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UNSOLVABLE PROBLEMS FOR EQUATIONAL THEORIES

PETER PERKINS

1. Introduction. In 1954 R. Lyndon [7] gave an example of a seven-
element groupoid whose identities cannot be deduced from any finite subset.
That is, they are not "finitely based." In this paper we present some
by-products of an unsuccessful attempt to find, or prove the non-existence
of, an effective procedure which would determine of an arbitrary finite
groupoid whether or not its identities have a finite basis. Included are the
undecidability of certain questions of provability, equational completeness,
consistency, and being the basis of the identities of some finite groupoid
when asked of finite as well as recursive sets of equations.*

2. Preliminaries. We consider, for the most part, algebras of the type
.21 = (Λo, Θ) with one binary operation θ on a set Ao and commonly called
groupoids. The generalizations of the notions and definitions that follow to
any number of finitary operations, including specified constants, are the
obvious ones. Associated with 21 is the language and deductive structure
described below.

Language. 1) The set of variables is {w, x, y, z, wly x^ . . . } .
2) The set of terms is the smallest set containing the variables

and such that if s and t are terms then (s + t) is a term,
the set of subterms of a variable υ is {v}. The set of sub-
terms of (s + t) is the set consisting of (s + t) together with
the subterms of s and the subterms of t.

3) The set of equations is the set {s = t : s, t are terms}.

Rules of deduction. Let r, s, t, u be terms. The following deductions may
be made.

E1 s = t from r = u if s = t is the result of substituting a term for a
variable throughout r ~ u.

*These results form part of the author's doctoral dissertation at the University of
California, Berkeley (1966), written with financial support from the Danforth Foun-
dation, and under the kind direction of Professor Dana Scott of Stanford University.
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E2 5 = s from the empty set.
E3 s = t from t = s.
E4 (r + s) = (u + s)from r = u.
E5 (s + r) = (s + u) from r = u.
E6 s = t from s = r αwd r - t.

Let i? be a set of equations. A finite sequence of equations e^e^ » >,en

is a proof of en from E if each e; is either an element of E or it is deduced
from equations occurring earlier in the sequence by one of the rules of
deduction, β is a theorem of E or is provable from E if there exists a
proof of e from E. In this case we write E \-e.

It is not difficult to show that the following is a derived rule of the
system, and, in fact, it could replace collectively E4, E5, and E6.

DEI s = t from r = u and rx = t where r is a subterm of r f and s is the
result of replacing r by u at one occurrence in r\

When we talk about the "decision problem" for a set of equations we
will always mean the problem of deciding which equations are deducible
from E. Familiarity with the notions involved in the definitions and nota-
tions given below will be assumed. See, for example, [1]. For quick
reference we list the symbols on the left which we use exclusively for the
notions given here.

E - a set of equations.
s, t - terms.
v - variable.
c(E) - the closure of E, is the set of all theorems of E.
Fp/E - the relatively free algebra on £ generators determined

by E, that is, the algebra whose elements are con-
gruence classes given by 5 =E t iff E |— s = t and
whose operations are the natural ones, where s, t
involve only variables from a pre-assigned set of
cardinality p.

CFp - the completely free term algebra on p generators is

F>/0.
f,g,h - assignment functions which are the natural extensions

of maps from variables onto elements of an algebra to
maps from terms onto elements of an algebra.

s = t holds in 21 - if f(s) = f(t) for all / appropriate for U. 21 is a model
or 91 is a model of of E\ί 21 is a model of E for all e ε E.
s = t
1(21) - t h e identities of 21, is the set of all equations holding

in 21, that is, the equational theory of 21.
|W(2I) - the identities of 21 which involve no more than n

variables.
Fp(.2I) - the free 21 algebra on p generators, is Fp/l(2I).
s ^ t - means 5 is a subterm of t. Use < for proper subterm.
p - a rank function from terms to integers.
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p(v) = 0 al l υ.

p((s +t))= 1 + max{ρ(s), ρ(t)}.

var(s) - the set of variables occurring in s.
occ(f, s) - the number of occurrences of v in s.
E is finitely based - if there exists a finite set Eo such thatc(£0) = o(E). If

E is finitely based there exists a finite set Eo^ E such
that c(E0) = c(E).

n is finitely based - if I(U) is.

