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INTRODUCTION*

§1. Constructibility. The notion of constructibility in set theory was first
mentioned by Kurt Gddel in [7], in the year 1938. Roughly speaking, he said
that a set is ‘‘constructible’’ if it can be obtained from the empty set by the
elementary set operations applied transfinitely many times. We then say
that if every set in our theory is constructible the axiom of constructibility
holds. Godel used the axiom of constructibility to prove the consistency of
the axiom of choice and of the generalized continuum hypothesis (under the
assumption that set theory itself is consistent). To do this, he exhibited a
model in which the axiom of constructibility holds and then showed that the
axiom of constructibility implies the generalized continuum hypothesis and,
hence, the axiom of choice.

*This work is based on a dissertation submitted in partial fulfillment of the
requirements for the Ph.D. degree in Mathematics at the University of Notre Dame,
August, 1970. The author wishes to express his gratitude to Prof. Bolestaw Sobo-
cifiski for directing this research.

Received March 3, 1970
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In 1963, P. J. Cohen [2] showed that the axiom of constructibility was
not provable in set theory and later [3] he gave a proof that it was not prov-
able in set theory even if we assume the truth of the generalized continuum
hypothesis. More recently, Gaifman [6], Rowbottom [14], Scott [17],
Silver [21], and Solovay [22] have shown that the axiom of constructibility is
incompatible with the existence of certain large cardinal numbers.

§2. General results. The purpose of this thesis is to investigate some of
the ways in which the axiom of constructibility can be weakened. One
recent method was that used by B. Scarpellini in [16]. He worked with the
assumption that there is some set m, from which every set is constructible.
In other words, starting with this 2, we could, by use of the elementary set
operations applied transfinitely many times, eventually ‘‘construct’ every
set in our universe.

Azriel Lévy, in [9], developed another weakening of the axiom of con-
structibility. He added another ‘‘elementary set operation’’ and considered
the sets that now became constructible. By this method he proved some of
the theorems about constructible sets which we will discuss in Chapters II
and III.

Another approach was that of J. R. Shoenfield, in [19]. He employed
the assumption that every set of integers is constructible in an attempt to
further determine whether the axiom of constructibility is independent of
set theory. We will study this assumption and determine some of its con-
sequences by using the techniques of Cohen, which were unavailable at the
time that Shoenfield published his paper.

The first chapter of this thesis consists entirely of considering this
assumption that every set of integers is constructible. We will see that this
is a consistent assumption (if set theory is consistent) and that it is not
provable in set theory. We will then show that this assumption is actually
weaker than the axiom of constructibility and that, in fact, assuming that all
sets of integers are constructible is not sufficient to prove the axiom of
choice.

In the second chapter we will generalize the resultsof the first chapter.
There we will assume that all the subsets of some ordinal number are con-
structible. We will see that the consequences of this assumption are very
closely related to the results of Chapter I. We will then study the relation-
ships between these assumptions for various ordinal numbers. It happens
that this method is helpful in distinguishing between regular and singular
cardinal numbers. Finally, in this chapter, we give a result that in some
ways extends the main theorem of Easton’s thesis [5]. The general theme
of this chapter is that assuming that all the subsets of a certain ordinal
number are constructible does not necessarily affect the properties of sub-
sets of higher ordinal numbers.

The third chapter differs considerably from the first two. There we
will study the axiom of constructibility in a theory which does not have the
axiom of regularity. We will then show that the axiom of constructibility
can be properly decomposed into the axiom of regularity plus a proposition
which states that if every element of a set is constructible then that set is
constructible.
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§3. Notations and Conventions. In most of our discussions we will be work-
ing in Zermelo-Fraenkel set theory. The axiomatization that we shall use
will be that of Cohen [3], pp. 50-53; namely, the axioms of extensionality,
null set, unordered pairs, union, infinity, replacement, power set, and
regularity. At times it may prove advisable to use a different axiomatiza-
tion or a different set theory, but in these cases we will state specifically
in what system we are working. We shall use the following abbreviations:
AC for axiom of choice, CH for continuum hypothesis, and GCH for general-
ized continuum hypothesis. If we wish to add a proposition S as an axiom to
ZF, we will denote the new theory by ZF + S.

We assume familiarity with Gddel [8], and, following his notation and
definitions, use V(x), On(x), L(x), and Od(x) to mean, respectively, that ‘‘x
is a set,”” ‘‘x is an ordinal number,’”’ ‘‘x is constructible,”’ and ‘‘the order
of x.’ An expression of the form ‘“x e L’’ will be interpreted to mean L(x);
hence, we can use the standard notation V = L as an abbreviation for the
axiom of constructibility.

We shall use standard notation wherever possible. Small Greek letters,
a,B,... will denote ordinal numbers. Small Latin letters will represent
sets, except that letters p and g will usually be reserved for forcing condi-
tions. Capital letters will usually represent formulas. A(x) will always
mean ‘‘the power set of .’ Hence, the formula £(x) C L will mean: ‘‘every
subset of ¥ is constructible.”” We shall use ¢ as the empty set. We shall
use xNy for ‘‘x intersect y’’; xUy for ‘‘the union of ¥ andy’’; Ux for the
set of all z such that there is a y such that zey and yex; % =B for ‘¥ im-
plies B8’; A <«<>B for ‘¥ is equivalent to B’’; A A B for “U and B"’; A v B
for ‘% or B’’; ~U for ‘““not A’’; V x A for ““for all x A’’; Ix A for ‘‘there is
an X such that 94.”” x Xy for the Cartesian product of ¥ and . If xis a set,
then ¥ will be the cardinality of x. We shall say that a set x is transitive if,
for every yex, zey implies zex. Other special terms will be defined as we
need them.

§4. Forcing. We assume some familiarity with the notion of forcing and the
results of Cohen [3]. Here, however, we shall use forcing as modified by
Lévy and Solovay in [10]and [11]. We will now present a brief description
of forcing as presented in [11]. Rather than present it in the full generality,
we will merely give the version that we will need for the results of
Chapters I and II.

Even though we have nothing in ZF that we can properly call classes,
we shall use the term in an intuitive manner to mean a subcollection of the
universe of sets of the form {x|%(x,7)}. We shall use the term ‘‘subclass’’
in a similar manner. Here % is a formula of ZF with two free variables
and the set ¢ serves as parameter. By a ‘‘Cohen extension’’ we mean the
following. We are given a set C, whose members we call conditions; these
conditions will be sets and so will be partially ordered by C and we insist
that the minimal element, ¢, be a member of C. We also have a class T,
the members of which we call ‘‘terms;’’ finally there is a one-one mapping
% b x of the class of all sets into 7. For every formula %(x,,...,x,) of
our language, with no free variables other than x,,..., x,, we suppose given
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a subclass I of CX T". We write p I- A(ty,...,t0) for {p, t1,..., L) € Iy 5
and we read this as ‘¢ forces ¥(¢,,...,%,).”” (By ‘“forcing,” we here mean
what is frequently referred to as ‘‘weak forcing,’’ i.e., forcing of the double
negation.)

Although we will be using forcing relations rather than countable
models, we will use the terminology of models to make the process more
intuitive. We can do this since, if our understanding is that we are extend-
ing from a model M to a model N, we are able to define in our language a
unary predicate S{(x), which reads ‘‘x is standard,”” which is satisfied in %
precisely by the members of M. In N, each set is denoted by some {eT. In
particular, if xeM C N, x is denoted by the term x. If ¥ is a formula of the
language of set theory, let %5 be the formula obtained by relativizing the
quantifiers of S; i.e.,

[vaB(x) > =4 [V (5&x) = 85@)];
[3x8(x)]5 =4 [Ix (Slx) A B5(x))];

this relativization commutes with the logical connectives, and is the identity
on atomic formulas. Then %(x,...,%,) holds in the ground model M if and
only if ¥%(x,,...,x,) is true in the extension %.

In our use of forcing, we will be using sefs of conditions (rather than
classes) and we will obtain our extension model by adding a set a (or sets)
of ordinals to our ground model M. For these reasons, by the results of
[9] and [10], we need only specify the set C of conditions and the action of
our conditions on atomic formulas of the form aea to insure that the
classes I will satisfy the following properties (taken directly from [11):

() p+-~uA(ty,...,t) if and only if for no g such that p c g does
qi-ulty, ..., 5.

() pW-u(t,...,tn) vB(ty,...,tn) if and only if for every ¢ such that
pC q there is a g¢q' such that ¢ Cq’ and either ¢’ %(t;,..., t) or
a'w-8(ty,...,tn); pI-3IxA(,, ..., t,%) if and only if for every g such that
p C g there is a ¢’ such that ¢ C ¢’ and a ¢€T such that ¢’ (¢, ..., 1, 1).

(¢) pwu(ty,...,t,) »n 8(y,...,%) if and only if p =%(t,..., t:) and
PB(,..., t); D U{ty,..., L, x) if and only if for every feT,
pi-Uy, ..., L1,

(d) p +S(?) if and only if for every g such that p C gthere is a ¢’ such
that ¢ c ¢’ and a set x such that ¢’ I-¢{ =x. p I-teb if and only if for every
g such that p c g there is a ¢’ such that ¢ C ¢' and a set xeb such that
q'+-t =x,

(e) Let %u{x,,...,x,) and Blx,,...,x:) be formulas of our language.
Let #;,.0098, S15...,5: be terms from 7T such that that sentences
A(ty,...,%) and B(s;,...,s) coincide. Then p -u(t,,...,%,) if and only if
pI=-B(s1y...,s0).

(f) ¥ %(x,,...,%,) is an axiom of logic or ZF then p I+ %(¢y,...,%,). I
pw-ulty,...,%) and p - U(ty,..., %) = B(ty,...,%) then p -8B(ty,...,t).
Hence if %(x,,...,%,) is a theorem of ZF then p I~ U(¢y,...,%).

Note that if %(¢,,...,%,) and 8(,..., %) contradict one another in ZF
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then we cannot have p I-%(4,...,4) together with p I-B(4,...,H).
Suppose we did have both. Then from p I-%(¢,,..., %) andp - (¢, ..., L)
- ~8¢,,...,%) (which we have by (f)) we getp -~ 8(4,..., %), and this
contradicts p ~8(,,...,t), by (a).

(g) ¢ I-VYx(x is an ordinal = S(x)).
The following are provable from (a) - (f):
(h) If pI-AC,,...,%) and p C g, thenalso ¢ I-A(L, ..., t).

@) pwult,..., ) »8(4,..., L) if and only if for every ¢ such that
pCq and such that ¢ I-9%u(¢4,...,%) there is a ¢’ such that ¢ C ¢’ and
q' "“%(tly I ] tn)-

(G) p-vx(S(x)—u(t,..., t, %) if and only if for every x, p I+ Alt,,...,
biyx); p=-Vx(xeb— U, ..., £,x)) if and only if for every xeb, p - U(ty, ...,
sy x). Use a similar definition for existential quantifiers.

