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RECOGNIZABLE ALGEBRAS OF FORMULAS

JOHN GRANT

In this paper we consider various algebras formed out of the formulas
of first-order languages. We rely mostly on [l] for our notations and
terminology. We deal with structures, 31 = (A, Rθ)θ<ξ, where each Rθ is an
nβ-2LYy relation on A; and with algebras, % = (A, Fθ)θ<ξ, where each Fθ is an
nθ-2iτy function on A (in both cases 0 ^ nθ < ω). If Rθ (resp. Fθ) is a 0-ary
relation (resp. function) it is a distinguished constant and we write it as aθ.
The type of 51 is μ = (nθ)θ<ξ. j£μ is the appropriate language for St; usually
we just write j£. For S c A, J^S) is the language X with a symbol added for
each element of S. Thus j£(φ) = j£ and j£(A ) is the diagram language. When
we write definable we mean definable in the diagram language (i.e.
definable by parameters).

We use a, β, γ for cardinals and assume that a is regular, β ^ a and
y < a. We use φ, ψ, X for formulas. When we write a formula φ as
φ(x0, . . . , xi9 . . . , α0, . . . aη, . . .), it is understood that x09 . . . , xi9 . . .
are all the free variables of φ and a0, . . . , aη, . . . are all the parameters
of A in φ. The cardinal of 51 is A and the cardinal of μ is ξ; we denote it by
μ. Given a formula φ, \φIg = {ψ | %\= 0^->ψ} usually we just write \φ\.

In general we present our results for a collection of languages at a
time; in particular, _yV = {-C }̂ and Ji = {-Caa}. Note that JiQjsl and £ωω is
the usual finitary first-order language with equality. Unless otherwise
specified we assume that <£e Js/. The notions of elementary equivalence,
elementary extension, and elementary embedding can be extended to the
infinitary languages and we write -C - Ξ , «C - -3, and ^-embedding respec-
tively. We also deal with second-order languages £2; j£z contains all the
symbols of <£ and variables of every degree y, 0 < γ < α, which we write as
vj. In the model under consideration the vj are interpreted as variable
y-ary relations. In £2 we may quantify over such relations. Individual
variables have degree 0 and are denoted by x, y, and z.

1. Definitions and Examples. We assume a type μ and a language ^ appro-
priate for μ as given.
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Definition 1. A recognizable algebra of formulas of a structure % is an
algebra R(«) = <llT(Fy)||, Fo, . . . , Fl9 . . .)Kδ where

1) T(Fy) is either
a) a formula of X2 which contains one free variable, namely Vy, and no

bound variables of degree >0; or
b) the symbol E,
2) In case a) | |τ(F y) | | is the set of equivalence classes \φ\ of formulas of

j£(A) with free variables x0,..., xL,... (i < γ) such that 31 f= T (0); in case
b) | | E 11 is the set of equivalence classes of formulas of £{A),

3) Each FL is an operation on ||T(Fy)|| defined by an operation Ff as follows:

^ d Φ i i , . . . , I Φ » I ) = I F * ( * I , . . . , 0 j ι .

Ft may be defined inductively as consisting of a finite number of applica-
tions of projections, connectives, quantifiers, and substitutions of variables
for variables (when allowable by the usual rules). A 0-ary operation is a
IφI where 0 is a formula of *Q and \φ\e\\T(Vγ) | | .

We will write F instead of F * if this causes no confusion. We use 91 to
stand for a recognizable algebra of formulas and R for its domain when 51
is not specified.

Definition 2. Given structures % and SB of the same type, R($l) and R(8) are
said to be a pair of corresponding recognizable algebras of formulas if the
definition of R(8) is the definition of R(%) with Si replaced by SB.

Now we give examples of recognizable algebras of formulas. In each
case we deal with formulas of the diagram language of a structure.

Example 1. The Lindenbaum algebra of formulas: <| |E| | , V, Λ, ~ ) ;
Example 2. The cylindric algebra of formulas;
Example 3. The Boolean algebra of formulas of one free variable: < II(VΛΓ)
{v\χ) ^ F ' W ) ! ! , V, Λ, ~ , | # * A Γ | , | # = # I > ;

Example 4. The lattice of formulas of one free variable;
Example 5. The Boolean algebra of formulas of γ free variables;
Example 6. The relation algebra of formulas of two free variables;
Example 7. The semigroup of definable unary functions: (\\(Vx) (ly)
[V2(x,y)Λ(Vz) (V2(x,z)-*y=z)]\\, *) where if fx is |φ^x, y)\ and f2 is
Ifafo y)\9 then/ 2 * / i is \(lz) {φγ{x, z) λφziz, y))\ where z is the first variable