Notice that the existence of Fω/E gives us a completeness theorem in
the sense that E \-e iff every model of E is a model of e. Furthermore,
the congruence determined by E on CFω is the least congruence on CFω

which includes E* = {<s, t> : s = t ε El and preserves substitution. In
order to develop another characterization of provability we define two
classes of operators which map terms onto terms.

L/(M)= (t + u) Rt(u)= (u + t)

The class of L, R-operators is the least class containing L* and Rt for all
terms t and closed under composition.

Theorem 1. E \- s = t iff there exists a sequence Ti(si) = T* (ί/), i = 1, ..., n
such that

1) Each Ίi is an L, R-operator.
2) Each Si = ti or ti = Si is a substitution instance of a member of E or

else Si is ti.
3) TiίSi) is s.
4)Tn(tn)is t.
5) Ίi{ti) is Ti+1(Si+1), i = 1, . ..,n-l.

We shall call such a sequence a T'-sequence for s = t.
Proof: Both directions follow easily from a proof theoretic, inductive

argument on the length of a given proof sequence in one direction and the
length of the given T-sequence in the other. Q.E.D.

Theorem 1 alone allows us to easily construct many sets of equations
that are not finitely based. We need only be sure that for any finite subset
Eo c E there will exist some member s = t ε E such that s has no subterm
which is a substitution instance of a side of some member of Eo. For
example, let D(t) be (t + t) and Dn be D composed with itself in n times.
Let E = {LxD

w(x) = R*DW(#) : n = i, 2, . . .}. Ψ JE is not finitely based.

3. Recursive sets of equations. As we mentioned in the introduction,
the attempt to determine if the set of non-finitely based finite algebras is
decidable was unsuccessful. In fact, it is not known if this set is
recursively enumerable. In spite of the fact that such questions about
finite algebras are apparently difficult, related questions about recursive
sets of equations can be settled rather quickly without the necessity of
translating some known unsolvable word problem. We give in this section
an example of a recursive set of equations in one binary operation symbol
and no constants whose decision problem is unsolvable. The effective
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unrecognizability of various properties of recursive sets of equations of the
above type is then demonstrated. All results are based on an algebra
constructed by J. Kalicki [3] together with the existence of a recursive set
R of pairs of natural numbers whose second coordinates form a non-
recursive set R1 [5] [8]. Let such an R be given (and kept fixed). We make
the following definitions.

Ox stands for x.

(n + l)x stands for (nx + nx).

Similarly for a binary operation within an algebra.

H = {2m 3n5n\<m,n>εR}

Kp = {2m 3n5P \<m, n>εR}, p = 1,2, 3, . . .

Ep (R) or simply Ep shall be the following set of equations.

1) lx + x = ly + y
2) (m + l)x + mx = 2nx + x for each<ra, n> ε R.
3) hx + x = lx + x for each h ε H.
4) kx + x = x for each k ε Kp.
D shall be the set of equations in 1) and 2) only.
K(B,C) where B and C are any disjoint sets of natural numbers with

1 f C, shall be a class of models of the type U = <AQ, Θ> with Ao = {alf

a2, . . . }, and for each i = i, 2, . . .
ai+1®ai = aλ

ai@ai = ai+ι

ai+b®ai = ai for all b ε B.
ai+c®ai = ai for all c ε C.

ai®aj is arbitrary otherwise.

N o t e t h a t na{ = ai+n.

Lemma 2 . D \— (r + l)x + rx = (u + l)x + ux for all r, u = 0, 1, . . .

Proof: By repeated substitution of lx for x in 1).

Theorem 3. D has an unsolυable decision problem.

Proof: Let eq be 2qx + x = lx + x and claim that D \-eq iff q εR\
Certainly if q ε R1, Lemma 2 and the appropriate instance of 2) yield
D\-eq. If q jίR', we can take B ={2n\n εi?'}and C={βn\n /lR'} so that
any of the Kalicki models K(B,C) are models of D in which eq does not hold.
For example, 2qa2@a2 = a2+2qφa2 = a2 while la2θa2 = αx. Consequently, eq is
not provable from D. Q.E.D.