We say that a formula %(x,,..., X, of the language of ZF with no free
variables other than x,,...,x, is absolute with respect to the extension if
for all X1,...,%,

PI-AXy, ..., X, if Alxy,...,x)
and
O~ AKXy, ..oy X,) i~ Alxy, ..., x).
It can be verified that the following formulas are absolute:

(k) xey,x=y,xCy, xNy=0¢, {x} =y,x = yUg, Ux =y, fis a function
from x into y, f is a function from x onto y, fis a one-one function from x
onto y, f is a function from x into #(y), f is a one-one function from x into
Py), z= Uf(x), x is an ordinal.

CHAPTER 1

CONSTRUCTIBLE SETS OF INTEGERS

It is clear from [8] that every integer is constructible. It is equally
easy to prove that any finite set of integers is constructible. The question
then arises: ¢‘‘What happens if we assume that every set of integers is
constructible ?”’ (We abbreviate the proposition ‘‘every set of integers is
constructible” by P(w) C L.). We can immediately conclude that the as-
sumption that £(w) C L does not contradict anything in ZF, since we have:

Theorem 1.1 If ZF is consistent then ZF + P(w) C L is consistent.

Proof: This is clear, since we know that if ZF is consistent then so is
ZF +V = L. Since P(w) C L is a theorem in ZF +V = L, our theorem is
proved.
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We next want to know whether the assumption #(w) C L adds anything
new to ZF set theory. We answer this in the affirmative since:

Theorem 1.2 P(w) C L is not provable in ZF + GCH.

This follows immediately from Cohen’s proof of the independence of
V =L. In his proof, he found a model of ZF in which GCH holds, but in
which there is a non-constructible subset of w.

On the positive side, Cohen has shown, in [3], that
Theorem 1.3 ZF + £(w) cL = CH.

Proof: We found the proof in [3] difficult to follow, so we will present a
proof of this in detail. The proof of Theorem 1.3 will follow closely the
method that Doss [4] used to show that V = L implies GCH. We will use his
notation and numbering for this proof. His theorems will be stated without
proof and in smaller type, if the proof of the theorem goes through un-
changed under the weakened assumption.

11.8 Definition. (yx)eAs .=:y is constructible. yex. (2)[0dz < Od'y.D.
~(zex)]. Rel (As).

Note that we had to add the condition that y be constructible to the right
hand side of the equivalence.
11.81 Definition. C'a = 0Od'[As’(F'a)]. C¥nOn.
11.82 Definition. C,’a = Od'[As’(F'a-F'C'a)]. C;Fn On.

12.1 Definition. If mC On and m is closed with vespect to C, Cy, Ky, Ky and with
vespect to Joy...,Jds as trviadic velations, define vecursively a function H on On as
follows:

neW(o).D. Hm =H"(nnN 7)
n=J;"{By).D.Hn=5;(H'B, H'Y) for i =1,...,8.

12.11 If ne m, then every element x of H'n is of the form H'awith aemn.
12.12 If m satisfies the conditions of definition 12.1, then aem .D.Od'F'aem.

12.2 1) F'aeF'n.=.H'aeH'n for nem, aemnN .
2) Fla=F'n.=. H'a=H'n fornem, aemnn.

12.3 If G is an isomovphism from m to an ordinal { with vespect to E, then H'n =
F'G'n for nem.

The following two theorems are slightly different than their corre-
sponding numbers in [4].

12.4 Fllo, < N,

Proof: We note that:

(1) Od is a function from F''w, into wy,
and

(2) Od is one-one



WEAK FORMS OF THE AXIOM OF CONSTRUCTIBILITY 263

since, if we have Od'x = Od'y, we have that x and y are both first con-
structed by the same ordinal number, say B. Hence we have x = F'g =y,
By (1) and (2), our theorem is proved.

12.5 22°< Fig..
= N
Proof: Since P(w) = 2 °, it is sufficient to show that

(1) Plw cF'w,.
(2) Suppose that ueP(w).

Since £(w) C L, there is some ordinal number & such that

(3) u=F®.

By (2), we know that every element of « is an integer. But every integer is
constructible by a finite ordinal. Hence, we have

(4) ucCFo.

Now form the closure of the set wu {8} with respect to C, C;, K;, Kzand
with respect to the J;, £ =0,...,8, as triadic relations, according to 8.73 of
Godel [8], and let the closure be denoted by m. (Note, the closure x* of a
set ¥ with respect to a triadic relation R is the smallest class including x

which is closed with respect to R, i.e., R''x Cx*.) Now, by 8.73, m is a set
and

(5) m =R,.

This is true even without AC since w U{6} is a countable set. Since m is a
set of ordinal numbers, it is well-ordered by E (concerning definition of E,
see T.161 of [8]) and hence it is isomorphic to some ordinal {. Let the iso-
morphism be denoted by G, so that we have:

(6) G'"'m =¢.

Hence, we have

(M) €=m =8,

By 12.3, since 6 € m, we have

(8) H'6=F'G's.

Hence, by (8) and (7), respectively,
(9) Od'(H'8) = G < w,.

We know that w C m, and by 12.1,

(10) F'g=H'B
for Bew. We may suppose that
116z w,

otherwise there is nothing to prove. Therefore, by 12.2, for all Bew,

(12) F'BeF'® .=.H'BeH' .
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Hence, F’'6 and H'5 have exactly the same elements in common with F''w;
i.e.,

(13) F'5NF""w=H'6NF"w.

But, by (3) and (4), we have

(14) F'6 c F''w.

Therefore, we have

(15) F'6=H'5NF"w.

By 9.27 of [8], we have,

(16) wis in the range of J,.

Hence, by 9.35 of [8],

(17) F''w=F'w

and hence, by (15)

(18) F'6=H'6NF'w.

(We did not need AC for 9.27 and 9.35 of [8], since we are dealing with w.)
Therefore, by 9.611 of [8], (18), and (9), we have

(19) od'u< w,.

But this is the same as saying

(20) ueF'w,.

Hence we have #(w) C F''w,, which is what we wanted to prove.

The proof of Theorem L3 now follows quite simply. By 12.4 and 12.5,
we have 250 = 8,. But Od well-orders #(w), hence 280 = 8, for some a = 1.
Since 8, < 2“0, we have 250 =8, .

Note: This proof was carried out in Godel-Bernays set theory in order to
take advantage of Doss’s results. It could also have been done in ZF if it
had been so desired, since every theorem in Godel-Bernays set theory that
deals only with sets is also a theorem of ZF. (See Cohen [3], pp. 77-78.)

We list one more result which was proved first by Silver [21] and then
elaborated upon by Solovay [22].

Theorem 1.4 The existence of a Ramsey cardinal is incompatible with

Plw C L.
Since every measurable cardinal is also a Ramsey cardinal, we have:

Corollary. The existence of a measurable cardinal is incompatible with

Plwc L.

This had earlier been proved directly by Gaifman [6] and Rowbottom
[14].
In each of these past theorems, we note that they would remain true if
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we had used ““V = L” instead of “#(w) C L,” so it seems that, in some
respects, #(w) C L is ‘‘nearly as strong’” as V = L. We now give some new
results that show that this is not so.

Theorem 1.5 #(w) C L does not imply V = L.

Proof: J. H. Silver in [21], mentions a model of ZF + AC given by Karel
Prikry in which every countable set of ordinal numbers is constructible but
in which there is a non-constructible subset of w;. Since every set of
integers is countable, this model suffices for the proof of the theorem.
Here, however, since the model of Prikry is not yet published and, there-
fore, is unknown to us, we will prove the theorem directly.

It suffices to find a model in which #(w) C L but V # L. We will start
with the minimal model M, (in which V = L holds). (See Cohen [3].) We
must then define C, the set of conditions.

Definition 1.5.1 Let C be the set of all at most countable sets of statements
of the form ‘“‘aea’ or ‘“~(ae€a)’’ where a is an ordinal <w,, a is a formal
symbol of the language and not both ‘‘aea’ and ‘‘~ (a€a)’ occur in the
same set.

We now must determine the action of the forcing conditions on our
atomic formulas.

Definition 1.5.2 For peC, we define p I aea if and only if ‘‘aea’’ is in p.

Since M is countable, there are at most countably many formulas in M.
Hence, we can find an infinite sequence (called a complete sequence) of con-
ditions, {p,}s<w, such that for every formula %, there is some % such that
either p, i % or p, i~ U.

Definition 1.5.3 Let {p,tncobe a complete sequence of forcing conditions;
we define: a = {al 3% such that p, I- a€a}.

Our extension M is now a model of ZF that contains M and which has a
as an element. We also note that the true statements in % are precisely
those which are forced by some p;. We now state without proof a very im-
portant lemma which was first proved by Solovay and which occurs as
Lemma 7 of [11]. Here, this lemma is changed slightly from its original
presentation in [11]. There, the authors assume AC at all times, and
hence, all infinite cardinals are initial ordinals.

Lemma 1.5.4 Let X be an initial ovdinal. Suppose that the set of conditions
has the property that every well-ovdered increasing sequence of conditions
of length at most X has an upper bound in C. Then Vx(xNX is standard)
holds in the Cohen extension.

Lemma L1.5.5 In R, PlwcC L.

Proof: Suppose we have an infinite sequence of conditions {p,},.,such that
(1) pocPLCThrunn .

Now let
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@ »=U »p.

n<w

Since each p, is at most countable, we know from (2) that p is countable.
Likewise p does not contain both ‘““aea’’ and ‘‘~(a€a)” for any a since
otherwise, by (1), these statements would both have to be in some p,, in
which case p, would not be a condition. Therefore

(3) p is a condition.
It is also clear by (2) that
(4) p is an upper bound for the sequence {p,},<w.

Now, by (3) and (4), C satisfies the conditions of Lemma 1.5.4 where A = w.
Therefore, in R, we have

(5) Vx(xNwis standard).

Therefore, in N,

(6) every subset of w is standard.

Hence, by definition of ‘‘standard,’’

(7) every subset of w in R is also in M.
But V = L holds in M, hence

(8) every subset of w is constructible in M.

But by point (k) of our Introduction, the ordinal numbers of ® and R are the
same. But since the constructible sets depend only on the ordinal numbers,
we have

(9) the constructible sets in M are constructible in N.
Hence, we have,
(10) every subset of w is constructible in R.
This is exactly what we wanted to prove.
We now wish to show that V = L does not hold in our extension model R.
Lemma 1.5.6 a is not constructible in N.

Proof: As in point (9) of the previous lemma, M and N have the same con-
structible sets. Therefore, if a is not standard, it is not in M, hence not
constructible in ®. Therefore we need only show:

(1) a is not standard.
To show (1) we need only show that if eI, then
(2) peC—=pi-~(a=t).

Hence, by (a) of the Introduction, we must show that for no ¢ such that
p C q do we have ¢ I-a =t. Now suppose we have

(3) pecC
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(4) pcaq.

