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REMARKS ON CLASSIFICATION OF THEORIES
BY THEIR COMPLETE EXTENSIONS1

KAREL L. de BOUVΊERE

As far back as in 1928 A. Tarski introduced the concept of degree of
completeness of a theory, [2], Subsequently he distinguished between
cardinal and ordinal degree of completeness, [3], and refined the former to
the so-called characteristic pair of a theory, [4], In 1936, 1937, A.
Mostowski made a thorough study of the relationship between the charac-
teristic numbers and the structural type of a theory, [1]. Closely related
with the work of Tarski and Mostowski is A. Lindenbaum, who recognized,
independently, the importance of the concept of structural type and whose
theorem, stating that every consistent theory has a consistent and complete
extension, is basic to the studies involved.

This paper intends to introduce the student of Logic to the metamathe-
matics mentioned above, but by a method different from those used by the
original authors. Tarski's contributions to the subject matter arise, more
or less as corollaries, within a mighty axiomatic framework intended to
cover the whole of the theory of theories, too heavy, it seems, for a student
who as a start wants to study, say, classification of theories. Mostowski's
paper on the matter requires more knowledge of topology than the average
logician, who is not a mathematician, possesses.

The method employed in this paper could be called "naive". However,
starting "from scratch", with structures established in the form of trees,
it arrives at the desired results in a simple and rather self-contained way
(only some fragmentary acquaintance with cardinal and ordinal arithmetic
is required). Results coinciding with results of Lindenbaum, Mostowski,
Tarski are mentioned as theorems. Side-results, due to the particular
method, are mentioned as remarks. The terminology, in so far as it is
new, is intended ad hoc, i.e., to promote readability of this paper.

§1. Introductory Remarks. Our considerations are confined to a first-
order language with identity containing no other than non-logical constants
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of finitary rank. The cardinal number of the set of non-logical constants is
assumed to be ^ 80. Sentences are assumed to be of finite length. By S we
denote the set of all sentences of the language. Speaking of sentences, we
refer to elements of S, speaking of theories we refer to subsets of 5 which
are closed under logical deduction with respect to S. Obviously, the
cardinal number of the set of all sentences is < tf0, the cardinal number of
the set of all theories is ^ 2**° . A theory T is said to be consistent if, and
only if, Γ c S , i.e., T is a proper subset of S. A theory T is said to be
complete if, and only if, for every sentence s either s e T or ~s e T, but not
both s e T and ~s e T, where s" is the negation of s. In this sense, every
inconsistent theory is incomplete and every complete theory is consistent.
If Tr and T" are theories, then by their logical union, Γf U T", we under-
stand Cn(T' U T"), i.e., the closure under logical deduction with respect to
S of Γ1 U Γ". We say that the theories T\ T" are compatible if, and only
if, J1' U V1 is consistent. We say that a sentence s is compatible with a
theory T if, and only if, theory Cn({s}) is compatible with T. Notice,
Γ U Cn({s}) = T U {s}. Obviously, if there is a sentence s such that as well
s as s is compatible with a theory T, then not only T is consistent, but
also neither s e T nor sΓe T and T is incomplete. Conversely, if a theory T
is consistent and incomplete, then there is a sentence, say s, such that
neither s eT nor ~s e T; considering T U {s} we notice that i"e T U {s}
would imply (by the deduction theorem) s —> s e T or s e T contrary to the
assumption; hence, T U {s} is consistent, and so is T U {s}, or, as well 5 as
5" is compatible with T. Thus we can state:

A theory T is consistent and incomplete if, and only if, there is a
sentence, say s, such that as well s as"s is compatible with T.

A theory Tf is said to be an extension of theory Γ, or equivalently, T is
said to be a subtheory of T\ if, and only if, T c r f Q S. We are interested
in the set of complete extensions of a theory T, i.e., of those extensions of
T which are complete theories. We shall say that two complete extensions
T1 and T" of a theory T are different if, and only if, they are incompatible.
We shall say that a sentence s completes a theory T, or that T is completed
by s, if, and only if, T U {s} is a complete extension of Γ. Theory T is said
to be finitely completable if, and only if, there is a sentence which com-
pletes T. If T ϋ {s} is a complete extension of T, then we call Γu{s}a
finite completion of Γ. If, with Tarski and Mostowski we introduce the
characteristic numbers α(T) and n(T) of a theory T, then α(T) is the
cardinal number of the set of all finite completions of T and n(T) the
cardinal number of the set of all other complete extensions of T.2 The
following theorem and its proof play an essential part in the subsequent
considerations:

Theorem 1 (Lindenbaum): Every consistent theory has a complete exten-
sion.
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Proof: Let T be a consistent theory. If T is complete, then T itself is a
complete extension of T. If T is incomplete, then we consider an enumera-
tion Si, s2, . , sn, . . . of all members of S and we define:

τ = j T W {si} , if S l is compatible with T;
1 j τ u { s Ί } , (=Γ), otherwise;

IT1! U {sjj , if 52 is compatible with Γj
2~ j ^ w f s j , (=7\), otherwise;

τ = |^»-i W {««} , if 5W is compatible with Tn^
n /7\»-i U{sn}, (=7Vi), otherwise;

OO

Finally we define T^ = y τi Obviously 7^ is a complete extension of T.
ί = l

Corollary 1.1: Every consistent and incomplete theory has at least two
different complete extensions.