free for y in φx{x, y) and free for x in φ2{x, y);
Example 8. The group of definable permutations;
Example 9. If JZ < a the semigroup of definable endomorphisms;
Example 10. If μ < a the group of definable automorphisms: <||(VΛΓ) Oy)
[V2(x, y) Λ ( V s ) (V2(x, z) -+ y = Z)]Λ (Vy) ( 3 * ) [V2(x, y) A ( V S ) (V2(Z, y) - x =
z)] Λ Po . . . APΘ Λ . . . (θ < I), *, -1> where * is defined as in Example 7, if/
is \φ(x, y) I t h e n / " 1 is \φ(y, x) |, and if nθ> 0, Pθ is (Vχu . . . , xnQ, yl9 . . . ,

y~nθ) §.V2(XV yx) Λ . . .A V2(Xnθ, ^ ) ] — [RΘ(XI, , * ^ ) «-» fl^i, , ynθ)]}y

finally if nθ = 0, Pθ is V2(aθ, aθ);
Example 11. The subalgebra of a recognizable algebra obtained by
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restricting | |τ(F y) || to formulas of £(S) where S is defined by a formula of <£
of one free variable.

2. The Main Theorems If d : A —» B and φ(x0, . . . , xl9 . . . , α0, . . . ,
aη, . . .) is a formula of J£(A) then we write dφ for the formula φ(x0, . . . , xl9

. . . , d(aΌ), . . . , d(aη), . . .).

Proposition 1. $1 is J^-embeddable in S3 i#" ίfeere is an embedding d : A -* B
such that for every pair of corresponding recognizable algebras R (%) and
R (8), the map I d I: I φ |$ —> I a*0|$ is an embedding of R (31) into R (8).

iYoc/: (=#>) If U is ^-embeddable in 8, let rf be an ^-embedding of $j i n t 0

S3. Then \d\ has the required property.
(<#=) If ft is not ,^-embeddable in 8, let d : A -» 5 be any embedding (if

there is one). There is a sentence ψ of J£(A) such that U\=ψ and 8 | = - # .
Now let 91 = <||(VΛΓ) (^(ΛΓ) ||>, and let φ be ψ vx Φ x. Then \φ\yeR(U) but
\dφ\%$R(&). Thus |rf| is not an embedding.

It follows that for every recognizable algebra R, the map r : II —• R (3ί)
is a functor from a category of models (the maps being ,^-embeddings) to a
category of algebras (the maps being embeddings).

Lemma 1. Suppose that U -C - - 8 . Then
(i) there is a p-tuple of A, (α0, . . . , Oη, . . )η<p,such that \φ{x0, . . . , xL,

. . . , α0, . . . , Oη, . . .) I e R (51) iff there is a p-tuple of B, {b0, . . . , bη,

. . .)η<P,such that \φ(x0, . . . 9 xt9 . . . 9 b0, . . . , bη, . . .) |eR (SB).
(ii) Replace the phrase "there i s " by "for every" in (i).

For the rest of this section we assume that J£e Ji.

Theorem 1. %£-=®iff for every pair of corresponding recognizable

algebras, R(«) and R(β), R(H) -C - = R(8).

Proof: (=Φ) If tί J£ - = S3 and R is given, we translate each sentence J of
the language of R to a set of sentences of £ whose truth or falsity deter-
mines the truth or falsity of J . The translation is done by induction on the
formulas of ^ . We use y with subscripts for the variables in J and assume
that each such variable is quantified only once. We do the case where
Ί(VY) Φ E; if Ί(Vγ) = E the proof goes through with a few modifications.

Denote by £+ the language £ with the symbols Yη added to it. Now the
terms of the language of R are translated to terms of <£+ by induction. A
variable yη is translated to Yη = Yη(x0, . . . , xl9 . . . ) ί < r A constant c^in the
language of R stands for an equivalence class of formulas | 0 | , where 0 =
φ(xOf . . . , xl9 . . ,)ί<γ is a formula of J£. Then c^ is translated to Cη = 0. In
the induction step if tl9. . . , tk are terms translated to 7\, . . . , Tk respec-
tively, and if F is a fc-ary operation of R, then F(tl9 . . . , tk) is translated
toF(Γi , . . . , Tk).

If t{ and tj are translated to T{ and Γ; respectively, then t{ = tj is

translated to ( y xΛ (T{ <-> Tj). If Jλ is translated to J* then ~ Jx is t rans-
\ι<γ I A

lated to ~ J*. If each JL, i < T, is translated to J*, then f\jt is translated
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to /\jf. Now suppose that J(y0, . . . , yζ, . . .) is translated to J* (Fo, . . . ,

Fζ, . . .). Then ί d yζj J(y0, . . . , yζ9 . . .) is translated to

( x l o ^ - ( χ i ^ ) ζ < p { A τ ( y ζ ( ^ . . . ,Xι, . . ., ul . . ., 4, . . .))A

J*(Yo, . . . , F ζ , . . . ) } .