Let @ be the smallest ordinal number such that neither ‘faea’ nor
““~(aea)’”’ is in ¢. Such an « exists since ¢is at most countable and there
are ¥,; ordinals less than w;.

(5) I aet,letq’ =q U{“~(aea)’}.
(6) If ~(aet), letq’’ =q U {*“aea’’}.

Therefore, if ae€t, by (5), we have
(1) q' i-aet A~ (aea).
If we do not have ae€ £, then, by (6),
(8) g'" I-~(aet) A acea.

Since either (7) and (8) must apply in any situation, ¢ does not force a =t.
Therefore, we have verified (2), and the lemma is proved. This completes
the proof of Theorem 1.5. We now strengthen Theorem 1.5 to the following:

Theorem 1.6 P(w) C L does not imply GCH.

Proof: As in the proof of Theorem L5, we will find a model of ZF in which
P(w) C L holds but in which GCH fails. Again we start with the minimal
model M and we construct an extension model N. As before, we must define
C, our set of conditions:

Definition 1.6.1 Let C be the set of all at most countable statements of the
form ‘‘a€ag’’ or “~(aeag)”’ for a < w,, 8 < w,, where 7 is an ordinal num-
ber >2, and such that for no o, 5 do we have both ‘‘aeag’’ and ‘“~(a€ag)’’ in
the same set.

We again specify the action of the forcing conditions on our atomic
formulas:

Definition 1.6.2 For p eC, we define p I~ acay if ““acaz’ € p.

Definition 1.6.3 Let {p,},<obe a complete sequence of forcing conditions.
For each < w,, let ag= {al 3% such that Dy I- aeaa}.

Lemma 1.6.4 P(w)C L is true in N.

Proof: We need only show that C satisfies the hypotheses of Lemma 1.5.4
where A = w. This is true by exactly the same proof as Lemma I.5.5.

Lemma 1.6.5 ~ (6 =0') »~(a5=as).
Proof: Suppose

(1) ~6=2".

We need only show that

(2) peC=pi-~(as=ag).

By (a) of the Introduction, we must show that for no ¢ such that p C ¢ do we
have g I-a5= d5. Now suppose we have
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(3) peC
4) pcaqg.

Since ¢ is a condition, it is at most countable, hence there is a condition ¢’
such that ¢ C ¢’ and there is some aew, such that ‘‘aeag’ and ‘‘~ (aeas,)”
are both in ¢’. Therefore, we have

(5) q'I-aeag
(8) gq'i-~ (aeag).

Therefore, by (5), (6) and (c) of the Introduction,
(1) q' 1-aeas » ~(aeay).
Therefore, ¢ does not force ag = ag:, hence p I-~(as = ag).

We can now prove Theorem L.6. We know that for every 6 < w, we have
a5 C w,. Since, by (k) of the Introduction, cardinalities are preserved in the
extension, we have R,= 281, But this contradicts GCH, and hence we have
Theorem L6.

We now strengthen Theorem 1.5 and Theorem 1.6 even further:

Theorem 1.7 #P(w) < L does not imply AC.

Proof: The proof of this theorem will parallel that of Cohen [3] We will
proceed as in the proof of our two previous theorems.

Definition 1.7.1 Let C be the set of all at most countable sets of statements
of the form ‘‘aeag’ or ‘““~(aeag)’’ for @, 6 < w,, such that not both ““aeay’’
and ¢ ~(a€ag)’’ occur in the same set for any aor 5.

We now introduce a new constant, W, and so must specify the action of
our forcing conditions on W.

Definition 1.7.2

(i) For peC, p I-aeas<>*‘acay’ €p
(ii) p-ageWespeC and b < w,.

Definition 1.7.3 Let {p,},<obe a complete sequence of forcing conditions.
Then:

(i) For 6 < w,, ag={al 3% such that p, - aeag}:
(i) W ={asl 3% such that p, -azeW}.

Hence, by Definition I1.7.2, we have W = {a;l 6 < w; }.
Lemma 1.7.4 P(w) C L is true in N.
Proof: This follows by exactly the same method as Lemma 1.5.5.

Definition 1.7.5 Let @ be the group of all permutations 7 of w, such that
~(m(a) = a) for only countably many «; let @, be the subgroup of ¢ defined
by: G = {mln(p) = g for all g =al}.

If 7 is a permutation in (}, we extend to a permutation of % in the following
way:
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Definition 1.7.6

(1)
(ii)
(iii)

(iv)
(v)

n(t) =t for me(Q, feM.

m(ap) = a5 for meQ, 6 < w;.

7(W) = W for med.

For feR, me(, if { corresponds to the formula A<>B(ty,..., L),
where ¢; €R, then 7(%) <> 8(n(t,), ..., 7(t,)).

If p is a forcing condition, #(p) is the forcing condition defined by
“geay’ € p<>‘‘acans)’ €m(p) and “~(aeap)’’ ep <> “~(aeays)’ en(p).

Lemma 1.7.7 p c qg<>u(p) c n(q).

Proof: This follows easily from Definition 1.7.6, (v).

Lemma L7.8 p i % <>7(p) - w(%).

Proof: We use induction on formulas:

(1) Suppose % =~%B. Then:

pI-U<>p I-~DB [oy (1)]
<>p C g~ g does not force 8 [by (a) of the Introduction]
<«>p c g— n(g) does not force 7(B) [oy induction hypothesis]
<> 7(p) c n(q) ~n(q) does not force 7(B) [by Lemma 1.7.7]
<> 1(p) -~n(®B) [by (a) of the Introduction)
<> 7(p) I m(~B) [by Definition I1.7.6)
<> m(p) I m(A) [by (1)]

(2) Suppose ¥ = B v ©. Then:

piI-UAcs>p -8B v D. [by (2)]
<s>pI-Borpl-D [y (b) of the Introduction]
< 7(p) -7(B) or 7(p) I 7(D) [by induction hypothesis]
<> 7(p) I-7(B) v 7(D) [by (b) of the Introduction]
<> (p) - 7(B v D) [by Definition I1.7.6)
<> 1(p) I m(¥) by (2)]

(3) Suppose % = 3IxB(x). Then:
piFUesp I-IxB(x) [oy (3)]

«>p C g~ 3¢’ such that ¢ C g’ and 3¢ such that g’ I B(¢)
[by (b) of the Introduction]
<>p C g = 3¢’ such that ¢ ¢ ¢’ and 3¢ such that 7(g’) - 7(B(2))
[by induction hypothesis]
«>p C g— 3¢ such that m(q) ¢ 7(¢g’) and 3¢ such that 7(q") I~ m(B(2))
[by Lemma 1.7.7]
<«>p c g —3n(q') such that n(g) c n(g’) and 3¢ such that 7(g’) i~ n(B(¢))
[since 7 is a bijection]
<> 7(p) calg) = 37(q’) such that 7(g) C#(¢’) and 3¢ such that

m(g") 1~ m(8(¢)) [by Lemma 1.7.7]
<> 7(p) c m(g)—3m(g") such that n(g) C n(g’) and 3¢ such that
w(g") - B(n(t)) [by Definition 1.7.6, (iv)]

«>7(p) I+ FxB(n(x)) [by (b) of the Introduction]
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<« 7(p) 1+ In(x)B(7(x)) [since 7 is a bijection]
<> 7(p) I m() [by (3)]

(4) Suppose ¥ = aedqg, or % =azeW, or U = tyety, 4y, M. Then:
pi- A <> 7(p) - m(%) [by Definition 1.7.6]

Lemma 1.7.9 For each teR, formula U, and p€eC, theve is an a such that
TeQq — n(?) =t, (%) = A, 7(p) = p.

Proof: We will treat the three conditions separately:
(1) tem

If ¢ is standard, then 7(#) = ¢.

If £ = a5, then me Qs works, where (5 is defined as in .7.5.

If £ = W, then any 7 works.

If { corresponds to a formula %(x,t,,...,%,), then if there exist @; such
that me(,, implies 7({;) = #;, then a = max (a;) works, hence this case can be
proved by induction on formulas.

(2) If ¥4 is a statement, it can be handled in the same way as the last case
of (1).

(3) If p is a condition, then there is some a < w; such that a is greater
than any subscript of the ag’s appearing in p.

If we now let o be the largest of those obtained in (1), (2), and (3), it will
have the desired properties.

Lemma 1.7.10 In R, W is a subset of P(w,) such that W is uncountable and
yet contains no subset of cavdinality 8, .

Proof: As in Lemma 1.6.5, we have

(1) ~(r=8)=pi-~a,=ay.

Since, in N, each ageW, we have

(2) W is uncountable in R.

Now let £e R and assume that for some p in {Ppli<o
(3) p i-{tisa 1-1 function from w, into W}

Let € be an ordinal number such that £ <w, and if 0}4 is defined as in Defini-
tion 1.7.5, then:

(4) 7760)4" w(t) =t

and such that € is greater than any 8 such that a5 occurs in a statement of p.
In the complete sequence {pn}uco there must be some p’ such that p cp’ and

(5) p'I-t(n) =a,

for some 7 and o where o is greater than {, since ¢ takes uncountably many
values. Let 7 > ¢ be a countable ordinal such that a, does not appear in p’
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and let 7 be the permutation which interchanges o and 7 and is the identity
on all other countable ordinals. ¥ p’’ = n(p’), then, by (5),

8 p'"i-tn) =a,.
We also have that, if ¢ = p"' Up’’, then
(7) g is a forcing condition

since p’ and p'' are identical except for conditions invoiving asand a; and p’
does not involve ¢ and p’' does not involve 7. But p C ¢, therefore, by (3),
q forces t to be a function. But, by (5),

(8) g I-tn) =a,
and, by (6),
(9) gi-#n) =a,

and (8) and (9) give a contradiction.
_  Our theorem _how follows quite easily. In R, W is a set such that
W > R but ~(R®, = W), which violates AC. Thus, our theorem is proved.

This last theorem has some interesting consequences. In [1], Addison
showed that the assumption of V = L gives some strong results about pro-
jective well-orderings of the real numbers. In [13], we showed that the only
lemma that Addison used that required V = L for its proof is equivalent to
P(w) c L. Therefore, by Theorem L7, if we have P(w) CL we can get
Addison’s results in a system that does not even have AC.

We will now show how the results of this chapter fit in with previous
findings. The references listed are not necessarily the original proofs, but
were chosen for convenience. The phrases ‘% —®,” ‘U #8,” and
“9 - - —B,” in the field of a given set theoretical system in which % or B8
are axioms, mean that, respectively, ‘‘® is a consequence of ¥%,”’ ‘8 is not
a consequence of ¥%,”” and ‘‘B is not a consequence of 9 nor is B a conse-
quence of ~ %.”” Inthe accompanying diagrams, if two propositions are not
connected by any arrow, then either the connection is unknown or else the
connection is obvious because of some intermediate proposition. We will
first list some ‘‘classical’’ results, i.e., these were known before Cohen
introduced his forcing technique.