Corollary 1.2: If a theory can be completed by a sentence and also by the
negation of that sentence, then it has not a different third complete exten-
sion.

If a theory T is complete, then the only complete extension of T is T
itself. This complete extension may be considered to be a finite completion
of T for various reasons. One can say that the empty sentence completes
T, and also that every sentence of T completes T. Conversely, if a theory
T has a complete extension, then certainly T is consistent; therefore, if T
has only one complete extension, then T has to be complete because of
corollary 1.1. And if T is complete, its only complete extension is a finite
completion as argued above. Hence, we can state:

A theory T is complete if, and only if, a(T) = 1 and n(T) = 0.

If a theory T is incomplete we distinguish two cases: T is inconsistent,
T is consistent. If T is inconsistent, then obviously it has no complete
extension. Conversely, by theorem 1, if T has no complete extension, then
T is inconsistent. Hence, we can state:

A theory T is inconsistent if, and only if, a(T) = 0 and n(Γ) = 0.

If T is consistent and incomplete, then we subdistinguish two cases:

T is not finitely completable and T is finitely completable.

If the consistent and incomplete theory T is not finitely completable,
then there is no sentence which completes T and there are no finite
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completions of T, or α(Γ) = 0. In this case we say that T is essentially
incomplete. It amounts to saying that not only T, but every extension of T
with a finite number of sentences is incomplete.

If the consistent and incomplete theory T is finitely completable we
distinguish further:

We say that T is finitely and unambiguously completable if, and only if,
the incompleteness can be removed in one finite way only. There is a
sentence, say s, such that T W {s} is a complete extension of T, and if there
is another sentence, say s1, such that T U {sf} is complete, then T U {s}=
T U {s1}, or what amounts to the same thing, s<—>s! e Γ. In this case
α (T) = 1.

We say that T is finitely and ambiguously completable if, and only if,
the incompleteness can be removed in more than one finite way. There are
at least two sentences, say Si and s29 such that T U {sjand T U {s2} are
complete extensions of T, but at the same time T W {si} and T U {s2}are
incompatible, or T W {si} b {s2} is inconsistent. In other words, T W {si}
and T W {s2}are different complete extensions of T. In this case α(T) > 1.

Notice that no harm is done if an inconsistent theory is called essen-
tially incomplete. Hence we can say that a theory T is essentially in-
complete if, and only if, α(T) = 0. Similarly no harm is done if a complete
theory is called finitely and unambiguously completable, so that we can say
that a theory T is finitely and unambiguously completable if, and only if,
α (T) = 1. Adding that a theory T is finitely and ambiguously completable if,
and only if, α(Γ) > 1, we have an exhaustive classification of theories, be it
a rather rough one (and therefore provisional). _

§2. Trees. We construct what we like to call a tree of complete
extensions for a theory T. Let, e.g., theory T be consistent and essentially
incomplete (α(Γ) = 0, n(T) Φ 0). Since there are only denumerably many
sentences in the language of T, we can think of some enumeration of these
sentences, say Si1, s2

!, S31, . Let s x be the first sentence in this
enumeration which is compatible with T without being valid in T, and lets 2

be si, the negation of sx. There certainly is such a sentence slf because T
is consistent and incomplete. Consider T\ = T W {si} and T2 = T b {s2}.
Both Ύ\ and T 2 are consistent proper extensions of T. Since in our example
T is essentially incomplete, 7Ί and T2 are essentially incomplete also.
Hence, we can continue and we take the first sentence in the enumeration
after sλ which is compatible with Ti without being valid in TΊ and we call
this sentence Su, its negation s i 2. We consider Γu = Γi W {sn} and
T12= Γi U {s12}, which are both consistent and essentially incomplete
theories, proper extensions of T and T lβ Similarly we take the first
sentence in the enumeration sΛ s2

T, S3T, after Si which is compatible
with T2 without being valid in T2and we call this sentence s2i, its negation
s22; the sentence s2i might be the same as Sn, but this is not necessary. We
form then Γ2 i = Γ2 b {s21}and T22 = T2 U {s22}, which are both consistent and
essentially incomplete theories, proper extensions of T and T2. Next we
take the first sentence in the enumeration after su which is compatible with
T11 without being valid in it, and we call this sentence Sm, its negation Su2;
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likewise we obtain the couples (sm, S122), ($211, S212), ($221, s222)and we form
the theories:

Tin = T11 w {sin} T112 = Tu W {sn2}

T121 = T12 U {sm} T122 = T12 W {S122}

T211 = T21 ω {s2n} T212 = Γai ω {5212}
T221 = T22 W 1S221} ) T222 = T22 W 1S222} J

This way we go on ad infinitum. We can do so in our example, because in
the case of a consistent and essentially incomplete theory Γ every exten-
sion of T which appears as Tai . . an with en e {1,2}for 1 < i ^ n and ne N,
is again consistent and essentially incomplete. We obtain the following
tree:

^ ^ T

Tu T12 T21 T22

/\ κ\ /\ / \
ΓTΛ ΓTΛ ΓWΛ rr\ rr\ rr\ ΓTΆ ΓWΛ

1 111 i 112 i 121 I 122 i 211 i 212 i 221 ± 222
Λ A Λ A Λ A Λ A

/ \ / \ ' \ / \ / \ / \ / \ / \
/ \ / \ / \ / \ / \ / \ / \ / \

It is obvious that in the case of a consistent and essentially incomplete
theory the tree goes on growing in all directions, i.e., every node gives
birth to a splitting into two directions and every new direction produces a
new node. In the usual sense we speak of a branch of this tree, in this case
a branch being a sequence of consistent theories of increasing strength:

T C Tai C Tβ1Λ2 C . . . C Taia2 . o . an-ι ^ Taia2. . . an-ιμn C . . .

with ca e {1,2}, ieN.

If, as in this example, theory T is consistent and essentially in-
complete, then all branches go on indefinitely and each branch of the tree is
a sequence of increasing strength matching the construction of the proof of
theorem 1 (theorem of Lindenbaum). Therefore, the union of all theories of
a branch constitutes a complete extension of the theory T, or what amounts
to the same thing, each branch of the tree generates a complete extension
of T. Moreover, there are no other complete extensions of T than those
generated in this arbitrary tree (arbitrary, because based on an arbitrary
enumeration). We argue: Let T* be a complete extension of T. Then
either Si or s2 is valid in T*, say sx; consider next Sni either Sn or sί2 is
valid in T*, say S12; continue with Sm ' either Sm or 5122 is valid in T*, say
S121; and so on. Obviously, there is a branch in the tree which is com-
pletely in T*, or, the complete extension of T generated by this branch
coincides with T*.

If T is finitely and unambiguously completable (α(T) = 1), then there is
a sentence, say s, such that T ϋ {s} is complete; if there are other
sentences with this property, then they are equivalent in Twith s. Again
we take an arbitrary enumeration of all sentences in the symbolism of T



6 KAREL L. de BOUVERE

and we construct a tree of complete extensions according to the procedure
described above. As soon as we hit the sentence s, or a sentence equivalent
in Twith s, or a sentence sai . . .an such that the sentences sΛι & saia2 &.. .
& Saιa2 . ctn-i & saχa2 an-\"n is equivalent in T with 5 (where α, e {l, 2}
for 1 < i ^ n and n e N), then the branch breaks off at this sentence. This
particular branch is fully described by T W {s} and we remark that any
other branch of the tree contains at least one sentence which is the negation
of a valid sentence of T W {s}. This implies that any other complete exten-
sion of T generated by a branch of the tree is incompatible with T W {s}.
Therefore, if T is finitely and unambiguously completable, there is one and
only one branch of the tree that breaks off. It can be shown in a similar
way as in the case of essential incompleteness that the tree generates all
complete extensions of T.

If T is finitely and ambiguously completable (α(T) > 1), then again we
can take some enumeration of all sentences in the language of T and
construct a tree of complete extensions, according to the procedure
described above for the case of essential incompleteness. In a similar way
as in the case of unambiguous completability we can prove that there are
exactly as many branches that break off as there are different finite
completions of T.

It may be clear now what we understand by a tree of complete exten-
sions for a theory. Let T be a theory and let E be any enumeration of all
sentences in the language of T. A binary tree based on T and E constructed
as described above is called a tree of complete extensions for T. If T is
inconsistent, then the empty set can be considered to be its tree of com-
plete extensions. If T is complete, the whole tree consists of T itself. We
can summarize the pertinent properties in the following remarks:

Remark 1: Every branch of a tree of complete extensions for a theory T
generates one complete extension of T, and every complete extension of T
is generated by one branch of this tree.

Remark 2: Branches of a tree of complete extensions for a theory T that
break off generate finite completions of T, and finite completions of T are
generated by branches of this tree that break off.

With help of the tree of complete extensions it is easy to prove certain
theorems concerning characteristic numbers. As first examples we can
take some theorems, which are specifications of the results of Tarski3 and
Mostowski.4

Theorem 2: If T is consistent and essentially incomplete, then the cardinal
number of the set of complete extensions of T is 2 °̂. Or equivalently, if T
is consistent and α(T) = 0, then n(T) = 2 °̂.

Proof: The cardinality of the set of complete extensions of T is that of the
set of branches of a tree of complete extensions for T (remark 1). If T is
essentially incomplete, then none of the branches in such a tree breaks off
(remark 2). Obviously the cardinality in question is the same as that of the
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set of the different infinite sequences whose elements are the digits 1 and
2, vis. 2*o.

Theorem 3: If T is incomplete but finitely and unambiguously completable,
then the cardinality of the set of complete extensions of T is 2*°. Or
equivalently, if T is incomplete and α(T) = 1, then n(T) = 2 °̂.