Theorem 4. There is no effective method for determining whether or not
an arbitrary recursive set of equations in one binary operation symbol and
no constants 1) has a solvable decision problem 2) is consistent 3) has a
finite basis.

Proof: 1) and 2) Consider the classes Ep, p = 1, 2, . . . of sets of
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equations. If p ε R\ then H Π Kp Φ φ so that Ep ]-lx+x = x}x = y. That
is, if p ε R\ then Ep is decidable, inconsistent, and has a finite basis. If
p fiR\ then with eq as in the previous theorem Ep \~eq iff q ε R\ For,
if q ε R\ as in the previous theorem, Ep \-eq while if q jt R\ we take
B = H U {2*|w ε Λ'} and C = Kp U {2wh ί Λ'}. Again, any K(J5,C) satisfies
Ep but not eq. Thus, £p is consistent and undecidable.

3) We need only show that in case p jL R* then Ep does not have a finite
basis. Suppose Eo c Ep is a finite basis for Ep Let # 0 be the finite subset
of H involved in Eo via equations of type 3), let J be the set of all powers
of 2, B = Ho U J, and C = (H - Ho) U ϋfy. Since H Π J = φ, any K(B,C) is a
model of Eo but not of hx + # = i# + x when h ε H - HQ. For such an /z would
give ha2@a2 = fl2+/i®«2 = #2 while Ia2@a2 = «2+i®^2 = β i So -Eo could not be
a basis. Q.E.D.

Theorem 5. There is no effective method for determining whether or not
an arbitrary recursive set of equations in one binary operation symbol and
no constants is 1) equationally complete or 2) the basis of a finite algebra.

Proof: Define FP(R) or simply Fp to be the following.

lx + x = ly + y
(hx + x) + y = (lx + x) + y for each h εH.
(kx + x) + y = x + y for each k ε Kp.
y + (hx + x) = y + (lx + x) for each h ε H.
y + (kx + x) = y + x for each k εKp.

As before, if p ε R1 then H Π Kp Φ φ so we have

^V h * + y = (i# + #) + 3; = (iy + 3;) + y; x + y = z + y
Fp \-~ y + x = y + (lx + x) = y + (ly + 3;); y + x = y + w

Fp\—x+y = z+y = z+w

Thus, all models of Fp are constant algebras, Fp is equationally complete
and, in fact, the basis of any finite constant algebra. If P jt R* any K(B,C)
with B-H and C - Kp is a model of Fp. But in the K(BiC)> aiφaj was
arbitrary for i < j so we could make the models commutative or not as we
wish and thus, Fp is not equationally complete. Also note that no equation
of the type nx = (n + k)x can be proved from Fp since none such holds in the
above K(£,C)Ts. Any finite model would have to have some such equation
holding and hence Fp could not be the basis of a finite algebra. Q.E.D.

4. A finite set of equations with unsolvable decision problem. As we
will see in Section 5, the results of Section 5 can be improved in the sense
that we get similar results concerning finite sets of equations although not
always with one binary operation symbol and no constants. In this section,
however, we shall show how to construct such a set which is finite and has
unsolvable decision problem.

Let 5β: {a, b; fy = Ff , I ^ i^ n} be a finite presentation of a semigroup
throughout this section. If any of the ί/, 's or F/'s is either a or δ, we call
5β singular, otherwise non-singular. Most of this section is devoted to
proving the following theorem.
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Theorem 6. The word problem for any finite, non-singular, semigroup
presentation on two generators and n relations can be effectively reduced to
the decision problem for a set of n equations in two variables and one
binary operation symbol.

The existence of such a presentation with unsolvable word problem will
lead us to the result mentioned in the opening paragraph. First consider
the following rules of deduction for relations. We begin numbering with R2
in order that an exact comparison with the rules Ei of Section 2 can be
made. If A, B, and C are arbitrary words in a and b then the following
deductions are possible.