(1) v=L~GCH (8]
(2) GCH— AC (3]
(3) GCH-CH [obvious]
(4) Vv =L —(~(3 measurable cardinal)) [17]
(3) v=L~PlwclL [obvious])
(6) Vv =L — Addison’s results about projective sets [1]
(1) (~(3 Ramsey cardinal)) — (~(3 measurable cardinal)) [obvious]

(8) P(w) cL —CH (3]
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V=1L
O,
(~(3 Ramsey cardinal))
1 o
GCH o 7
3/
o 4 °
AC (~(3 measurable cardinal))
(o}

CH O Addison’s results

Next we will list some of Cohen’s results together with some related results
obtained since then.

(99 GCHAV =L [3]
(10) GCH # P(w) c L (3]
(11) AC / CH 3]
(12) #(w) c L —(~(3 Ramsey cardinal) [21]
(13) GCH - - - (~(3 measurable cardinal)) [11]
(14) P(w) C L — Addison’s Results [13]
V=1L
o

(~ (3 Ramsey cardinal))
(o]

9

N
O /
(o]

CH

Addison’s results

We now list the relevant results of Chapter L.

(15) PwWcLAV=L [Theorem 1.5]
(16) P(w) c L  GCH [Theorem 1.6]
(17) P c L # AC [Theorem 1.7]
V=L
o
15

17 O Plw)CL

AC O—+—
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Combining the three diagrams and deleting any redundancies, we obtain the

following:
V=1
(~(3 Ramsey cardinal))
o
GCH 5 12 7
2 3 13
— 13

/ O
Q= 7 ’ w) C L
AC » lA/jM ( (~(3 measurable cardinal))
o

CH O Addison’s results

CHAPTER II
CONSTRUCTIBLE SUBSETS OF ORDINALS

We now generalize Chapter I and consider the propositions #£(a) C L,
where a is an ordinal number. From the results of Chapter I, in particular
Theorem 1.1 and Theorem 1.2, it can easily be seen that, for any ordinal
number a, #(a) C L is both consistent with ZF (if ZF itself is consistent)
and, if @ 2 w, it cannot be proved in ZF even with the use of GCH. We now
consider the relationships between these propositions £(a) C L for various
ordinal numbers a. First, we note the fact that, if @ <g, then £(a) CP(p).

This gives us the following easy theorem.

Theorem .1 If a < B, then P(B) C L implies Pla) C L.

We next consider the situations in which we can infer £(B8) C L from
Pla) c L, where a< B. A very simple case in which this can be done is

where 8 = @ + # where % is a natural number. In fact, we have:
Theorem I1.2 Ifn <w, then Pla) C L implies Pla +n) C L.

Proof:
(1) Suppose we have £(a) C L.

We will use induction on 7. We first consider the case
(2) n=0.

In this case we have nothing to prove, since ¢ + 0 = a.
(3) Suppose Pla+n)C L.

We now wish to show that Pla +n + 1) C L.

(4) Suppose xeP(a+ n+1).
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Hence, we have

(5) x cla+ m+1)

but then

6) xc((a+mn)+1).

But this means, since for any ordinal v, y + 1 =y U{v}, that for every 2,
7) zex—zea+n.v.z=a+n.

Hence, we have

(8) x=yuUw

where w= ¢ or w={a+nl, andy c a +n. By (3), then
(9) yel.

We also have that

(10) ¢elL.

But, since a +# is an ordinal number, hence constructible, and by 9.92 of
[8], we have

1) {a+n}elL.

By (10) and (11),

(12)wel.

But, by (9), (12), (8), and 9.85 of [8],
(13)xel.

Hence we have shown that £(a + n + 1) C L, which completes the induction.

We do not know at this time whether this theorem can be strengthened
to any great degree. We conjecture that £(a) C L implies that (8 = a = P(B)
C L). If this turns out not to be true, then it would be interesting to see
exactly what conditions are necessary and sufficient to have #(a) c L = £(B)
cLfora <B,a=8.

We do have some information, however, about the cases where @ and 8
are distinct initial ordinals. We first present a theorem about regular
cardinals. (A cardinal 8 is regular if there is no increasing sequence of
length <wg of sets of cardinality <8; whose limit is a set of cardinality Rg.
In particular, if B is a successor ordinal, 8g is regular.)

Theorem IL3 Let g be a rvegular cardinal. Then (Va(a < B =P(ws) C L))
does not imply P(wg) C L.

Proof: We will use the same methods as Chapter I and attempt to find a
model R in which ~(£(wg) C L), but in which @ < = Plw,) C L. We will treat
two cases:

(i) B is a successor ordinal
(i1) B is a limit ordinal.
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Note that, in case (ii), we are saying that 8s is a weakly inaccessible cardi-
nal. Hence, in this case, we will have to assume that our ground model M
both satisfies V = L and also allows the existence of a weakly inaccessible
cardinal. We also note that, since V = L holds in M, weak inaccessibility is
the same as inaccessibility. (We say that a cardinal number Ry is inac-
cessible if Ro < B, Ro <8z = 25« <8y, and By is regular.)

We now present the proof for (i). Suppose 8 =a + 1. By Theorem IL1, it
suffices to find a model % in which P(w,) C L but ~(P(weqs) € L). As in the
proofs in Chapter I, we first define our set C of forcing conditions.

Definition 11.3.1 Let C be the set of all sets p of statements of the form
“bea’” or ““~(5€a)’”’ such that 6 < wgys, P S Rq, and for no 5 do we have both
“6ea’’ and ‘“~(ea)”’ inp.

Definition 11.3.2 For peC, p -5 €a if and only if ‘0 €a’’ is inp.

Definition 11.3.3 Let {patocobe a complete sequence of forcing conditions.
Then a = {6 <wg,1| 3% such that py I-dea}.

Lemma I1.3.4 Plw,) C L.

Proof: By the Solovay lemma (see Lemma I.5.4), we need only show that
any chain of conditions of length at most w, has an upper bound that is a
condition. Suppose we have a sequence of conditions {py}y«ua such that

(1) ¢<n "’PC C Py

We now let
@ »=U »,.
y<wa

Clearly, p will be a set of statements of the form ““5€a’’ or ‘~(6€a)”’ and,
by (1), p will not contain contradictory statements. Likewise, by (2), p is
an upper bound for the py. Therefore, we will have peC and our lemma, if
we can show that p =R, In order to prove this, we note that, by @), we
have
@ 5=U s,

y<®q
But this gives us
@) p< 2 py.

y<wq
But, since each p,eC and, hence Z‘é Ry and since there are Ry in terms in
the summation, we have

(5) 5 é &a . &a .
But 8, - 8, = 8a, hence we have
(6) b =R,

which is what we wanted to prove.
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Lemma I1.3.5 ~(P(wasr) C L).

Proof: 1t suffices to show that a is not constructible. As in the proof of
Lemma I.5.6, we need only show that a is not standard. To do this it is
sufficient to prove that, for any ZeM,

(1) peC=pi-~(a=1t).

By condition (a) (for forcing of the negation) which is given in the Introduc-
tion, we must show that for no ¢ such that p € ¢do we have g i-a =t. Now
suppose we have

(2) pecC

and

(8) pcangqec.

Since g €C, we have, by Definition I1.3.1,
(4) g =8,

Therefore, there is some ¢ < wyy; such that neither ‘*€ea’’ nor ‘“~ ((ea)”’
is in 9. Now we define ¢’ and q'’ as follows:

(5) 1If tet,let g’ =q U {“~(Cea)’}.
(6) If~(tet),letq' = qui“tea’’}.

Hence, if Cet, by (5), we have
(1) q'1-Cet a~(ea).

If ~(Cet), by (6), we have

(8) q"iI-~(get) A gea.

Since we must have either et or ~(Cet), either (7) or (8) will hold. Hence,
q does not force a =t. Therefore, p I-~(a =t), and a is not standard. This
completes the proof of Lemma II.3.5.

By Lemma II.3.4 and Lemma II.3.5, we have completed the proof of
case (i) of Theorem 1I.3. We now prove case (ii).

(ii) I we have a countable model M in which V = L and ¥; is an inaccessible
cardinal (i.e., Rg is regular and § is a limit ordinal), then there is a model
% in which ~(Pwg) <L) but v < B ~Plw) < L).

We proceed as before by first defining C, our set of conditions.

Definition I1.3.6 For every a < B, let C, be the set of all sets p of state-
ments of the form 6 €a’’ or ““~(5 €a)’’ such that 5 < wy,; and P = 8,y and such
that for no & do we have both ‘6ea’’ and ¢~ ea)”’ inp. Then: C = U Cq-

alp
Definition 11.3.7 For peC, pI-0€a if and only if ‘dea’’ is in p.

Definition 11.3.8 Let {p,},<obe a complete sequence of forcing conditions.
Thena = {6/6 < wg .A. 3% such that p,, I eal.

Lemma I1.3.9 Vvt <pg — I’(wc) c L).
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Proof: We will again apply Lemma 1.5.4, where X = ws Let {py}y(wg be a
chain of conditions which is of length at most w,. Now let

@ »=U »,
y<mé
Therefore, we have

@ »=U »,

y<mé
and, hence,
= < =
(3) p=y§4py. i
But, by De];inition I1.3.6, ﬁy< wg. Therefore, since Rg is inaccessible,
we < wg, and py < wg, we have
4) p<wg

By (4), and the fact that R8s is inaccessible, there is some p <p such that
(5) (““aea” in p or ““~(aea)” in p) = a < wy;

otherwise we would have, where ‘“a€ep’’ means that a occurs in a statement
of p,

(6) UO’=NB

aep

which contradicts the regularity of Rg. Hence, by (4) and (6), if p = R,, we
have

(7 peCy
where 17 = max (u, ). Hence peC and the lemma is proved.
Lemma I1.3.10 ~(P(wg) C L).

Proof: As before, we need only show that a is not standard. Let feM. It
suffices to show that

(1) peC-pl-~(a=t).

Now suppose we have

(2) pecC

and

(8) pCgq ageC.

Since q € C, by Definition II.3.6,

(4) Fala < B.r. geCy.

By (4) and Definition II.3.6, we have

(5) 5 < wy = neither ““6ea’’ nor ““~(¢€a)’’ are in q.

We now choose some 6 such that w, <5 < ws, and define ¢’ and ¢'’ as follows:

(6) Ifdet,let ¢’ = q Ui~ (Bea)’}.
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(7) It ~@et), letq” =q U{ Sea’}.
Therefore, if 5 € #, we have, by (6),
(8) q'i-det a~(bea).

If ~(Get), we have, by (8),

(9) q' 1-~(5€et) A Sea.

In either case, ¢ does not force a =t. Therefore p I-~ (a = t),and a is not
standard. This completes the proof of our lemma.