Proof: The cardinality of the set of complete extensions of T is that of the
set of branches of a tree of complete extensions for T (remark 1). From
the proof of the foregoing theorem it is obvious that the cardinality of the
set of branches is at most 2*°. Further, there are at least two different
branches (corollary 1.1 and remark 1), one of which does not break off
(remark 2). Considering a tree of complete extensions for T we remark
that this implies that certainly not both Ti and T 2are complete, and more-
over, (again by remark 2), that either TΊ or T* is essentially incomplete.
Hence, π(Γ) equals 2*° (theorem 2).

If one attempts an analysis, similar to that in the proof of theorem 3,
for the case where there are more finite completions than one, there
appears a complication. The enumeration E can be such, that the construc-
tion of the tree breaks off completely. In order to clarify this case we
construct another kind of tree, which we like to call a tree of finite comple-
tions. Let T be an incomplete theory and let C be such an enumeration of
all sentences which complete T, that, if several completing sentences are
equivalent in T, only one of them is listed. Let further E be again an
enumeration of all sentences in the language of T. We construct a tree of
finite completions for T proceeding in the same way as in the construction
of a tree of complete extensions for T, but instead of using the enumeration
E we start with using C. If we do not exhaust C, then we call the tree based
on T and C a tree of finite completions for T. If we do exhaust C, then
there are two possibilities:

(i) The last theory which appears in the tree is complete. In this case
all the branches of the tree break off and we call the thus established finite
tree based on T and C a tree of finite completions for T.

(ii) The last theory which appears in the tree, say T\ is incomplete In
this case T9 is not only incomplete, but essentially incomplete, since there
is no sentence left which could complete it. We then continue constructing
for this essentially incomplete theory Γf a tree of consistent and complete
extensions based on Tτ and E. The whole of the infinite tree thus appearing,
based on T, C and E, we call a tree of finite completions for T.

As a first example we take the case of theorem 3, i.e., let T be in-
complete but finitely and unambiguously completable, or what amounts to
the same thing, let T be incomplete and let C consist out of one single
sentence, say Si. We obtain a tree of finite completions for this theory T
according to the procedure described above and already after one step we
are in the situation of case (ii).
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T,= T ϋ{s} .T2.= Γ v{I}

T2i T22

T211 T212 T221 T222

Λ A A Λ
/ \ / \ ' \ / \

/ \ / \ / \ / \
/ \ / \ / \ / \

In this tree theory TΊ is complete, the branch breaks off (indicated by
double underlining). Theory T2 is essentially incomplete since TΊ is the
only finite completion of T. Obviously, this tree of finite completions based
on Γ, C and E is at the same time a tree of complete extensions for Γ. As
such the tree illustrates theorem 3.

For a second example we pass to the case of an incomplete theory T
which has exactly two different finite completions, or C = <sh s 2 > with
T W {sj} and T W {s3}being the only finite completions of T and T W {s} W {sj-
being inconsistent. The first step in the construction of the tree provides
us with:

Γi = T b {s} T2= T w {s}

If T2 is complete, then s x is equivalent in T with s2 and we have
T2 = T W {sj- = T W {sj-; we have exhausted C and the last theory appearing
in the tree is complete; we are in the situation described above in (i), we
can put double lines under T2, all branches have come to an end and a tree
of finite completions is established; as is seen easily from corollary 1.2
this tree of finite completions for T is again a tree of complete extensions
for T.

If T2 is incomplete, then we argue as follows: T W {s2}is complete, the
sentence Si is not valid in T W {s2} (because T W {si} W {s2} is inconsistent),
therefore ?! is valid in Γ ti {s^, or, s 2 i s compatible with T u {sj; hence it
is possible to continue the construction of the tree as follows:

Tχ=T ufci} T2=T W {J}

T21 ^T U {S2} ^ T 2 2 = T 2 U {I2}

T221 T222

Λ A
' \ f \

t \ ' \
/ v / \

/ \ / \

Since Ti and T 2 i are the only finite completions and T2i = T2 w {s2} is a
proper extension of T2y theory T2 2 has to be essentially incomplete and in
the same way as in the first example we end up in the situation described
above in (ii). It can be seen readily that in this case again the tree of finite
completions thus constructed is at the same time a tree of complete exten-
sions for Γ.
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If there are more finite completions than two, the same type of con-
struction as in the foregoing example can be carried out. We obtain left-
hand branches that break off immediately until C is exhausted; if C is
infinite, then only the extreme right-hand branch goes on growing ad
infinitum; if C is finite, then either the whole tree is finite or after a finite
number of steps we hit an essentially incomplete theory and from there the
tree grows out as sketched above.

With help of the tree of finite completions it is easy again to prove
certain theorems about characteristic numbers. We mentioned already how
theorem 3 is illustrated by the first tree of finite completions we sketched.
Another example is the following of Mostowski's results5 which follows
immediately from the considerations expounded above:

Theorem 4: If T is incomplete but finitely and ambiguously completable,
and T has a finite number of finite completions, then the cardinal number of
the set of all other complete extensions of T is either 0 or 2^o. Or equiv-
alently said, if 1 < α(T) < tf 0, then either n(T) = 0 or n(T) = 2 °̂.

