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A GENERALIZATION OF COMBINATORIAL OPERATORS

ANNA SILVERSTEIN

Let£=1(0,1, 2,...). We mean by number, an element of ¢; by set, a
subset of €. Let V be the class of all sets, @ the class of all finite sets.
Combinatorial operators, introduced by John Myhill [4], are certain maps
from V into V such that sets in @ are mapped into . We are concerned
with what happens if the operator is allowed to map finite sets to infinite
sets. If we require certain uniformity conditions, many of the properties of
combinatorial operators still hold. Some of these operators, called uniform
semicombinatorial operators, are inherited in a natural way from recur-
sive combinatorial operators of several variables. The main result of this
paper* is the existence of a family of uniform semicombinatorial operators
none of which can be obtained in this way.

We will use the following notations: For n=>1, £”, V", @”, and so on,
denote the ordinary Cartesian products. If ae V", 1 <f<n, a; denotes the
£th component of @, and similarly for &”. When dealing with ordered
k-tuples of sets, C and ~ are understood coordinate-wise; however, y C a
means yC @ and y#a. If f is a function, f(x) and fx are used inter-
changeably, and 6f denotes the domain of f. We will use the following G6del
numbering for @: p, =@, and for n > 1,

p,= (i, ..., 0), where n = 2"W 4+ || 4 2k

and the i; are distinct. Denote card p, by 7,. We assume knowledge of the
definitions and elementary properties of recursive equivalence types, as
given in [3], Chapter II or [2]. We denote the collection of isolated sets
by .

1 Combinatorial and semicombinatovial operators An operator of n
variables (z > 1) is a mapping from a subclass of V" containing @” into V.,
For any operator &, we write

*The results presented in this paper were taken from the author’s doctoral dissertation
written at Rutgers University under the direction of Professor J. C. E. Dekker.
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U(Range ®) = &°,

A combinatorial operator (CO) & of n variables is an operator with domain
V, satisfying:

(i) aeQ"=>%(a)eQ,

(ii) (2, Be Q" and a ~ p) = &(a) ~ &(B),

(iii) there is a map, denoted by &', from &° into @” such that for x € &°,
aeV”

xe d(a) =o' (x) Ca.

The map &' given by (iii) is unique and is called the quasi-inverse for &.
Any operator @ defined on V” which has a quasi-inverse satisfies

®(a) = U{<I>(‘y): y€Q" and y C a}, for ae v
It is useful to define the associated operator &, from Q" into V, by

&,(@) = &) - U &(y), for ae Q"
yca

A CO & of n variables is recursive if the function g: €” — € given by

plg(i) = @[ p(), . - ., p(in)],

is recursive. If & is any operator of z» variables satisfying (i) and (ii), the
induced function of &, denoted by fs, is the function from £” into € given by

fo(@) = card ®[v(zy), . . ., v(in)],

where v, =@, and for j=>1, v;=(0,1,...,j~1). A function f: €" — ¢ is
called a combinatorial function if f = fg, for some CO & of n variables.

Definition: A semicombinatorial operator (SCO) ¥ is an operator of one
variable with domain V satisfying:

(i") (a, Be @ and a ~ B) = ¥(a) ~ ¥(P).
(ii’) ¥ has a quasi-inverse,

As in the case of a CO it can be proved that every SCO has a unique
quasi-inverse. An SCO is isolic if it maps @ into <{. We define the induced
Junction Fy of an SCO ¥, analogously as for a CO, as follows:

Fy(i) = Req ¥(y;), for i€ ec.

Clearly, the family of (isolic) SCOs which map @ into @ coincides with the
family of COs of one variable.

Definition: An SCO ¥ is uniform if

(iii’) the function g: ¥*— g, given by Pe(x) = ¥'(x), has a partial recursive
extension,

(iv') there is a partial recursive function of three variables f(a, b, x), such
that if 7, = 7, then f is a one-one function of x, with

‘I’(pa) C 8f, and f;zb[q’(Pa)] = ‘I’(pb)-
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Each such function f(a, b, x) is called a u-function for ¥. A function
from ¢ into Q is called semicombinatorial (SC) if it is induced by some
uniform SCO. An SC function is isolic if it maps & into A, i.e., if it is
induced by a uniform isolic SCO. Analogues of most of the propositions of
[3], Chapter I, are valid for uniform SCOs and SC functions. These
analogues will be denoted by an asterisk. The following four examples of
such propositions are among the most important.