R2 A = A from the empty set.
R3 A = Bfrom B = A.
R4 AC = BCfrom A = B.
R5 CA = CBfrom A = B.
R6 A = B from A = C and C = B.

If R is a set of relations then the notion of R \- A = B is defined in the same
way as E \- s = t was defined in Section 2. Preliminary to associating
relations with equations we want to assign to each word in a and b, which
we shall call a $-word, a special L, R-operator. (Recall the definition
from Section 2.) Abbreviate the operators L* and Rx by L and R. To each
?-word W we assign an operator W by:

a is R2

ϊ i s L2_
Wa is WR2

Wb is WL2

F o r example, if W is ba then W(y) is (x + (x + ({y + x) + x))).

_ Now, E ( ? ) shal l be {ϋi(y) = Vi(y)}, l ^ i ^ n . We cal l t a $-term if t is

W(y) for some P-word W. s = t is a ^-equation if 5 and t are $-terms, and
it is balanced if it is a ^-equation or if neither 5 nor t is a ψ-term. Note
that a term is a ^-terrn iff it can be expressed as T(y) where T is an
alternating composition of operators of the form L2m and R2n.

Lemma 7. UV = TJV

Proof: By induction on the length of V and association of composition.

Lemma 8. The six element algebra .21 = <Λoβ> given by the following table
is a model of E(φ).

1 2 3 4 5 0

1 2 3 5 0 3 0

2 3 0 0 0 0 0

3 4 0 0 0 0 0

4 3 0 0 0 0 0

5 0 0 0 0 0 0

0 0 0 0 0 0 0
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Proof: Let t = u ε E($) and / be any assignment function. If f(x) = i,
then f(t)=f(u) = 0. So assume f(x) = 1. Ίif(y) = 1,3 then f(t)=f(u) = 3. If
/0/) = 0, 2, 4, 5, then f(t) = f(u) = 0 since $ is non-singular and hence both
left and right associations must occur in t and in u. Q.E.D.

Lemma 9. If E($) \— t = u then t = u is balanced.

Proof: Suppose Ms a $-term. var(£) = var(w) = {x,y} since this is a
property of E($) easily seen to be preserved under deduction. By the
previous lemma t = u must hold in U. Since t is not identically 0 in 21 and
(# + 3>) + (z + w) is, we know that u must also be strings of x's and y9s
alternately associated left and right. But, if y appears in u at other than the
lowest level, an assignment f(x) = 1 and/(y) = 3 would imply f{t) = 3 and
f(u) = 0. Finally, if the strings of x's between changes of association were
not of even length, the just mentioned assignment would yield the same
contradiction. Q.E.D.

Lemma 10. R \-U= V iff E($)hC%)= Viy).

Proof: For the only if part use induction on the length n of a proof
sequence for U = V. If n = i, then U(y) = ϊfy) is a proof from E($). Sup-
pose the statement is true for all relations having proofs of length < k + i*
Let £/ = F be the last line of a proof of length k + i . If it is an element of
#, we revert to the case n = 1. If it was deduced using RZ, R3, or R6, the
inductive hypothesis together with rules E2, E3, and E6 suffice. If U = V
was deduced using R4, then £7 is AC, Fis BC and A = B occurs earlier in
the proof. _Write a proof of A(y) = 5^j fromjϊ($) then substitute COOfor
y getting i4(C(y)) = B(C(y)) which is 4̂CG/) = BC(y)by Lemma 7. Finally, if
R5 was used, £/ is CA} V is C5, and A_=__B occurs earlier. Write a proof
for A(y) = B(yfollow \t_with C(A(y)) = CC4(y)) and use derived rule DE1 to
get a proof of CA(y) = CB(y) from E(?)