A remark of a somewhat different nature which can be proved easily
with help of the picture of the tree of finite completions is the following:

Remark 3: If T is incomplete but finitely and ambiguously completable, and
the finite completions T U {si}, T U {s2}, . . . , T W {sn} are the only differ-
ent complete extensions of T, then for each i such that 1 < i ^ n, the
sentence s, is equivalent in T with the sentence ~Sι &S2 & . . . &^* -i &
s~i+1 & . . . & ? « . Or equivalently, if α(T) = n, where 1 < n < tt0, and if
n(T) = 0, then there are sentences sλ, S2, . . . , sn, such that T W {si},
T W {sj , . . . , T U {sn} are different finite completions of T and for each i,
where 1 ̂  i ^ n, the sentence Si is equivalent in T with the sentence
S 1 & S 2 & . & S i - i & S / + i & . . . & S W .

Proof: We construct a tree of finite completions based on T and
C = <Si, S2, . . . , sn >. It is the lower end that interests us.

T

/ T W {?χ}

Theory T W {sΊ} U . . . U {^.J has to be complete, otherwise it would give
birth to a new splitting and there would be at least n+ 1 different complete
extensions, contrary to the assumption. Therefore, T W {sw}= T W {sΊ} W
. . . ϋ {sw-i}, or ?i & 5 2 & . . . &?„-!<->? e T. Since we can apply this
argument for any permutation of Si, . . . , sn, the remark is proved»
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The following remark, which is an extension of corollary 1.2, falls into
the same category.

Remark 4: Let T be incomplete but finitely and ambiguously completable
and let T U {sj, T W {s2}, . . . , Γ W {sn} be different finite completions of
T. If for some i such that 1 ^ i ^ n the sentence sz is equivalent in T with
the sentence sΊ & s"2 & . . . & S/.x & s"ί+1 & . . . & ? „ , then T ϋ {sj}, Γ U {s2},
. . . , T W {sw} are the only different complete extensions of T. Or equiv-
alently, let α(T) > 1 and let Γ U {si}, Γ b {s2}, . . . , Γ k J {sn} be different
finite completions of Γ. If for some i such that 1 ^ i ^ n the sentence s, is
equivalent in Γ with Sx & . . . &s"f -χ &5, +i . . . &s"n, then α(T) = w and
π(Γ) = 0.

Proof: Let sn be equivalent in Γ with s i & s"2 & . . . & ~sn-i. If we start
constructing a tree of finite completions based on T and such an enumera-
tion C that Si, . . . , sn forms the initial segment of C, then the tree breaks
off at ΓW {si} U {s2} U . . . U {sn-J as illustrated in the diagram of the
foregoing proof. In an analogous manner as in the case of corollary 1.2 it
can be shown that there is not a different (n+ I ) " 1 complete extension of T.
Since the argument applies to any permutation of Si, . . . , sn, the remark
is proved.

Remark 5 (a corollary of remarks 3 and 4): Let T be incomplete but fi-
nitely and ambiguously completable and let T W {si}, T W {s2}, , . , , Γ U {sn}
be different finite completions of T. If for some i such that 1 ̂  i ^ n the
sentence s f is equivalent in T with the sentence s i & . . . &s"/-i & s/+i &
. . . & s«, then for each.; such that 1^ j ^ n the sentence s7- is equivalent in
T with the sentence Si & . . . & s 7 _! & s ; + 1 & . . . & s w .

At this point we can pay some more attention to the case where C is
infinite, i.e., the case where there are denumerably many different finite
completions of a theory T, or what amounts to the same thing, where there
are denumerably many completing sentences for the incomplete theory T
not two of which are equivalent in T. We remarked already that in this
case the tree of finite completions goes on growing at the extreme right-
hand side, while the branches to the left break off immediately. We obtain
the following picture for C = <Si, s^ s3, . . . > :

T

Γi= Γ U{si} J > ^ U {sx}

T2ΐ=T u { s 2 | ^ Γ lϋ {s i} b {s2}

τ2^ί= T u { s 3 } > s g u {s i} w {s 2} ω {53}
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Considering the extreme right-hand branch of this tree we remark that
OO

it generates theory TU U {s«}» The consistency of this theory is es-
w = i

tablished in the following theorem, which is implied already in the results
of Tar ski6.

Theorem 5: If T is incomplete but there are denumerably many completing
sentences sh s2, s3, . . . for T, not two of which are equivalent in T, then

CO v

T U U {sw} is consistent.

Proof: Theory Γ U {si} is complete and as such it contains either s 2 or 52o

It is given that T W {si} and T U {s2} are different, or, that T U {si} U {s2} is
inconsistent. Hence, s"2 e T U {si}. Similarly, all s"3, $4, s"5, . . . , e T U {si}.