By Lemma II.3.9 and Lemma I1.3.10, case (ii) is proved, and, hence, we
have completed the proof of Theorem II.3. The reader might ask why we
insisted that ¥z be regular. The above proof does not go through for singu-
lar cardinals (i.e., cardinals that are not regular). The simplest way to
show that this is true is to note that if we have ®ga singular cardinal and
construct the Cq,and C as in Definition I1.3.6, there is no guarantee that the
union of a chain of conditions will be a condition. By weakening Theorem
II.3, however, we can obtain a result that holds for singular cardinals as
well. ’

Corollary I1.3.11 Let 8 be a singulav cavdinal. Then, for every a such
that a < B, theve is a model R in which P(w) C L but in which it is not true
that P(wg) C L.

Proof: Since R is singular, 8 is a limit ordinal, Hence, o < 8 — there is
some ordinal number ¢ such that

(1) a<y<pB

and

(2) 8, is regular.

By (1), we have

(3) Ry < By < Ry

Therefore, by Theorem II.3,

(4) there is a model % in which #{w,) C L but ~(#(wy) C L).
But, by Theorem II.1, and (1),

(5) (~(Plwy) C L)~ ~(Plwp) C LY.

Hence, R satisfies the desired conditions.

We also have a result that relates these £(w,) CL to V = L. The proof
of this following corollary follows very easily from Theorem II.3 and
Corollary II.3.11.

Corollary I11.3.12 Va(~(Plw) c L =V =L)).
This sharply contrasts with the following result of Lévy [9].
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Theorem I1.4 If the axiom of regulavity holds and there is a non-con-
structible set, then theve is a non-constructible set of ovdinals.

Changing this to our notation and using the contrapositive, this becomes

Theorem I.4* If we have the axiom of regularity, then (Va(P(wy) C L)) =V
= L.

Thus we see that we can have all the subsets of any ordinal number that
we want to be constructible and yet not have V = L. But if we choose to
have the power set of every ordinal contained in L, then we must have
V = L. We will treat Theorem IL.4* more thoroughly in Chapter III

We now look at the effect of the £(wy) C L on the axiom of choice.

Theorem II.5  VA(~(P(wg) € L — AC)).
We will proceed as in earlier proofs.

Definition 11.5.1 Let C be the set of all sets p of statements of the form
“aeay” or ““~(aecay)”’ for @< wg, 6 <wgyy such that not both ““aeay’ and
“~(ae€ag)’’ occur in p for any a or 5, and such that § = Rg.

We now introduce to our language a new constant W.

Definition 11.5.2 For peC, pI-aeage>‘acag’ ep. pI-aseW for every
peC and for every 6 < wgy;.

Definition 11.5.3 Let {p,},<obe a complete sequence of forcing conditions.
For each 0 < wpiy, a5 = {al 3% such that p; I-aeash; W ={asl 3% such that
pk“"CISGW}.

Hence, by Definitions I1.5.2 and I1.5.3, we have W = {a4ld < wgy}.
Lemma IL5.4 Plwy) C L is true in N.
Proof: This follows by exactly the same proof as that of Lemma I1.3.4.

Definition 11.5.5 Let @ be the group of all permutations 7 of wgy; such that
g(a) = a for all a <wgy, except for a set ¥ of ordinal numbers such that
% = 8p. Let G, be the subgroup of ¢ defined by: ¢, = {7 [7(y) = 9 for all y <a}.

If 7 is a permutation in (}, we extend to a permutation on R in the following
manner:

Definition 11.5.6

(1) #(t) =tfor meq, teN.
(i) mlay) = dn(5) for me @, 6 < W1
(iii) =(W) = W for all meQ.
(iv) For te®R, meQ, if ¢ corresponds to the formula A<>B(ty,..., 1)
where #; €R, then m(%) <> B(n(ty), ..., ().
(v) ¥ p is a forcing condition, 7(p) is the forcing condition defined by:
“aeay’ epe>acaysy em(p) and “~(aeag)’ ep <> “~(a€ays) en(p).

Lemma T1.5.7 p C gesa(p) < 7(q).
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Proof: This follows from Definition I1.5.6 (v).
Lemma I1.5.8 p I 4<=> 7(p) i+ m(%).
Proof: This proof is exactly the same as the proof of Lemma 1.7.8.

Lemma IL.5.9 For each teR, formula ¥, and p €C, there is an o < wg,, Such
that meQq — n(t) = ¢, 7(%) = %, and 7(p) = p.

Proof: Same as for Lemma I1.7.9.

Lemma I1.5.10 In R, W is a subset of l’(wﬁd_l) such that ~(W< NBH) and yet
W does not contain a subset of cavdinality Rg.,.

Proof: As in the proof of Lemma 1.6.5, we have, for any p€C,
(1) ~(y=0) = pi-~(ay=ap).

Since, in R, each aseW, we have

@) ~(W< R8s,

since we have specified ®;,, elements of W. Now let R and assume that
for some pin {p, <o

(8) p I-(t is a one-one function from ws; into W).

Let £ be an ordinal number such that { < wg4; and let q{ be defined as in
Definition I1.5.5. Also suppose that { satisfies

(4) TeQ, () =t

and that ¢ is greater than any 0 such that ag occurs in a statement of p.
Since ! must take on Rg,; distinct values, there must be some p’ in the
complete sequence {p,},<,such that p C p’ and

(5) P = t(TI) =dg

for some 1 and o where 0is greater than . Let 7 > { be an ordinal number
such that 7 < wp,1 and ar does not appear in p’; let 7 be the permutation
which interchanges o and 7 and is the identity on all other ordinals <wg,,.
If p'* = w(p’), then, by (5),

6) p'" I-tn) =a,.
We also have that, if ¢ = p'Up ', then
(1) ¢q is a forcing condition.

Since p € g, and by (3), ¢ forces ¢ to be a function. But, by (5), we have,
since p' C g,

(8) qi-t(n) =a,
But, by (6), p’’ C g, therefore,
(9) qi-t(n) =a,.

Hence, (3), (8), and (9) give a contradiction and our lemma is proved.
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By Lemma IL.5.10, we see that ~(Xg4; =W) and also that ~(W < 8z,,).
Hence, we do not have trichotomy for cardinal numbers and AC fails. By
Lemma II.5.4 and Lemma I1.5.10, we have the proof of Theorem II5.

We have now seen the effects of the propositions £(w,) C L on V = L and
AC. We shall now show their effect on GCH. Since GCH implies AC, and
by Theorem II.5, we immediately have:

Theorem I11.6  VB(~(P(wg C L = GCH)).

We can, however, strengthen this result to show the various ways in
which GCH can be violated while still assuming l’(wé) C L. Using the results
of Easton’s doctoral dissertation, [5], we will prove that if we assume
#(w) C L for some initial ordinal wy, then for any initial ordinal number
wa>w§ we can assume 252 to be any cardinal that is compatible with Konig’s
theorem. Because of the addition of #(w) C L, our theorem will be a slight
strengthening of Easton’s. We will, however, have to assume that V=1L
holds in our ground model (or at least that GCH + #(w) C L holds in the
ground model) instead of simply GCH as Easton does. For this reason our
theorem is in some respects weaker than Easton’s.

We will pattern our proof very closely after Easton’s; hence, we will
use the notation and numbering of [5]. For this reason, we will use the
Godel-Bernays axiomatization of set theory (including AC) instead of
ZF + AC. This Godel-Bernays set theory + AC will be denoted Z,. Most of
the definitions and lemmas in this proof will be taken directly from [5].
For the sake of completeness, we shall state all of the pertinent lemmas
and definitions as they occur in [5]. I no change in the proof of a lemma is
desired or needed, we will simply state the lemma without proof, but in
smaller type. Any change from [5] will be pointed out at its occurrence,
but we will have to remember that the form of some of our lemmas might
be the same as Easton’s although the meaning is different due to the change
of some definitions. For ease of reference, in this part of Chapter II we
will use the same enumeration as in [5].

We now state Easton’s main theorem.

Theorem (Easton) Let M be a countable model of Ty in which GCH holds
and let G be a function in M such that:

() a =g implies G4= Gj.
(ii) R¢ is not cofinal with any cardinal less than or equal to R,.
a

Then theve is an extension R of M in which cardinals are absolute and PRLE

R, for regular cardinals R,.

We say that cardinals are absolute in the extension if M and N have the
same cardinals and 8y <8 in M if and only if Ry <Vgzin N. We now modify
this to the following:

Theorem IL7T Let M be a countable model of T, in which V = L holds; let §
be any ordinal number, and let G be a function in M defined on ordinal
numbers lavger than ¢ such that.
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(1) ¢<asBimplies G'as G'B.
(ii) B4 is not cofinal with any cardinal less than or equal to R,.

Then there is an extension R of M in which cardinals ave absolute, P(wc) cL
and 28¢ = Rg1, for regulay cavdinals R, such that Ry <R

Proof: We will follow the proof of Easton’s theorem. Easton defines the
relation A(y, a, 7) to be the same as y€a3. We will have a language L which
has functional constants € and A. There will be ranked variables v{ for
each ordinal o and each integer ¢ of M and there will be variables v; for
each integer of M.

Definition 1 We give an inductive definition of ranked formula and of abstraction
term. The definition is to be given in the model M.

1. If u,v and w are abstraction terms, set constants, or ranked variables, then
A(,v,w) and uev are ranked formulas.

2. If ® and ¥ are ranked formulas, then ~®, v ¥ and (34%)@ are ranked formulas.

3. If ® is ranked formula containing no free variables other than x% no occur-
rences of (3 yﬁ)'I’ with 8 > a, and no occurrences of abstraction terms yP¥or set con-
stants of rank 8 with 8 Z a, then %3 is an abstraction term. (WhereX® = the class of
all x such that ®(x); %@ = the class of all y* such that ®(y9.)

Definition 2 The vank of a variable, abstraction term, or set constant is given by:
1. p(x® = a
2. p(%%®) = a
3. p(s) is the rank of the set s.

Definition 3 We now define (unranked) formulas of the language L. The definition is
to take place in the metalanguage rather than in M.

1. If u, v and w are variables or constant terms, then # ev and A(u,v,w) are
formulas. Furthermore, if S is any constant, then u€S is a formula.
2. If ® and ¥ are formulas, then ~&, & v ¥, (3x)®, and (3x*)® are formulas.

Lemma 1 There is an assignment of sels of M to ranked formulas of L such that the
collection of sets assigned to vanked formulas is a class of the model M and the usual
syntactical operations (forming negations, substitution, etc.) ave vepresented by func-
tions of M.

Easton introduces the equality relation (for unranked formulas) by the fol-
lowing definition:

u=v = Vx(xeu<>x €v).

In addition he introduces the expression u# v, where uandv are constant
terms, by

u vy VallxYeu<esxVev),

where ¥ = max(p(x), p()).