Now we prove the converse. Related to a proof of U(y) = V(y) is a
T-sequence of equations T*(s;) = Ti{ti) i = I, . . . , n referred to in Section
2. Ti(si) is U(y) so Lemma 9 tells us that both sides of all the equations in
the T sequence must be $-terms. Consequently, the s t and tiy being both
subterms and substitution instances of $ -terms, must themselves be $-
terms. Furthermore, the substituents must have been $-terms and have
been substituted for y rather than x in a member of E(^). Since "ϊ\ (s*) and
Si are both $-terms, Tf must be an even L,R-operator, that is, T̂  is Di
for some ^P-word A' If $ί = U of the T sequence is the result of substi-
tuting Ci(y) for y in Ai(y) = Bi(y\ then we convert the T sequence into a
proof of U = V from R by replacing the i t h equation by the four relations
Ai = Bi, AiCi = BiCi, DiAid = DiBid and DιAιC1 = A f t Q . The last line
will be D1AιC1- DnBnCn and the sequence will be a proof sequence for
U= V.

The proof of Theorem 6 is now complete. As a matter of fact, if we
consider the encoding used by M. Hall in [2] which reduces the word
problem of an arbitrary finite presentation with n relations to that for a
non-singular finite presentation on two generators and n relations, we get a
stronger result.
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Theorem 11. The word problem of any finite semigroup presentation with n
relations can be effectively reduced to the decision problem of a set of n
equations in two variables and one binary operation symbol.

Trakhtenbrot [9] gives a presentation due to G. S. Tsentin with un-
solvable word problem using only seven relations. Thus, we finally state
the following theorem.

Theorem 12. A set of seven equations in two variables and one binary
operation symbol can be constructed whose decision problem is unsolvable.

5. More unsolvable problems concerning finite sets of equations. In
this section we shall prove four unsolvability results about finite sets of
equations in two binary operation symbols and two constants. We then
indicate how, at least for the consistency question, the result can be
improved to finite sets of equations in one binary operation symbol and no
constants. Let § and E(ϊθ be as in Section 4 and further assume $ has
unsolvable word problem and hence E($) has unsolvable decision problem
for ^-equations. If W is a $-word, then we write W(x, y) for the term W(y),
and W(G, H) will have its usual meaning as a term of an element of an
algebra depending on which meaning G and H have.

Theorem 13. There is no effective method for determining whether or not
an arbitrary set of equations in two binary operation symbols and two
constants 1) is consistent 2) has solvable decision problem 3) is equation-
ally complete 4) is the basis of a finite algebra.

Proof: 1) and 2); For each pair of *β -words, U and V define the set of
equations PUV1 to be the set E(Sβ') along with

Cι U(cl9 c2) = cλ.
Cι V(ch ca) = c2.
x U(ch c2) = x.
x V(cl9 c2) = c2.

Certainly if e: U(x, y)= V{x, y) is provable from E(ψ) then PUV1 is in-
consistent and decidable. On the other hand, if it is not provable we shall
show that for any *p-words Uι and VΊ, eii Uι(x, y) = Vι(x, y) is provable
from E($) iff it is provable from PUV1. The only if part is obvious since
E(§)<ΞLPUV1. NOW, suppose not E($) |— ex. Since we are currently in the
not E(ϊO|-£ case we know that 51 = Fω/E($) is a model of E($) in which
neither e nor e± hold. Let 21 = <ΛO,Θ> and au a2i α3, α4, ε ^40be such that
a3 = U(a1} a2) φ V{ah a2) = a4. Extend 21 to El = <A0, θ , o , aly a2> where

a Θ α3 = a for all a ε Ao.
a o aA = a2 for all a ε AQ.
Θ defined arbitrarily otherwise.
Θ defined as in .El.

21 is clearly a model of PUV1, but not of e1 which establishes in this case
the consistency of PUV1, and the equivalence of provability of ^-equations
from E(ψ) and from PUV1, which then gives us our result.
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Proof of 3) and 4); For each pair of $ -words U and Flet PUV2be E($)
along with

c x U(c1} c 2 ) = cL.
Ci * V(C1} C2) = C2.

(x y) - U(cu c2) = x y.
(x - y) V(cl9 c2) = c2.
(x y) tf(Ci, c2) = * +3;
(# y) F(d, c2) = c2

Again let e: Z7(ΛΓ, y) = V(x, y). If E($) h e , it is easy to see that Pί/F2 h c i =
C2 = ΛΓ+^ = ̂  ^ so that PUV2 is a basis for the identities of any algebra
(of the right type) whose two operations are the same constant function and
also that PUV2 is equationally complete.