00 00

Consequently, T U U {sw} c T U {sj . Hence, T U U {sw} is consistent
w=2 «=2

and Si is at least compatible with this theory. We know further, that if a
theory is complete, all sentences compatible with it belong to it. However,

00

if 5i e Γ U U {̂ }> then it follows from the deduction theorem that there
n — 2,

is a finite number of sentences among s2, s3, 54, . . . , say sff s*, . . . ,s*-p
s$, such that ~Si<-^>~s* & i"* & . . . &"s^_! & 5"* e T, or, by remark 4, there is
only a finite number of different completing sentences for T, contrary to

00

the hypothesis. It follows that Γ U (J {sw} is incomplete and hence that Si
n = 2 00

is not valid in it. Therefore, both Si and sΊ are compatible with T U U {βn}
00 « = 2

and ΓU (J {sn} is consistent.
w = i

The consistency of the right-hand branch being settled we turn to the
question of its completeness. We can state, that this theory may as well be
complete as incomplete. Concrete examples of either case can be con-
structed easily. The case where there are denumerably many finite com-
pletions T ϋ {si}, T ϋ {s2}, . . . but where the right-hand branch theory

00

T u U {s«} is not complete, is the interesting one. This possibility
n = i

implies that in the case where C is infinite the tree of finite completions
based on T and C is not necessarily a tree of complete extensions for T.

00

If T W U {βn}
 i s incomplete, then the extreme right-hand branch of the

« = i

tree of finite completions does not generate a complete extension of T and
there are at least two different complete extensions of T, vis. complete

00

extensions of Γ y U {sw} (by corollary 1.1), which are not generated by
w = l

this tree.
For shortness sake one might call theory T a lone tree theory if, and

only if, a tree of finite completions for T is at the same time a tree of
complete extensions for T. It follows from the definitions of the trees and
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the considerations expounded above that theory T is always a lone tree
theory except in the case where there are infinitely many different finite
completions T \ά {si}, T l!) {s2}, . . . and the right-hand branch theory

oθ

Γ U U {s j is incomplete.

§3. Classification. Let us call a theory T virtually complete if, and
only if, T is consistent and, if T* is a complete extension of T, then there
exists a sentence,say s*, such that T* = T b {s*}. In other words, theory T
is virtually complete if, and only if, it is consistent and all complete
extensions of Γ are finite completions of T. Or in terms of characteristic
numbers, theory T is virtually complete if, and only if α(T) >0, n(T) = 0.
It does no harm that according to this definition a complete theory is
automatically virtually complete. If a theory T is incomplete but virtually
complete, then it can be seen readily that T is ambiguously completable, or
α(T) > 1, by corollary 1.1. However, the converse of the last statement is

not true; let theory T be finitely but ambiguously completable in such a way
that there are denumerably many sentences, say Si, 52, . . . such that
T U {si}, T U {s2}, are all different complete extensions of T. As stated

OO

b e f o r e , t h e r e e x i s t s u c h t h e o r i e s . A s w e h a v e s e e n , t h e t h e o r y T ϋ l J {sn}
ή = ι

is consistent and as such, by theorem 1, it has a complete extension, say
T*. But there is no sentence s such that T* = T U {s}, because, if this
were the case, then 5 (or a sentence equivalent in T with s) would appear
somewhere in the enumeration Si, s2, . . and T* would contain both s and
? and thus be inconsistent contrary to the assumption that T* is a complete
extension. Hence, in this case, although T is ambiguously completable
(α(T)> 1), this theory is not virtually complete. In a more general way
virtual completeness is excluded from this kind of theories by the follow-
ing result of Tar ski7:

Theorem 6: If a theory T is virtually complete, then it has only a finite
number of complete extensions', conversely, if a theory T is consistent and
has only a finite number of complete extensions, then it is virtually com-
plete. Or equivalently, if a(T) > 0 and n(T) = 0, then a(T) < tf0; conversely,
ifθ< a(T) + n(T) <$0, then n(T) = 0.

Proof: If T is complete, then it has only one complete extension; if a
theory has only one complete extension; then it is complete and hence
virtually complete. So the theorem is proved for Γ being complete and we
can assume from now on that T is incomplete.

(i) If T is incomplete but virtually complete, then α(T) > 1, as re-
marked above. Assume α(T) = No. Then there are sentences Si, s2, . . .
such that T U {si}, T U {s2}, - are different complete extensions of T. As

oo

we have seen previously, T u U {s~} has a consistent and complete

extension, say Γ ,̂ for which there is no sentence s such that Γ* = T y {s},
contrary to the hypothesis that T is virtually complete. Hence, α(T) < tf0.
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(ii) Let there be only a finite number of different complete extensions
of the incomplete theory T, say Ti, . . . , Tn. Assume that there is no
sentence Si such that Γi = T U {si}. It is given that TΊ is different from all
T2, . . . , Tn and therefore Tihas to contain a sentence, say t^ which is not
valid in T% similarly a sentence, say t3, which is not valid in T3; . . .
finally a sentence, say tn, which is not valid in Tn. Consider Tτ =
T ϋ {t2} U {t3} W . . . U {*«}. Obviously, T c Γ1 c r x . If Tτ = Ti, then for Si
we can take the sentence t2 & t3 & . . . & tn and Ti= T U {si} contrary to the
assumption. However, if Tτ is different from Ti, then Ti has to contain a
sentence, say tlf which is not valid in T1. But then T1 U {Fi} would be con-
sistent and as such it would have a complete extension (by theorem 1) which
is different from all Th . . . , Tn contrary to the hypothesis that these are
the only complete extension of T. It follows that there is a sentence Si
such that Γi=ΓW {si}. Similarly, there are sentences s2, . . . , sn such
that T2 = T W {s2}, . . . , Tn = T W {sw}. Hence Γ is virtually complete.