In the following definition we make the most significant deviation from
Easton’s method in order to achieve the desired result. Note that we use
the class Regy instead of the class Reg which Easton uses (where Reg is the
class of all ordinals a such that R, is regular).

Definition 4 A set of conditions is a set g of the model M of quadruples
(Oyan) and (1yan) with the following properties:

(i) ¢q-= g q°% where Reg, is the class of ordinals a such that ¥, is regu-
acRegy

lar and £ <a, and
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(i1) g%is a set of quadruples (ivan), i < 2, y <Ry, and 7 < B¢/, .
(iii) For ae Reg o U gPis of cardinality < R,.
B=a

(iv) For no y, a, and 71, does g contain both {Oyam) and (lyam).

The following definitions and lemmas (up to but not including Definition 15)
are the same as in [5]. However, we must keep in mind that we now have a
different class of sets of conditions, due to the use of Reg ¢ instead of
Easton’s Reg.

Definition 5 Sc is the class of all sets of conditions.

Definition 6 p’ is an extension of a set of conditions p if p' is a set of conditions and
p cp'.

Definition 7 For a ranked statement &, we set:

ord(®) = a+ w-t+1
where:

a is the least ordinal such that & contains no variable of rank >« and no constant
term of rank = o.

t =0 if ® contains no subformula of the form v € ¥, where v is a constant term of
rank @, and no subformula A(u,v,w) other than inside an abstraction term; otherwise,
t=1.

l is the length of the formula ®. (zev and A(u,0,w) have length 1.)

Definition 8 The vank of a set of conditions p, (rank(p)) is the supremum of the ranks
of its elements, where (iyan) is said to have rank max (y, a, 1).

We note that with our modifications on the conditions, if p is a set of conditions, then
rank (p) > €.

Definition 9 p I is defined (for ranked ®) in terms of p'I-¥, ord(¥) < ord(®) and
rank (p) < max (ord (®), rank(p)), as follows:

1. pI-~@ if there is no set of conditions p’, rank(p’) < ord(®), such that p’is
compatible with p and p' I~ &. (Sets of conditions p and p' are said to be compatible if
their union pUp’ is a set of conditions.)

2. plI-®v ¥ if either p I-® or p I+ ¥ (or both).

3. p I (3x%)&(x?) if p I- ®(«) for some constant term %, p(x) <a.

4. pi~ues if pl-u = t for some fes.

5. pI-ue £&(x) if for some constant term u’, pu')<a, pI-u =~ u', and p I-&@’).

6. p I Alu,v,w) if there exist ordinals v, @, and 1, such that y = pu), a = p(v),
nspw), pruy, pl-v=a, pl-w =7, and p contains (Oyam).

7. p I=® only as required by 1-6 above.

Definition 10 p I-® is defined for unranked & by induction on the length of the state-
ment @.

pI-uev, p - Alu,o,w) if so required by Definition 9.

p i+ ue$ if for some teS, pl-u=t.

p I-~® if there is no extension p’ of p such that p’ I-®.
. pI-@v Vif pI-®or pi- T (or both).

p I+ (3x%)&® (x%) if, for some constant term u, p I~ & (u).
p I~ ® only as required by 1-5 above.

DW=

Lemma 2 Therve is a class in the model M whose elements ave the pairs (p,‘®"’)
such that ® is a ranked statement and p - &, (Where “®" is the set corresponding to
the vanked formula ® which was defined by Lemma 1.)

Lemma 3 Let &x,,...,%,) be an unvanked formula of L. There is a class of the
model M whose elements ave the (n+ 1)-tuples (p, ‘uy,...,u,) such that
Pi=®(uy, ..., u,).
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Lemma 4 If ® is a vanked formula and p I~ &, then p' I & for any extension p'of p.
Lemma 5. p I~ ®<>no extension p' of p forces .
Lemma 6 No set of conditions forces both a statement & and its negation ~&.

Lemma T Let p be a set of conditions and let & be a statement of L. Then theve is
an extension p' of p such that either p' v & or p' I ~&.

Lemma 8 Let pI-® and let p' be an extension of p. Then p' I+,
Definition 11 p I*®, p weakly forces &, if p I ~~ &,
Lemma 9 The weak fovcing relation has the following properties.

(1) p * ®<>no extension of p forces ~®.
(i) pI-@ = pIE QD
(iii) p IR~ ®<>p I ~,
(iv) If ®is of the form ¥ A T, ¥ <>7T, V¥, VX, u= v, 00r u= v, then pI-d<>p IEd,
(v) p 18 Vx@(x) <> p I+ ¥w) for all constant terms u.
(vi) p I Vx%9(x%) <> p ¥ &(u) for all constant teyms u of rank less than a.
(vii) pIF @<>Tand pIEd —p IE .
(viii) p IF <>V and pIE ¥ —p IE &.

Lemma 10 pl+u= vespl-u=v.
Lemma 11 For any set of conditions p,

(1) pi-u=u
(i) p - u=vedpl-v =u.
(i) pru=vandpl-v=w-p - u=w.

Lemma 12 For any set of conditions p,

(D) pruewand pl-u=v=p I~ vew.
(ii) p - weuand p-u=0v =p | wev.

Lemma 13 Ifp I~ u = a, then p(u) Z a.

Corollary 13.1 If p i Alu,o,w) and pi-u =u', pi-v = v', and pi-w = w', then
pI-A( U w').

Definition 12 A sequence of sets of conditions p@ c p c ... is said to be complete
if for every class C of sets of conditions such that every set of conditions has an
extension in C, p®e C for some k.

Lemma 14 Let p@c p® c ... be a complete sequence of sets of conditions. Then
every statement or its negation is eventually forced by some p®,

Lemma 15 There exists a complete sequence of sets of conditions.

Definition 13 (Definition of the model R)

(i) Let #(x) be an unranked formula of .L. The collection of all constant terms v
such that for some &, p® 1 &(v) will be a class of the model %; we will denote this
class by 2®(x).

(ii) Sets of the model % will be classes of the form X(xeu), where u is a constant
term of L.

(iii) The € -velation is defined as follows:
% ®(x)e5¥(y) will hold if £&(x) is the same as X(xeu) for some constant term u and
p® I ¥ () for some &.

(iv) The relation A(x&(x), $¥(y), xT(z)) will hold if for some 7, @, and 7 such that
©yan) is contained in some p(k) £®(x) is #(xey), ) is H(yea), and Z2T(2) is Z(zen).

(v) I Wis a constant term or constant of ., then W denotes the class Z(xe W).

(vi) Individual variables x, y,...,range over all sets of %#; ranked variables of rank
a range over sets of the form %(xe #) where u is a constant term of rank less than a.
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Definition 14 We will say that the ranked or unranked statement p is eventually
forced if for some k, p®i- &,

Lemma 16 x&(x) is the same as FWy) if and only if Vx(®(x)<>¥(x)) is eventually
forced. Hence, if U and W ave constants or constant terms, then U= W if and only if
U =W is eventually forced.

Lemma 17 An unranked statement ® of L is true in the model Nif and only if ® is
eventually forced.

Lemma 18 If ® is an unvanked statement of L, then p \* @ if and only if @is true in
all models obtained by the above construction from complete sequences of sets of
conditions in which p occurs.

Corollary 18.1 If ®(x) is a vanked formula of finite length, then uex°®(x%) is true in
RN if and only if u =u’' for some u' of vank less than a and ®(u) is true in N.

Lemma 19 The mapping ¥ of M into N given by ¥(S) = S is an isomorphism with
respect to the e-relation.

With Lemmas 20-23, Easton shows that the axioms of Tx, except for
replacement, power set, and AC, hold in the model ®. He now goes on to
verify these remaining axioms. In the following definition and its applica-
tions we again must use the class Reg ¢ instead of Easton’s Reg.

Definition 15 We define T, and A4 as follows:

(i) T,=1{2x 8x {8} x NG:[gIBeRegé .Aa.BZal

(i1) Ag =12 x R x {8} x RgilBeReg, . 4.8 >al,
where, as in Definition 4, Reg, is the class of ordinal numbers a such that
N, is regular and ¢ < a.
We note that if @ = ¢, then Ty = ¢.

Definition 16 Sets of conditions p and g are said to be compatible if their union is
again a set of conditions, i.e., if it is not the case that one of them contains a quadruple
{0yan) while the other contains (1yam).

Lemma 24 is stated exactly as in [5]. But because of our use of Reg, its
proof is somewhat different from that given by Easton. For the same
reason we must give the new proofs for the next several lemmas.

Lemma 24 Let 8, be a vegular cardinal of M,and let q be a set of condi-
tions, q C Ay, and let & be a statement of L. Then theve is an extension
q C Aqof q and a set 11 of sets of conditions such that:

(1) T2 B,

(ii) pell — either pUGIF® or pUG I-~&.
(iii) If p’ is any set of conditions, theve is some p eIl compatible with p'.
(iv) pell = p C T,

Proof: If a > ¢, the proof is exactly the same as Easton’s. If a = ¢, we note,
by Definition 15, that

(1) Ty=¢.

In this case we let

(2) 1= {g}

By (2), it is obviously true that
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(3) (i) and (iv) are satisfied.

By Definition 16, ¢ is compatible with any set of conditions, hence, we have
(4) (iii) is satisfied.

By Lemma 7, there is an extension g of ¢ such that
(5) qI-® or g I-~®.

By (1)

(6) 7 C A,

Since p €Il means p = ¢, we have

(7) pell-pug =4.

Hence, by (5), (6) and (7),

(8) (ii) is satisfied.

By (3), (4) and (8), our lemma is proved for a = €.

Lemma 25 Let B be any ovdinal of M, let q be a set of conditions, let
®x,...,%x,) be an unranked formula of L, and let wy,, 151 =n and p< N be
constant terms. Theve is an extension q of q and a setllof sets of condi-
tions such that:
(i) o= Rg.

(ii) If q' is an extension of q, and p < 8g, theve is some pell compatible
with q' such that either pUq - &y, ..., Uy) 07 PUG I-~Btyy, ..., ).

(iii) pell = p C T
Proof: We treat the case where B = ¢ in exactly the same way as in the
proof of Lemma 24. The proof for 8 > ¢ holds as in [5].

Lemma 26 Let q be a set of conditions and let &(x] s ..., %) be an unvanked formula.
Then there is an extension q of q and an ovrdinal & such that

GiFvxl ... vxlQyaad, ..., xl 9 <>1y08(xl, . .., xhsD).

Corollary 26.1 Let &(x] yeeey xz,y) be an unvanked formula. Then theve is an ordinal
& such that:

val. .. va@y el ..., x5 <> 3508, ..., % 9P)
is true in the model N.

Lemma 27 Let ®(xf,...,%) be an unvanked formula. Then theve is a formula
®'(x{,...,x)) which is both a vanked and an unvanked formula such that

val. .. va@xl, ..., x> d/(x],. .., %)
is true in N.
Lemma 28 The axiom of veplacement holds in R.