If not E(φ) \-e construct the model "S just as in the proof of 1) and 2)
and note that it is also a model of PUV2. Thus, U(cl9 c2) = V(cL, c2) is not
provable from PUV2 but the constant algebras mentioned above demon-
strate that it is consistent with PUV2.

Still assuming not E($)|—#> w e want to show that PUV2 could not be
the basis of a finite algebra. Suppose otherwise and let x2denote (x x) and
xk+1 denote (xk . x). We see that some equation of the form χn+k = %n must
be deducible from PUV2. This is impossible since in "S,O was arbitrary
except on az and a4 so we could complete the definition of Θ in a way that
would prevent any such equation from holding. Hence the two properties 3)
and 4) are possessed by PUV2 iff E($)\-U(x, y) = V(x, y\ which again
gives us our desired result. Q.E.D.

Finally we prove the following improvement of the consistency result.

Theorem 14. There is no effective method for determining whether or not
an arbitrary finite set of equations in one binary operation symbol and no
constants is consistent.

Proof: (detailed outline) We will indicate how to effectively associate
with any finite set E of equations with finitary operation symbols, another
finite set Έ of equations in just one binary operation symbol such that E has
a model iff E does. Then, using Theorem 13, Theorem 14 will follow.

Let /1, . . . , fN be the operation symbols involved in E with / t being
nz -ary. Use + for the binary operation symbol of E. Define N terms of the
E type in one variable to be used as constants and another N terms to help
imitate the f1 as follows.

x2 is (x + x) and xs is (x2 + x).
d(x) is W, (#2, x2) i = I, . . . , N where W, (Λ;, y) are distinct φ-terms

of the same length.
G ; ( * i , . . . , Xn.) i S ( . . . {x\ X%) . . . , X%.)

Associate inductively terms of E type with terms of E type by:

"ϋ is v for all variables
Mti, . . . , tni)isCi(x)+GΛT1} . . . , 7 W . ) i = l, . . . ,N

Now, E is to include C, (κ) = Ci(y), i = 1, . . . , N together with s~=7 for
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each s = t εE. HE has a model .21 = <Λ0} Θ> we define 21 =<Λ0,

Fi, . . . , Fn> by ^o = Ao, F, (fli, . . . , an.) = a θ Gi(aλ, . . . , an.) where a

is the constant value d{x) in ^40. It is easy to see that 2Ϊ is a model of E.

Simply show by induction on terms that any assignment function has the

same value on t as on 7.

Suppose now that 21 is a model of E. Can we use it to construct a

model of E? Certainly we can assume Ao= {l, 2, 3, . . .}. Choose primes

p9 q > N and tentatively define m θ n - pm qn. Each d(x) is, of course, the

sum of two subterms say Bi(x) + Di(x) where one of these two is x2, that is,

(x +x). Check that

1) no subterms of C/(n) is B;(&) θ Di(k) unless i = j and n = k.

2) no subterm of i θ Qn{ah . . . , anu) is Bj(k) θ Όj(k).

3) no subterm of Cj{n) is ί θ G z («i, . . . , ani).

4) no subterm of i θ Ci{ah . . . , ani) is j θ Gj(b1} . . . , frW/.) unless

z = j1 and ak = bk k = I, . . . , n, .

Consequently it makes sense to redefine θ by

( i if for some k, m is B*(&), ^ is Di(k).

mΘn la iί m is i, n is Gi(aly . . . , ani) and F,-^!, . . . , ani) = a.

( as before otherwise

Again, one checks by induction on terms that t and t have identical values

under any assignment in Λo to their variables. Thus, if 21 is a model of E

then I is a model of E. Q.E.D.

Finally, in contrast to Theorem 14, we point out there does exist an

effective method for determining whether or not an arbitrary finite set of

semigroup equations (i.e. containing the associative law) in one binary

operation symbol is consistent.
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