Having introduced the concept of virtual completeness we can define, in
a more or less analogous way, the concept of almost essential incomplete-
ness. We shall say that a theory T is almost essentially incomplete if, and
only if, T is not essentially incomplete but has a consistent extension, say
T1*, which is essentially incomplete. Or, what amounts to the same thing,
theory T is almost essentially incomplete if, and only if, α(T) > 0 and n(T)
= 2 °̂. It follows immediately from theorem 3 that incomplete theories,
which are finitely and unambiguously completable, are almost essentially
incomplete. As a re-formulation of theorem 4 we have:

If a theory T is finitely and ambiguously completable and has only a
finite number of finite completions, then T is either virtually complete or
almost essentially incomplete.

The additional condition in the last statement, that T has only a finite
number of finite completions, stresses the fact that not every finitely but
ambiguously completable theory T which is not virtually complete is
necessarily almost essentially incomplete. A finitely but ambiguously
completable theory T with denumerably many different finite completions
(α(T) = No) is as we have seen (in theorem 6) not virtually complete, but it
needs not to be almost essentially incomplete either. It is true that we can
bring all finite completions T \ά {si}, T W {s2}, . . . in one tree of finite
completions but at the same time this procedure generates the consistent

OO OO

theory T U U {sw} (cf. theorem 5). It is possible that T W U {sn} is com-
w = 1 n=l

plete and hence that there are no more complete extensions than T U {sΛ,
OO

T W {s2}, and T U U {sn}; in this case (α(Γ) = tt0, π(T) = 1) theory T is
n = l

not almost essentially incomplete. Apparently, there are incomplete
theories which are neither essentially incomplete, nor almost essentially
incomplete, nor virtually complete. The following remark states a common
property of these theories:
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Remark 6: If a theory T is neither essentially incomplete, nor almost
essentially incomplete, nor virtually complete, then there are denumerably
many different finite completions of T.

Proof: Theory T is not finitely and unambiguously completable because
this would imply that T is almost essentially incomplete contrary to the
hypothesis. Since T is not essentially incomplete either, the theory has to
be finitely and ambiguously completable (cf. the exhaustive classification on
p. 4). However, for such a finitely and ambiguously completable theory we
obtain by the above re-formulation of theorem 4:

// a(T) > 1, α(T) < «0, n(Γ) Φ 0, then α(T) = 2*o

Hence we deduce a contrapositive:

// a(T) > 1, α(T) < 2*°, n(T) Φ 0, then a(T) = «0,

which proves the remark.

Among the theories whose finite completions have cardinality No we
choose those for which in addition the cardinality of the other complete
extensions is >0 and ^ No We shall say that a theory T is ^-incomplete
if, and only if, α(T) = tt0 and 0 < n(T)< tfo The next two remarks justify
this choice. They state that the four categories (virtually complete, essen-
tially incomplete, almost essentially incomplete, No -incomplete theories)
partition the set of all theories.

Remark 7: The four categories:

(i) virtually complete theories
(ii) essentially incomplete theories
(iii) almost essentially incomplete theories
(iv) tto-incomplete theories

are pairwise disjoint.

Proof: By simple inspection of the characteristic numbers we learn that
overlapping is excluded:

Categories Characteristic Numbers

Essentially incomplete α(T) = 0 n(Γ) =1^0

Almost essentially incomplete a(T) > 0 n(T) = 2̂ °

Virtually complete 0 < α(T) <N0 n(T) = 0

No-incomplete α(T) = No 0 < n(T) ^ No

If T is a lone tree theory and α(T) < No, then either π(T) = 0 or n{T) = 2**o.
If T is a lone tree theory and α(T) = tfo> then π(T) = 1. In other words,
every lone tree theory belongs to one of the four categories mentioned
above.

If T is not a lone tree theory, then a(T) = No and the right hand branch
theory is incomplete. It suits the arguments to use upper and lower
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indices. Let T% = T and let s°lf s% . . . be an enumeration of all sentences
(not two of which are equivalent in To) completing To. Let T° = T°i_1 U {ŝ },
for i e N. Thus we have defined the sequence of increasing strength

OO

T°v T% . . o , extensions of T°o. Next we define To = ( J T°. Theory r£,
1 = 1

formerly called the right hand branch theory, is consistent by theorem 5.
If To is a lone tree theory, we obtain the following scheme, where k e N:

ajT'o) I n(To ) || α(Tg) | n(rg)

0 2 °̂ « 0 2 °̂

k 2^o tf0 2^o + k = 2^o

k 0 No k

No 1 No No + 1 = No

We r e a d from the scheme that in t h i s c a s e a l so theory T belongs to one of
the four c a t e g o r i e s . If TQ is not a lone t r e e theory, we continue and define

OO

TQ = U T\, w h e r e TJ = TJ^λ U {sj}, ieN a n d w h e r e s j , si . . . i s t h e
ί = l

enumeration of all sentences (not two of which are equivalent in To) com-
pleting TQ. If TQ is a lone tree theory, again we can conclude easily that
the original theory T belongs to one of the four categories. If To is not a
lone tree theory we continue and define T3

0.

