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AN ARITHMETICAL RECONSTRUCTION OF THE LIAR'S
ANTINOMY USING ADDITION AND MULTIPLICATION

GIORGIO GERMANO

The present note gives an improvement on [8]. There it was shown that
the liar's antinomy can be reconstructed in any recursively enumerable
arithmetical theory in which all elementary functions are definable, if the
theory is assumed to be complete.1 Here the same construction is done by
requiring only definability of addition and multiplication. This constitutes a
natural and therefore straight-forward proof of a strong version of the
incompleteness theorem for arithmetical theories. The improvement on [8]
consists in the fact that addition and multiplication are obviously fewer and
less complex than all elementary functions: the former belong respectively
to the first and to the second class of Grzegorczyk's hierarchy [5], whereas
the latter constitute its third class. The present result can be considered
optimal in so far as it is impossible to obtain the same result for the less
complex function used because definability of addition alone allows com-
pleteness, see [l].

1 Nomenclature A traditional first-order arithmetical language is usually
constructed from the following items: individual variables x0, xl9 . . .;
an individual constant 0 to represent the number zero; a unary function
symbol s to represent the successor function; a finite (possibly empty) set
of binary operation symbols {o, 11 ̂  i ^ a}, where a is any natural number,
to represent e.g., addition, multiplication, etc.; the equality symbol =;
connectives, say Ί and —*; quantifiers, say Λ and V.

We consider any such language £. Let N be the set of natural numbers
and n, nu n2, . - . be any elements of N. Let θ, 0X, θ2 be any terms of -C and
let Φ, Φ1? Φ2 be any formulas of £. We have to define a computable
injection£*: j£—> N. We set

b = a + 8

(nl9 n2) = ( ^ + n^2 + nγ

1. Note in [8] the following misprints : p. 377, 1. 23: ε 2 instead o/ε 3 ; p. 378, 1. 10:

quantifier instead of quantifier V; 1. 17: ten instead of i *ζ n; 1. 30: negative

instead of nonnegative; p. 379, 11. 15, 17, 19, 22, 23, 24, 26, 27: V instead of V;

p. 380, 1. 2: sur instead o/zur .
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and define the injection g by recursion on the structure of -C as follows:

g(0) = 0

el8θ)-lg{Θ)+b ίίb{g(θ)
g { }~ \b.g(θ) + 1 else
g(Xi) = b.i + 2
giθ&iθz) = b.igiθj, g{θ2)) + 2 + i forl^i^a
g{B, = θ2) = b.(g(θd, g(θ2)) + a + 3
^•(ΊΦ) = b.g(Φ) +a + 4

^(Φi - Φ2) = 6.<^(Φi), £ΪΦ2)> + a + 5
*(Λ**Φ) = b.(g(xi), g(Φ)) +a+6

g(VXiΦ) = b.(g{Xi), g(Φ)) +a + 7

We will also make use of the function d: N -> N defined as

rf(w) = 5 . ( 2 , b . ( b . ( 2 , b.u) + a + 2 , u ) + a + 5 ) + a + 6

which obviously can be represented by an eighth-degree polynominal in u
with natural number coefficients. We call it the diagonal function because

d(g(Φ)) =g(Λxo(xo = sg{Φ)0 - Φ)),

compare [4].
A formula of -C is called a sentence iff no variable occurs free in it.

A set of sentences is called a theory iff it contains any sentence which can
be deduced from it by first-order logic with equality. A set of sentences is
called arithmetical iff it is satisfied by a realization whose universe is N,
which maps the constant 0 on the number zero and which maps the constant
s on the successor function. Such a realization maps any digit sn0 on the
number n.

We say that a set i c N i s definable in a set of sentences Y iff there is
a formula Φ such that

n e X iff Φ(sw0) e 7.

We say that truth is definable in a theory T iff the setg (T) of g values
of the sentences of T is definable in T. This implies that there is a formula
Θ such that

ΦeTiffΘ(sS(φ)O)eT.