Eventually J is translated to J*(Y0, . . . , F ζ , . . .)ζ<pwhere the Fζ are
obtained from the bound variables of J. Now we treat each Fζ as a syntacti-
cal variable ranging over the formulas of *£ which have at least xl} i < γ,
as free variables. In J*(Y0, . . . , F ζ , . . .)ζ<p substitute simultaneously a
sequence of p formulas for the Yζ. This way for each sequence of p allow-
able formulas, say ψ0, . . . , ψζ, . . . , (ξ < p) we obtain J*(ψ0, . . . , ψζ9

. . .)ζ<p, a sentence of .£.
Let Qζ be the quantifier applied to yζ in J. By the lemma, R(%)\=J iff

Q5 allowable ψ0, . . . , Q[ allowable ψζ, . . . , (ζ < p) such that Sίh J*(ψ0,
. . . , ψζ, . . .)ζ<p. We use Qf to abbreviate the appropriate phrase "there
exists an" or "for al l" . Similarly R(8)I=J under the same conditions.
Since % JC - ^ 8, UhJHψ0, . . . , ψζ, . . .) iff 8 h J*(ψ0, . . . , Ψζ, . . .). So
R(«) -C - = R(»).

(<#=) If II ^ - ^ β then there is a sentence X of aC such that II h X and
S3h~X. Let R = <||Xv(V#) (Vι(x) «-> x = x)\\, v, Λ). Then R(β) is the trivial
lattice of one element, while R(5I) has at least two elements: \x= x\ and
\χφ x\. Thus R(«) £ - i R(β).

The next theorem is an improvement over Proposition 1 (for the case

4eM).

Theorem 2. Si is £-embeddable in 8 iff there is an embedding d :A -* B

such that for every pair of corresponding recognizable algebras K{%) and

R (S3), the map \d\\\φ\% -> \dφ\9 is an ^-embedding of R(5ί) into R(8).

Proof: (==#>) If SI is .C-embeddable in S3 then the | d\ of Proposition 1 is an
embedding. To show that | d\ is an ^-embedding we repeat the procedure
used in the (=τ>)-proof of Theorem 1. However now J may contain parame-
ters of R(Sl). Such a parameter p stands for an equivalence class of
formulas |0 | , where φ = φ(x0, . . . , xl9 . . . , α0, . . . , aη, . . .) is a formula
of <£(A). Then when terms are translated, p is translated to P = φ. The
rest of the proof is done as in Theorem 1. However now J*(ψ0, . . . , ψζ,
. . .) is a sentence of *C(A). Since d is an -C-embedding, Sl(=J*(ψ0, • ,
ψζ, . . .) iff β)=rfJ*0//o, . . . , ψζ, . . .). So R(tt)f=J iff R(S3)I= \d\j. This
shows that \d\ is an oC-embedding.

(<#=) If SI is not ^-embeddable in S3 repeat the procedure used in the
(<Ξ=)-proof of Proposition 1. Since \d\ is not an embedding, it is not an
^-embedding.

It follows that for every recognizable algebra R, the map r : % —> R(lί)
is a functor from and to a category of models (the maps being „£-
embeddings).
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3. Further Results. First we consider an .(-chain of structures, i.e. a

chain (Uζ : ξ < η) for which Up£ - -3 Uσ for p < σ < η. We write SI = U $ιζ.
When X is an infinitary language, ^ = -Coβ, we need an analog of the Union of
chains theorem (see [1] pages 79-80). This is stated as the next lemma,
and its proof is an extension of the proof of the Union of chains theorem.

Lemma 2. Let (tlζ : ζ < η) be an j£- chain where ^ = £aβ. If cf(η) > β9 then
for every ζ <η, 3lζ-C - H i

Proposition 2. Let (Hζ : ζ < 97) be an J^-chain and let cf(τ]) ^ a. Then for
every recognizable algebra R, R(tt) = lim(R(3lζ)). (For the definition of lim
see [2], pages 128-130.) "~* ~*

Proof: We define homomorphisms hpσoί R(tlp) into R(iίσ) for all p ^ σ < η
as follows, hpσ\ \φ\u -* Iψl^ for every |0 |eR(ll p). To show that R(3ί) is
the lim we apply Lemma 2. Thus we need the hypothesis that cf(?]) ^ β. We
must also make sure that every formula of JC(A) is also a formula of -C(Aζ)
for some ζ < η. The hypothesis that cf(r/) ^ of takes care of this problem.

Next we consider recognizable algebras of relations. Since JC contains
variables of degree y, J?{A) contains a symbol for each y-ary relation of A.

Definition 3. A recognizable algebra of relations is defined as a recogniz-
able algebra of formulas with £2 substituted for £ in Definition 1.

We use φ to stand for a recognizable algebra of relations. Just as in
Definition 2 we may define corresponding recognizable algebras of rela-
tions .

Theorem 3. % JC - = S3 iff for every pair of corresponding recognizable
algebras of relations, ?{%) and P(S5), P(H) ̂  - = P(©).

Proof: We use a translation which is similar to the one used in the proof of
Theorem 1. Note that the proof in this case works for ^ e _yV.

The next result holds if ^ = j ^ ω ω and Ί(VY) Φ E.

Proposition 3. 91 is finite iff every recognizable algebra R (31) is finite.
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