Lemma 29 Theve is a class Q of the model R such that xeQ if and only if x is a set
of conditions compatible with all p® in the complete sequence used to define R.

Lemma 30 There is a class Den of the model M such that (yx) € Den if and only if x
is a constant term and y is the set denoted by it. (l.e., Den is the class of pairs (yx’
such that for some ranked term u denoting y, x is the set ‘u’ of Lemma 1.)
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Lemma 31 The power set axiom holds in the model N.

Lemma 32 The ordinal numbers of R are precisely the sets denoted by the constants
a.

Corollary 32.1 The ordinals of W ave precisely the ordinals of W; in particular, if M
is a well-founded model, then so is R.

Corollary 32.2 The sets of M are well-ordeved by a class in the model R.
Lemma 33 The class form of AC holds in .

By these past lemmas, we see that W satisfies the axioms of Zx. We will
now show that % satisfies P(wé) clL.

Proof: We will apply Lemma 1.5.4 (of this dissertation), which can be
proved in this method of forcing, for the case where A = W Let {q,t},Kxé be
a sequence of conditions such that:

(1) '}’<5_’qu qs-

We now let
(2) q= U Qe
#(84

By (1), ¢ is an upper bound for the g,. We will be done if we can show that
g is a set of conditions. We must, therefore, show that ¢ satisfies the con-
ditions of Definition 4. Since each g, isa set of conditions, we have

® q.= U ag.

asRegév
Therefore, by (2) and (3),

@ q=U Uq,‘}.

p.<§< aeRegé

By the generalized commutativity and associativity of unions, we obtain

G q=U Uqﬁ’.

asRegé p<Né
If we now let
® = U ¢
p<R¢
we obtain

@™ q¢=U ¢°

aeReg<

where we now need only show that the ¢% as defined in (6), are of the proper
form. But, by (6), any quadruple in g% must be in some g% and hence must
be in the form required by Definition 4. We have now verified (i) and (ii) of
Definition 4. We must now show that

(8) U q® is of cardinality < R®,, for ae Regs, Be Reg, .

B=a
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By (6), we have

(9) UqB—U Uq

=a B=a u<8¢

By reversing the order of unions, we have:

wU#=-U U

BZa <&§ B=a
But, by (3), we have
a Ugfc U a = q,

B=a ﬁ(Regé
Since g, is a set of conditions,
12) U #8< ..
BZa
Therefore, since Ry < Ry, and R,.is regular, and by (12), we have

(13) U Us= 2 Ud<n.

p.<Né BZa p<y B=a

Thus, ¢ satisfies part (iii) of Definition 4. Part (iv) is clear by (1) and (2).
Therefore ¢ is a set of conditions and we have satisfied the hypotheses of
Lemma 1.5.4. Thus we have P(wé) cLin%n

Lemma 34 If Ngis of cofinality greater than B, in the model M, then the same holds
in the extension R.

Corollary 34.1 Cardinals ave absolute in the extension from M to N.

We must make the same changes in the proof of Lemma 35 as we have made
earlier.

Lemma 35 Let u denote a subset of Ry in M. Then theve is some p®in the
complete sequence used lo define N and some set Il of sets of conditions
such that:

(i) pell= pC T,
(ii) T = R,
(iii) p® I~ u C Ra.
(iv) If q' is an extension of p*®) and y <R, , there is some pell compatible
with q' such that either pUP® - yeu or pUp® - ~(yeu).

In [5], Easton makes the convention that, for singular cardinals 8, 8o
is the first cardinal greater than or equal to 8g.gfor all B < @ which are not
cofinal with ®,. We extend our definition of G to all ordinals (instead of
merely those >¢) by letting G'a = a + 1 for @ = {. We then have exactly the
same result as Easton’s Lemma 36.

Lemma 36 2 Sa - = Rgiq i the model N.



WEAK FORMS OF THE AXIOM OF CONSTRUCTIBILITY 289

Proof: I a>¢, the proof follows in exactly the same way as Easton’s. If
a = §, we need to show PACES 841, but this is easily proved using the methods
of our proof of Theorem I.3 where we can now use AC (since it holds in %).

We have now completed the proof of Theorem IL7. The following is a
summary of the differences between Easton’s Theorem and Theorem II.7.

(1) Easton starts with a model of T4 + GCH, while we used a model of
Tx + GCH + P(w) C L.

(2) Easton showed that the power sets of regular cardinals could have any
cardinalities compatible with Konig’s theorem. We showed that we could
have P(w) C L and still allow the power sets of cardinals >R, to have any
cardinalities compatible with Konig’s theorem.

Thus we see that the assumption of #(w) C L does not affect the possible
cardinalities of regular cardinals greater than 8.

In this chapter we have seen the effect that the assumption of #(w,) C L
has on V =L, GCH, and AC. In the next chapter we will study the effect of
assuming that all sets of cardinals are constructible.

CHAPTER III
CONSTRUCTIBILITY WITHOUT REGULARITY

In the first two chapters we studied the propositions #(a) C L for given
ordinal numbers a. We also mentioned a result of Lévy that says that if
every set of ordinal numbers is constructible, and if we assume the axiom
of regularity in our set theory, then every set is constructible; i.e., V = L.
So, in some ways, the presence of the axiom of regularity makes V=1 a
“‘least upper bound’’ for the £(a) C L. It then seems natural to ask whether
it is necessary to have the axiom of regularity in order to have this situa-
tion. We answer this in the affirmative. In fact, we will even go further
than this. We will show that if the axiom of regularity does not hold, then it
is possible to have a model in which every set that consists solely of con-
structible elements will itself be constructible (yet in which we do not have
V =L). Thus, we will have a proper decomposition (in ZF without regular-
ity) of V =L into the axiom of regularity and the proposition
Vx(xeV ax C L= xel). We will formalize these ideas with the following
theorems.

The first theorem that we present is weaker than the above-mentioned
result of Lévy, but we include it because it gives a good idea of the role
that the axiom of regularity plays in relation to V = L. Before giving this
theorem, we first mention that if the axiom of regularity is true, then it is
impossible to have an infinite descending e-chain; i.e., there do not exist
sets ¥, X3, %,,...such that...€ x,,€x,¢€... €x,¢€x. (For a proof of this
see Rubin [15], p. 117.) In this chapter we shall use ZF* for ZF without the
axiom of regularity.
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Theorem IIL1 I ZF*, V = L <>
(i) Axiom of regulavity

and
(i) Vx(xeV.a.x CL —xel).

Proof: If V =L, then clearly (ii) is true (because the consequence of the
implication is true). It is likewise easy to show that V = L — (i). (See [15],
p. 360, Theorem 14.2.17.) Therefore we have V = L — (i) + (ii).

(1) Suppose we have (i) and (ii),

and also suppose it is false that V = L; i.e., there is some x€¢V such that
(2) ~(xel).

We first note that, since ¢€eL, we have

(3) x #¢.

By (ii) and (2), there must be some %, such that

(4) x,ex

and yet

(5) ~ (% €L).

By (5), we see that

(6) x, # ¢.

Again, by (ii) and (5), there must be some %, such that
() xq€x,

(8) ~ (xyel).

This process can be continued for every integer 7; hence, we will obtain
X, %1,%3, ... such that, by (4), (7),... we will have

(9) ...x,1€X,€. .. €x1€X
which contradicts (i). Thus the theorem has been proved.

We now wish to show that this is a proper decomposition of V = L. We
will do this by showing that the axiom of regularity does not imply
Vx(x€eV.an.x C L — xel) nor does the reverse implication hold. We treat
the easy case first:

Theorem IIL.2 In the field of ZF*, the axiom of regularity does not imply
Vx(xeVax CL—=xel).

Proof: Suppose it did. Then, by Theorem III.1, V = L<—> the axiom of reg-
ularity. But Cohen [3] has exhibited a model in which ZF* and the axiom of
regularity hold but in which ~(V = L).

Theorem II1.3 In the field of ZF*, Vx(xeV A x C L = x€L)does not imply
the axiom of regularity.
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Proof: It is enough to find a model % in which Vx(xeV A x C L = xeL) but
in which the axiom of regularity fails. We will now proceed to do this.
Since we are working with ZF*, we would like to define the subclass of sets
which satisfy the axiom of regularity. We do this in a way similar to that
which Shoenfield suggests in [20], p. 315, §2. He calls a setx regular if
each of its subsets z has a minimal element (i.e., 3)(yez » yNz = ¢)). In-
stead of Shoenfield’s notion of regular set, we shall use the related notion
of grounded set, whose definition is due to Mendelson [12]. The reason for
the use of grounded sets will become clear by Lemma III. 3.2,

Definition 111.3.1 A set x is grounded <> there is no infinite descending
e-chain beginning with x. (I.e., there do not exist x,,%,,... such that
ves €X,  EX € ... EX EX.)

Lemma II1.3.2 x is grounded if and only if every element of x is grounded.
Proof:

(1) Suppose x is grounded;

suppose also that we have

(2) yex

and

(3) » is not grounded.

By (3) and Definition II1.3.1, we have y,, ¥, ... such that
(4) ... €Y1 €V €. .. EVIEYLEDN.

But then, by (2) and (4), we have

(5) ...€9,11€Y,€... €Y1€EYEX.
Hence we have

(6) x is not grounded,

which contradicts (1). Now suppose
(7) x is not grounded.

Then there are x;, x;,... such that
(8) ... €X 1 €X €. .. €X, ebxlex.

But then we also have

(9) ...€X  €x,6... €XpeX,

and so,

(10) x, is not grounded.

But x,ex; therefore, by (10), there is some element of x that is not
grounded.
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We now define our constructible sets in ZF*. We use the definition that
Cohen [3] gives and note that we can use this in ZF* as well as in ZF since
this definition depends only on the available ordinal numbers, and these are
the same in the two systems. To see that the ordinal numbers are the same
in ZF and ZF*, note that the definition of ordinal numbers in ZF* (e.g.,
Rubin [15], p. 176) requires that an ordinal number be well-ordered by the
e-relationship. But being well-ordered by € requires that there not be any
infinite descending e-chain; hence, the ordinal number must be grounded.

Definition 111.3.3 Let x be a set. The setx' is defined as the union of x and
the set of all sets y for which there is a formula %(z,#,,...,4%4) in ZF*
such that if %, denotes ¥ with all bound variables restricted to x, then for
some 7; in x, y = {zex| 92, 7,,..., B)}.

Definition III.3.4 For a an ordinal number, define M4 by:
Mo = ¢
Ma = ( U MB)'.
B<a
Definition II1.3.5 A set x is constructible (xe L) if Ja such that xeM,.

Now we introduce into our language a countable number of O-ary func-
tion symbols (constants) x,, x,,... and a binary predicate symbol ‘‘¢”’ such
that:

x; %€ xj<>i =j + 1.
Definition III.3.6 For a an ordinal number, define N, by:

No = {xl, Xoy . }
Ne = ({JNg).