P8* Let ¥ be a uniform SCO, and ¥, its associated opevator. Then
(a, Be Q and a + B) = Fy(a) [ ¥y(B).
P11* Let ¥ be a uniform isolic SCO. Then ¥, maps Q into A, and
(2, Be Q and a ~ ) => ¥y(a) = Yy(B).

P19* For each function F from € into A, theve is a unique sequence {C;} of
isolic integers such that for all n

n

Fij) =2 G (”)
i=0 7

P20* Let F: € — A, and let {C;} be the unique sequence given by P19*.
Then F is SC iff C; € A for all i.

By P20*, a function from ¢ to £ is combinatorial iff it is SC. In
addition, it can be shown that the family of isolic SC functions includes all
constant functions F: € — A and is closed under addition and multiplication.
Finally, the following relations from [3], p. 51, are valid for a uniform
isolic SCO ¥, for a, Be V:

(1) aed =V(a)ed,
(2) a =~ B=>¥(a) =~ ¥(B).

Thus a uniform isolic SCO induces a function from  to £ which maps A
into A. Relation (1) follows from (iii’); (2) may be proved using the
following lemma, which is verified in [5], pp. 47-53:

Lemma If ¥ is a uniform isolic SCO, then the associated opevator ¥, has a
u-function.

2 Inherited semicombinatovial operators We will need the following
properties of &,, where & is a CO of n variables; they are the respective
n-variable analogues of P8, P10, and P11 of [3].

(3) (a, Be Q" and a # B) = ®o(@) N B(8) = D,

(4) @(a) =U{2(): ye Q" and y C a}, for ac V",

(5) (@, Be Q" and a ~ B) => &() ~ B(B).

Proposition Let k=1, and let & be a vecursive CO of k + 1 variables.
Then for any € V¥ the operator ¥ given by

(6) ¥(a) = &(u,q), for aeV,

is a uniform SCO. Furthermove, if e Jk, then ¥ is isolic.
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Proof: We first verify conditions (i')-(iv’) for ¥. Condition (i') holds by
(ii) of [3], p. 52. Conditions (ii’) and (iii’) follow from the fact that the
projection of &' onto the (k + 1)st coordinate is a quasi-inverse for ¥.
Concerning (iv'): For all a, b such that 7,=7,, let p,, be the natural
bijection from p, onto p,. From the recursiveness of & and (3), (4), (5), it
follows that there is a partial recursive function of three variables
f(a, b, x), such that if 7, = 7,, then f,;, is a one-one function from &(e¥, [
onto &(c*, p,), and for 7€ @, a C p,,

f;lb[QO(T’a)] = ¢0(77 Pab(a))-
Therefore by (4),
fab[q)(u-ypa)] = q’(“’pb),

ie.,

Lol ¥(0a)] = ¥(oy).

The above shows that ¥ is a uniform SCO. Fit{ally, if pe J* and ae Q, then
&(u,a) e L by (iii) of [3], p. 52, and hence ¥ is isolic.

Definition: A uniform SCO V¥ is inherited if ¥ is a recursive CO or if, for
some k=1, there are a recursive CO ® of 2 + 1 variables and a k-tuple of
sets u such that (6) holds. An SC function is inherited if it is induced by
some inherited SCO.

The family of isolic, inherited SC functions includes all constant
functions from ¢ into A, and is closed under addition and multiplication.
The non-recursive combinatorial functions are isolic SC functions (by
P20*) but they are not inherited. The theorem below asserts the existence
of a family of infinite-valued isolic SC functions which are not inherited.

We will need the following definitions and notation. A set is indecom-
posable if it cannot be expressed as the union of two infinite separable sets.
An RET X is indecomposable if it cannot be expressed as the sum of two in-
finite RETs, i.e., if every set in X is indecomposable. Clearly,all indecom-
posable RETs are isols. By [2], Theorem 43(b), there are 2%° infinite
indecomposable isols. Denote the collection of infinite indecomposable sets
by o, and the collection of infinite indecomposable isols by A,. The
following conditional is obvious but useful:

XeAo=>(Vnee)(X - neh,).
For ae V, neeg, let
[a,n] ={x: p,C @ and 7, = n}.
Clearly,
a = p=>[a,n]~[8,n],
and we define for Ae Q,

[A, n] = Req[a, 7], where a is any set in A.
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Theorem Let Xe A,. Define C; = X - i, for ie g, and

F(n) =é C,’(?), for nee.

i=
Then F is an isolic SC function which is not inhevited.