Note that the above notion of definability is weaker (and therefore more
general) than that of Gδdel [2] and Tarski [4], provided Y is consistent. In
particular the above notion of definability of truth proves, for consistent T,
to be weaker than that of Tarski [4]. On the other hand the above notion of
definability of truth is weaker than that of Tarski [3], see [8].

We say that a function /: N*—> N is definable in a set of sentences Y iff
there is a term θ such that

θ(sni0, . . ., s"*0) = sf(ni''~'nk)Q € Y for any nlf . . ., nk.
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2 The construction of the antinomy

Lemma 1 Let T be any theory. If addition and multiplication are definable
in T, then every polynominal function with natural number coefficients is
definable in T.

Proof; From multiplication being definable in T it follows that monomial
functions with natural number coefficients are definable in T. From this
and from addition being definable in T the lemma follows immediately.

Corollary 1 Let T be any theory. If addition and multiplication are
definable in T, then the diagonal function is definable in T.

Lemma 2 Let T be any recursively enumerable arithmetical theory. If
every polynomial function with natural number coefficients is definable in
T, then truth is definable in T.

Proof: Consider any recursively enumerable set X. From [7] we know that
X is diophantine. Therefore there are two polynomials pi(w, ulf . . ., uj) and
p2(u, Uh+i, . . ., uk) in u, uu . . ., Uh and u, Uh+i, . . ., uk respectively, both
with natural number coefficients, such that

neX iff pi(w, nu . . ., nh) = p2(w, nh+u . . ., nk)

for some nl9 . . ., Πk (see e.g., [6], pp. 200-201). By the lemma above we
know that there are terms θγ and θ2 such that

β^sΌ, sn% ...,snh0)=s?ί(n'ni""'nh)0eT

Θ2(snθ, snh+ι0, . . ., snk0) = ̂ ^ I ' ' ^ o e T

for any n, nly . . ., n^. From T being arithmetical it follows that if

V#! . . . Vxk βi(s*0, xl9 . . ., xh) = Θ2(snθ, xh+1, . . ., xk) € T

then

neX

and from T being a theory it follows that if n eX then

V#i . . . Vxk 0i(swO, xu . . ., xh) = Θ2(snθ, xh+1, . . ., xk) € T.

Any recursively enumerable set is therefore definable in T and, as a
particular case, we obtain that truth is definable in T.

Theorem on definability of truth Let T be any recursively enumerable
arithmetical theory. If addition and multiplication are definable in T, then
truth is definable in T.

Proof: From Lemma 1 and Lemma 2.

Lemma 3 Let T be a theory. If truth and the diagonal function are both
definable in T, then T is incomplete or contradictory.

Proof: Suppose, there is a formula Θ such that

ΦeTiffΘ(s*(φ)O)e T
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and there is a term δ such that

δ(sn0) = sdin)0eT.

Consider the number m = gθ®(δ(xo))). It results that

Θ(s*m)0)€T
iff Axo(xo = sm0 -> Ίθ(δW)) e T
iff Ίθ(δ(sm0))eT
iff Ί θ ( s Λ ) 0 ) e T .

Therefore either one of the sentences

e(sdM0) and l0(s*(m)O)

does not belong to T or T is contradictory.

Incompleteness theorem Every recursively enumerable arithmetical theory
in which addition and multiplication are definable is incomplete.

Proof; It suffices to combine the theorem on definability of truth and
Corollary 1 with Lemma 3 and to remark that an arithmetical set of
sentences cannot be contradictory.

As concerns applications of the above theorem we can note the
following. From [4] we know that the theory R with the axioms

snιo + sW20 = sni+n20
sni0.sn20 = snί'n20
sni0 Φ sn20, for nxφn^
Wxo(xo + #!> = s?0 -> xx = s°0 v . . . v#! = sn0
Vxo(xo + xi) = sn0 v V#o(#o + sn0) = #!

and every consistent theory obtained from R by adding new axioms with the
same constants of R is incomplete. From the theory above we may
conclude that the subtheory of R with the only axioms

/ 1 0 + ^ 2 0 = 5Wl+W20
sni0.sn20 = s" l Λ 2 0

and every arithmetical theory obtained from it by adding new axioms (also
with new constants) is incomplete.
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