B<a
Definition III.3.7 x €N <—>3a such that xeNg.

Definition 111.3.8 We define v e #in R by:

If u is a set, then v e # if and only if v is a member of
If 4 = x;, then vew if and only if v = x;4,.

In other words, if u= x;, then veu<>v ‘‘¢’’ u. (See Cohen [3]p. 72 for
a similar introduction of symbols.)

Lemma IIL3.9 Ifx e Myand y € x, then theve is some B < a such that y e Mg.

Proof: This is evident from Definition III.3.3, Definition III.3.4, and an
application of transfinite induction.

Lemma III.3.10 For every x, y, and a:

(i) If x eNg and y ex, then y eN,.
(ii) If x €Ng, for a > 0, and y € x, then theve is some B > a Ssuch that ye Ng.

Proof: (i) is clear from Definitions II1.3.6 and II1.3.8. (ii) is clear from
Definitions II1.3.3, IIl.3.6, II1.3.8, and an application of transfinite induction.
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Lemma III.3.11 The axioms of ZF* hold in L.

Proof: In [8], p. 6, Gbdel indicates that the axiom of regularity is unnec-
essary in his construction of L; i.e., even if he does not assume the axiom
of regularity in the original theory, he would still get a model L which has
all the same properties as when the axiom of regularity is assumed. Then,
in [18], Shepherdson proves that the axiom of regularity does not have to be
assumed. We proceed to give an informal proof. We note that in Cohen’s
proof that L is a model for ZF, he does not use the axiom of regularity
except to verify the axiom of regularity in L (which we do not need) and to
show that, for every ordinal number a, a€M,,,; (which shows that the axiom
of infinity holds in L). We can avoid his use of the axiom of regularity in
verifying the axiom of infinity in the following way. To verify the axiom of
infinity in L, we need only show that the ordinal number wis in L. We note
that ¢€eL, and if xel, thenx U{x}is in L (since {x}eL by the axiom of pair-
ing and xU{«} is in L by the sub-set axiom). Thus every finite ordinal
number is in L, and w is just the union of all these finite ordinals.

Lemma I11.3.12 The axioms of ZF* hold in 9.

Proof: This is handled in exactly the same way as the previous lemma,
except for the axiom of extensionality. But this is shown to be satisfied by
Definition II1.3.8.

Lemma IM.3.13 If « is an ovdinal number, then My, C Ng and, therefore,
L CR.

Proof: It is sufficient to show that for any sets aand b, ac b= a’' C 0'. If
this can be shown then the proof proceeds by simple transfinite induction.

(1) Suppose a C b.
(2) Suppose that xea’.

By Definition I11.3.3, and (2), there is a formula %(z, ¢,,..., &) such that
(3) x={zlzeandt,... LG, ean...afea n¥y(2,t.,...,0)}.

But, by (1), we then have, from (3), that

(@) x ={zlzebadt,... t(tiebn...alrebn (U2, 11,...,5) A zean Lea)l.
Now we let 8 be the formula

(5) Bz, ty,...,)<>zean tiean...atrea a [U,2, b,...,8)].

Since a C b, we know that

(8) (%) <> Y.

Therefore, by (5) and (6), we have

(1) Bz, ty,...,5p)<>z€antean...atpean U2, t1,...,4).

Hence, by (4) and (7), we have

(8) x ={zlzeb n3ty,...,5(tieb n... A lreba By(z,T,,...,0))}.
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Thus, by (8) and Definition III.3.3,
(9) xeb'.
We have thus verified that @ ¢ & = a’ C b' and our lemma is proved.

We will now give the key lemma which determined our choice of a
model R.

Lemma II.3.14 If x is a set in N and x is grounded, then x€L.

Proof. 1t is sufficient to show that if x is grounded and xeN,then xe My,,.
We will prove this by transfinite induction. We note that, by Definition
II1.3.1 and Definition II1.3.6,

(1) if x is grounded, then ~(x€eNy).

Thus, if x¥ is grounded and xeN, we know that « > 0. Our induction
hypothesis is: for all 8 <a, if x is grounded and x€Ng, then x € Mg,,. Let
us suppose that

(2) « is grounded
and that
(3) xeN,

If x = ¢, then Xe M; C Mgy Suppose ~(x¥ = ¢). Then, by Lemma II1.3.8 and
(3),

(4) yex — there is some B < @ such that y eNg.

By Lemma III.3.2, y is grounded, thus by (2), (4), and the induction hypoth-
esis, we have

(5) yeMgy.

By (5), we have

(6) x C Mg

But we know that, by (6),

(1) x={zeMglzex}.

But, by (6),

(8) zex «>(zex)y,

Thus, by (7) and (8), we have
(9) x={zeMy| (zexImg)

Therefore, if we let “zex’’ be the “%(z)’ of Definition II1.3.3, we immedi-
ately know that

(10) xe(Mg)".

But Mg= U M= U M. Theretore, by Definition I11.3.4, we have
B=a B<a+1
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(11) xe(My)' = ( U Mg)' = Mqg4,. This completes the proof of the lemma.
Lemma III.3.15ﬂ<;21L = x is grounded.

Proof: Let us suppose that

(1) x is constructible

and that

(2) « is not grounded.

By (2), there are y,, ¥,, ... such that

(3) ... €91 €Yn€... €Y €X.

By (1), there is an @ such that xe M,. Hence by Lemma II1.3.9 and (3), we
obtain

(4) Jaye; < a a yleMal).
Likewise we obtain
(5) 3Fazla, < a a Y2€Mg,).

In this way we obtain an infinite descending chain of ordinal numbers, which
contradicts the well-ordering of a by the e-relationship.

Lemma III.3.16 N does not satisfy the axiom of regularity.
Proof: NoeRand ... €x,,,€X,€ ... €x, €N,

Lemma IN.3.17 In %, Vx{xeV, x C L = xel) holds.
Proof: Let us suppose that

(1) x is a set such that x c L.

By Lemma II1.3.15 and (1),

(2) yex — y is grounded.

By (2) and Lemma II1.3.2,

(3) «x is grounded.

By (3) and Lemma III. 3.14,

(4) xeL,

which concludes the proof of the lemma. The proof of Theorem IIL 3.now
follows easily from Lemma II1.3.16 and Lemma III.3.17.

The model % that we found for Theorem III.3 is also useful in other
applications. It enables us to properly decompose other axioms of set
theory.

Corollary IlI.4 Suppose B(x) is a predicate on sets such that, in ZF*, B(¢),
Lx) —~ Bx), B(x) = (x is grounded) and V = B is not provable in ZF. Then
the axiom V = B can be properly decomposed into

(i) axiom of regularity
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and
(ii) Vx(xeV A x C B — x€B).

Proof: The proof that V = B <> (i) + (ii) is clear from Theorem III.1 when
we note that no property of L was used in that proof other than the fact that
peL. The fact that (i) does not imply (ii) is clear from Theorem III.2 and
our hypothesis that V = B is not provable in ZF. It now remains to show
that (ii) does not imply (i). To show this, we note that in the model R of
Theorem III.3, by Lemma III1.3.14 and Lemma IIL.3.15.

(1) x eL<>x is grounded.

Therefore, by our hypotheses,

(8) x €L <> xeB<>x is grounded

and the proof proceeds as in Lemma III.3.16 and Lemma IIL3.17.

An example of such a predicate B is found in Lévy [9]. He defines a
weaker form of V = L which he calls V = Lg, where x €Ly if and only if x is
constructible from K, where K is a class. He also shows that (3K(V = Lg))
<> AC + axiom of regularity. Thus, for any K, Lk satisfies the conditions
for Corollary III 4.

The proposition
vx(xeV Ax CL > xel)

is also interesting in itself. Using the methods of Theorem I3, it can be
shown that if we assume this proposition and AC, then GCH is provable,
even without the axiom of regularity. Thus, even without the use of forcing,
we have the following independence theorem:

Theorem II1.5 In the field of ZF*, GCH does not implyV = L.

The model N of Theorem IIL.3 gives us an explicit example of a model
of ZF*, in which GCH holds but not V = L, since,

Theorem NIL.6 In N, AC holds.

Proof: We first note a theorem of Cohen [3], p. 95 (which he proves without
the axiom of regularity):

Theorem (Cohen) There is a Jormula W, v, X, Y), such that, if Y is a
well-ovdering of the set X, the velation u < v<>%(u, v, X, Y) induces a
well-ovdeving of the set X'

Thus, in R, we let ¢(x) be the least @ such that xeN, Define x <y if ¢(x) <
¢(3) or if ¢(x) = ¢(») = @ and x precedes y in the well-ordering of N,. Thus
we have a well-ordering of all sets; hence, every set is well-ordered. Thus
we have AC, and Theorem IIL6 has been proved.

Although AC is a theorem in the model % that we constructed above, it
is not true that AC follows from Vx(xeV A x C L — xelL). Infact, we have:

Theorem WIL7T In the field of ZF*, AC is not a consequence of Vx(x€V a x
C L - xel).
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Proof: We first note that, by [3], if ZF* is consistent, then so is ZF* +
(~AC). Since AC is equivalent to the well-ordering theorem (Zermelo’s
Theorem), we can assume that there is a model ® of ZF* which contains a
set that cannot be well-ordered. Call this set b. Now define Myand L as in
Definitions II.3.4 and II.3.5. As before, we introduce some new symbols
into our language. For each yeb, introduce the constant symbol x,.

Definition 111.7.1. For a an ordinal number, define N, by:

No = {xyly eb}
Ng = (U Ng)'-
B<a

Definition II1.7.2. x e R <> such that x €N,
Definition I111.7.3. We define #ev in N by:

(i) If v is a set, then # ev if and only if # is a member of v.
(ii) If v = x,, then«€v if and only if u=v.

The proof that % is a model of ZF* and that Vx{xeV A x C L = xel) holds
in M proceed as in Theorem III.3. We will now show that AC does not hold
in N.

Lemma IIL.7.4. N, cannot be well-ordeved.

Proof: Suppose N, is well-ordered by some relation <. We then define the
ordering, in R, y <g 2z if and only if xy < x; in N. This induced ordering, <g,
thus well-orders the set b in ®. But this contradicts our assumptions on b,
and the lemma is proved. This completes the proof of Theorem IIL.7.

By Theorems IIL.5, II.6, and IIL.7, we see the unusual role that the
proposition

Vx(xeV axc L — xel)

plays with respect to the other strong axioms of set theory. By itself (i.e.,
without the axiom of regularity) it is not even sufficient for the proof of AC.
If we assume that both it and AC hold, we then have GCH but not V = L.
Finally, and perhaps most importantly, together with the axiom of regular-
ity it provides a proper decomposition of V = L. Thus, it gives a better
explanation of the place of the axiom of regularity in the theory of con-
structible sets.

We shall investigate some other properties of the proposition
Vx(xeV Ax C L = xel) in a future paper.
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