Apparently the above sketch tries to describe a procedure where new,
stronger extensions of T are defined until one hits a lone tree theory.
More precisely and more in general we define a collection S of extensions
of T, well ordered by inclusion, as follows: ^contains as elements all
those and only those theories T^, where

(i) μ is an ordinal number and μ > 0;

(ii) If TQ, To eS and K < λ then T^ is not a lone tree theory;

(iii) If μ is a limit number, then T^ = U τ£;
λ<μ co

(iv) If μ is not a limit number then T£ = U Tf~\ where T?'1 = T?Z\V

{sJΓ1}* ι e N and si"1, s^"1, . . .is an enumeration of all sentences
(not two of which are equivalent in TQ""1) completing TQ" 1 .

Obviously, for ^ to contain a greatest element, say TQ it is necessary
and sufficient that TQ is a lone tree theory. With TQ there is associated the
set of sentences 5° = {s°}, ieN, and with every Toe 3" which is not a lone
tree theory there is associated a set of sentences Sλ = {s^}, ieN, the sets
of sentences completing T° and To respectively. Not only within S° and
within every such Sλ no two sentences are equivalent in T, but the sets are
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pairwise disjoint in such a way even that no two sentences belonging to
different sets are equivalent in T. Since the cardinal number of the set of
all sentences is ^ tf 0, the union of all sets S°, Sλ has to have a cardinal
number ^ tf0. This implies that <^has to have a greatest element, say Tj,
and T has to be < Ω in order to keep the cardinality down to 80. This
greatest theory TT

Q is a lone tree theory. The above considerations lead to:

Remark 8: A theory T is either essentially incomplete, or almost essen-
tially incomplete, or virtually complete, or tf0-incomplete.

Proof: As remarked above, if T is a lone tree theory, then T belongs to one
of the four categories. If T is not a lone tree theory, then we can define the
collection S as above with greatest element To and T < Ω. For each Γ'ff
with μ< T, the finite completions of To are not finite complete extensions
of T. Hence, each To, μ < r, contributes tf0 complete extensions to π(T).
Since r < Ω, the total contributions of the theories To with μ < r to n(Γ)
amount to No. Since To is a lone tree theory it contributes to n(T) either
2̂ ° or k + 2̂ °, or k, or «0 + 1, so that in any case either π(T) = 2̂ ° or
n(Γ) < $o, with π(T) < tf 0 only possible for r = 1. It follows that also a not
lone tree theory belongs to one of the four categories.

From the above considerations it is easy to obtain the "characteristic
pairs" as established by Tarski and Mostowski, i.e., the only possible
ordered pairs <α(T), n(T)> for a theory T. They are:

<0, 0>, <k, 0>, <« 0 , k>,

<0, 2^°>, <k, 2^°>, <« 0 , «o>,

<«o, 2^°>,

where k e N. However, for the cases that α(T) = ̂ 0 and π(T) = ̂ 0 or
n(T) = 2 ° they do not quite characterize the theory concerned, as observed
already by Tarski8. The characterization of a theory to which this context
refers concerns a certain structural type. Let Tτ, T" be theories, let ^Γ1,
&" be the sets of all extensions of T !, T" respectively and let <S\ c > f

<S" , Q> be the corresponding structures partially ordered by inclusion.
In this context Tτ and T" are said to have the same structural type if, and
only if <S\ Q> and <ίΓ" , Q> are isomorphic. The structural type of a
theory T is then the class of all theories which have the same structural
type as T. The treatment in this paper makes it very plausible that indeed
the pairs < No, No> and < tf0, 2^°> do not determine the structural type of
T. Consider, e.g., the case of a theory T with α(T) = No, and To being
essentially incomplete as compared to a theory U with a(U) = No and
a(Uo) = No and u\ being essentially incomplete. However, a more precise
and positive approach to this characterization of theories with help of the
tree pictures as sketched above, although seemingly plausible, is beyond
the scope of this paper.
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NOTES

1. Part of this paper was prepared while the author was with the University of
Amsterdam under Euratom Contract No. 010-60-12.

2. Cf., e.g., [4], p. 370 of the English translation. Tarski speaks of an axiomatizable
extension where we use finite completion. Notice that, if s completes T, theory
T U {s} is not necessarily an axiomatizable theory in the usual sense.

3. Cf. [4], theorems 37, 39 and context, pp. 367 ff. of the English translation. See also
[3], p. 109 of the English translation.

4. Cf. [1], pp. 46-48.

5. Cf. [1], p. 48, Satz 8. See also [4], p. 370 of the English translation.

6. Cf. [4], pp. 367-370 of the English translation (the exclusion of the case α = No,
n = 0).

7. Cf. [4], pp. 367-370 of the English translation.

8. Cf. [4], p. 371 of the English translation.
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