash x_{1} \nsupseteq 1 \supset\left(\mathrm{E} x_{2}\right)\left(x_{1} \cong x_{2}+1\right)$

Since $\vdash 1 \cong 1$,

$$
\vdash 1 \nsupseteq 1 \supset\left(\mathrm{E} x_{2}\right)\left(1 \cong x_{2}+1\right) \text { by a tautology }
$$

and Modus Ponens. Let $\mathcal{\beta}\left(x_{1}\right)$ denote $x_{1} \not \approx 1 \supset\left(\mathrm{E} x_{2}\right)\left(x_{1} \cong x_{2}+1\right)$. Then prove

$$
x_{3} \cong 1 \vdash \mathcal{B}\left(x_{1}+x_{3}\right)
$$

and

$$
x_{3} \nsupseteq 1, \quad \mathcal{B}\left(x_{3}\right) \vdash \mathcal{B}\left(x_{1}+x_{3}\right)
$$

Then by a tautology,

$$
\beta\left(x_{3}\right) \vdash \beta\left(x_{1}+x_{3}\right)
$$

and the desired result follows from (N10).
(ix) $\vdash x_{1}+\left(x_{2}+1\right) \cong\left(x_{1}+x_{2}\right)+1$

This follows from (N9) and Proposition 3, part (e).
(x) $\quad \vdash x_{1} \cdot 1 \cong x_{1}$

This follows from (N6) and Proposition 1, part (i).
(xi) $\vdash x_{1} \cdot\left(x_{2}+1\right) \cong x_{1} \cdot x_{2}+x_{1}$

This follows from (N7), (N6), and Proposition 1, part (i).
Proposition 4. If \mathbf{N} is consistent then N is (a) essentially undecidable (b) incomplete.

Proof:
(a) We first note that \mathbf{N}^{\prime} is undecidable since a decision procedure for \mathbf{N}^{\prime} would yield a decision procedure for \mathbf{Q}. Furthermore, \mathbf{N}^{\prime} is essentially undecidable. For suppose that T is a consistent decidable extension of \mathbf{N}^{\prime}. Let Q' be the first-order theory whose symbols are those of \mathbf{Q} and such that $\vdash_{\mathbf{Q}^{\prime}} a$ if and only if $\vdash_{\top} a^{\prime}$. Clearly, \mathbf{Q}^{\prime} is consistent and decidable. Furthermore, $\vdash_{Q} a \Rightarrow \vdash_{N^{\prime}} a^{\prime} \Rightarrow \vdash_{\top} a^{\prime} \Rightarrow \vdash_{Q^{\prime}} a$ and hence Q^{\prime} is a consistent decidable extension of Q, which contradicts the essential undecidability of \mathbf{Q}.

By the lemma, \mathbf{N}^{\prime} is a subtheory of \mathbf{N} and so by Theorem 3, p. 16 of [4], N is essentially undecidable.
(b) Clearly, N is recursively axiomatizable and since N is also essentially undecidable, \mathbf{N} is incomplete by Theorem 1, p. 14 of [4].

REFERENCES

[1] T. Evans, "Nonassociative Number Theory,' American Mathematical Monthly, vol. 64 (1957), pp. 299-309.
[2] I. M. H. Etherington, "Non-Associative Arithmetics," Proc. Roy. Soc. Edinburgh, vol. 62, (1949), pp. 442-453.
[3] E. Mendelson, Introduction to Mathematical Logic, D. Van Nostrand Company, Inc., Princeton, N. J., 1964.
[4] A. Tarski, A. Mostowski, and R. Robinson, Undecidable Theories, North Holland Publishing Company, Amsterdam, 1953.

University of Puerto Rico
Mayaguez, Puerto Rico