Proof: The function F(n) is SC by P20*. Suppose F is inherited. Let ¥ be
an inherited SCO which induces F. Since F attains infinite values, ¥ is not
a recursive CO. Therefore for some k = 1, there are a recursive CO & of
k + 1 variables and a k-tuple of sets pu, such that (6) holds for all a. We
may assume without loss of generality that all the sets pu,(1 <m <k) are
infinite. For suppose not, say pu, is finite. Then the operator &* of &
variables given by

D*(ay, o 0 uyap) = By, o 0.y Uy, Uk, Qi)
is a recursive CO such that for all ae V,
(@) = ®*(lyy « o oy Hp-1y Q).
Denote for i€ €%, ne e,
(7 c(i, n) =f¢o(i1, ey B, B)EE.

(This is well-defined by (5).) Denote the ordered k-tuple of zeros by 0.
We will need the following two lemmas.

Lemma L1 For ae Q,
Wo(a) = U{&,(7,0): T Qtand T C p}.

Lemma L2 Suppose ¥y(a) e L, for some ae Q. Then there is a number t,
1< it<k, such that y,e A and

Req u; = Req ¥y(@) - c(0,7),
wheve n = card a.

Lemma L1 is a direct consequence of the definition of ¥, and (4); L2
will be verified later. The proof of the theorem can be completed using L2
as follows: For any ne €, it can be shown that

(8) Req ¥olv,) = Cp= X - n,
using a proof similar to that in [3], p. 20. Let s(0) = 0, and for j >0, let
s(7+ 1) = s(4) + c(0g, s(4)) + 1.
By (8) and L2, there is for each jeg, a set ;) €(uy, .. ., i) such that
uy;) €L and
Req ;) = Req Wo(vg(j) - c(O, s(4)).

It follows by (8) and the definition of the sequence s(j) that for each je ¢,
Req y(j) > Req py(j+1). Therefore, the sets u,;) are all distinct, which is a
contradiction. This proves that F cannot be inherited.
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We now prove L2. Assume ae @ is such that ¥,(a)ed,, and let n =
¥o(a). For Te vEandie ek we will say T is of #ype i, if 7€ Q% 7 C u and for
1<m <k, card T, = in. Define for i€ &*,

(9) n() = U{<I>o(7,a): T is of type i}.
By L1,
(10) n= kn(i).

Note that the unions in (9) and (10) are disjoint by (3). Denote for 1 < m <k,
Unm = Req un. We claim:

(a) For ie gk, Req (i) =[Uy,4,] . . . [Ug, i) < c(Z,n);

(b) For ie gk - (0), the set n(i) is infinite or empty;

(c) There is a unique i€ e¥ - (0;) such that 7(i) is infinite;

(d) Req 1 = c(0g,7) + Req n(Z), where ¢ is the unique k-tuple given by (c);
(e) If ¢ is as in (d), then for some ¢, 1 <{ < &, Req (%) = U,.

Statements (d) and (e) together imply the desired result. Statement (a) is a
direct consequence of the definitions and relations (7) and (9); (b) follows
from (a) and the fact that the RETs U, are infinite. Concerning (¢): Recall
that n is an infinite indecomposable set. We have 7n(7) is infinite for at
least one i # 0., since otherwise (b), (9), and (10) imply

n = 1(0) = &(¢z, @)
(where ¢, denotes the k-tuple of empty sets), and hence ne @. Also, for any
ie gk
VR
j#t
since & is recursive. Therefore, by (10), at most one of the sets n(é) is
infinite. This proves (c). Statement (d) follows from (b), (c), (7), and (10).

Finally, (e) can be proved from (a) using the fact that for A infinite, n = 2,
[A, n] is decomposable. This proves L2 and hence the Theorem.

Remark: According to a suggestion by Erik Ellentuck, the result of the
Theorem also holds if X is any infinite isol which is multiple-free, i.e.,
such that

2Y<X=>Yecs.

Since there are infinite multiple-free regressive isols ([1]), this proves the
existence of a non-inherited isolic SC function with range a subset of the
class of infinite regressive isols.
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