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A LOGIC OF BELIEF

ALEX BLUM

Our object in this paper* is to construct a purely extensional first-
order system § adequate for the systematization of first-order belief
sentences.

1' Any satisfactory systematization of belief sentences would have to fulfill,
it would appear, the following conditions:

One, that if

(1) Ralph believes of Ortcutt, that he is a spy

is true, so is

(2) (3x) Ralph believes of x, that x is a spy

and hence, (1) and

(3) Ortcutt = the mayor of Hanoi

entail

(4) Ralph believes of the mayor of Hanoi that he is a spy.
Two, that even if (3) and

(5) Ralph believes that Ortcutt is a spy

are true,

(6) Ralph believes that the mayor of Hanoi is a spy need not be true.
And three , that (2) entails

(7) Ralph believes that (3x) x is a spy.

2 To facilitate understanding, we begin with the semantic motivation for S.
We view the universe as a set of domains (not all distinct) of individuals

*I am deeply indebted to Professor Raziel Abelson and to my students, Judith
Rosenberg and David Widerker, for very helpful discussions on the logic of belief.
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[D7], such that an individual a is an element of Dz, if and only if, 7 believes
that a exists. We have as a distinct domain Dg, where g is an individual
whose set of beliefs are identical to the set of truths. Dg thus consists of
the set of all existent individuals. On our intended interpretation, each
predicate of S is a belief-predicate. Thus, no sentence in S will be read as
‘Ralph is a spy’. Instead, we have ‘G believes that Ralph is a spy’ or more
briefly ‘Ralph is a spy for g’.

3 We now move to S. S is an aleph,-sorted first-order system whose
language is built up from the following elements:

(i) An infinite list of individual constants of each sort, a% % c¢% .. .,
a®, bb cb ... (to be read: ‘the entity believed by a to be a, by a to be b, by

atobec,..., by btobea, by btobebd, by btobec,...”or more briefly:
‘a for a, b for a, c fora,...a for b, b for b, ¢ for d, . . .%);

(ii) An infinite list of individual variables of each sort, x4 y° z% .. .,
xb yb zb ..

(iii) An infinite list of n-place predicates for each m:n = 1, Fn, Gn, Hn, . . .,
F'n, G'n, H'n, . . . (‘Fx’ and ‘Fxy’ are to be read as ‘x believes that F’ and

‘y believes that x is F’ or more briefly ‘F for x’ and ‘x is F for y’);

(iv) The three place identity predicate | (‘lxyz’ is read ‘z believes that x
and y are identical’, or more briefly ‘x is identical to y for 2’);

(v) The logical constants, ~, D, v, ., =, and for each individual variable
x%, (x%) and (3x?);

(vi) The standard punctuation marks.

The formation rules for sentencehood in S are the standard ones for
first-order languages. And, the deductive apparatus of § is the same as
those of standard many-sorted systems without identity, with the addition of
the following three axiom schemata:

[To simplify matters, we shall be guided by the following convention:
An individual symbol without a superscript is to be understood as having
the superscript of its quantifier, if any, otherwise it has ‘g’ for its super-
script.]

(1) (x)(3y®)lxyi

i.e., each x for ¢, is identical to some g for i;

(12)  (*)xxg

i.e., each x for 7 is self-identical for g;

(13) () y)(Fx . Ixyg. D Fy)

i.e., if it is F for x, and x and y are identical for g, then it is F for y.
Hence, while

(T1) (x)(y7)(2)(1xyg . lyzg. D lxzg)

and
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(T2) (#)(y7)(2*)(1xyg O lyxg)
are theorems of S, the following are not:

(F1) (%)lxxi

(F2) (x5 (p7)(@*) (@) (Ixyu . 1yzu D 1xzu)
(F3) (x)(y7)(2¥)(1xyz D 1yx2)

(F4) («")(3y®)lxyg

(We argue for these assertions in the appendix.)

4 Semantically we view the predicate of an expression as consisting of the
predicate letter and its last argument. Thus, for example

@ lxyj

‘is to be viewed as
i (x, Mely
while

(i) (2)lxyz

and

(iii) (32)lxyz

are to be thought of as second-order statements, entailing, and being
entailed, respectively, by any (and all) of the following:

(iv) (%, 3 ela, (x, P ely, (x, P ele, . ..

Our domain Dg corresponds to the universal domain of classical
quantification theory (‘Q’ for short) and our g-subscript predicates cor-
respond to their unsubscribed counterparts in Q. The difference between a
g-subscribed predicate and its Q counterpart is that the range of a
g-subscribed predicate is not limited to Dg while that of Q is.

5 Let us now see how sentences (1) to (7), our original motivation for §,
fare in S. In' S, (1) to (7) become, respectively,

(1)  Sor. (3y")loyg

2 353y ) (xyg . Sx7)

(30 o, (Wx®)Mxg, g

(4"  S(Yx8)Mxg, r

(5"  (3x")(Sx¥ . 1xo07)

(6" (3x")(Sxv . (1x8)Mxg, x, 7)
(7Y (3x8)Sxr

Our rendition of (1) to (6) into (1') to (6') is fairly straightforward.
(7) into (7'), however, calls for explanation. It would appear that: (i) while
the truth of (7') commits us to the existence of some entity which need not
be Ralph, (7) does not; and (ii) while (7') says that Ralph believes of
someone (or other) that he is a spy, (7) does not. With regard to (i), not
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only does (7') commit us to the nonemptiness of Dg, but so does (7) in Q,
given the validity of “(3x)(3y)(Fx O Fy)’. The point raised in (ii) brings into
focus the rationale of S. (7') is clearly consistent with the claim that Ralph
has absolutely no identificatory beliefs about the object x of which he thinks
is a spy. But then (7') surely says no more than (7). For believing
absolutely nothing about a being other than that it exists and that it is a spy
is no more than believing that there is a being who is a spy. Our motivating
desiderata are now met. For clearly (1') entails (2'), (2') entails (7), (1),
and (3') entail (4'), while (5') and (3') fail to entail (6’).

But is S, expressively complete? How would we express complex
belief sentences such as:

(8) Ralph believes that if O lies then O is a spy.
(9) Ralph believes that J believes that O is a spy.
(10) Ralph believes that Ralph believes that O is a spy.

and

(11) God believes that if O lies then O is a spy ?
We express them as follows:

(8" Kor

where ‘K’ is ‘if D lies then (D is a spy for 2);
(9" Mojr

where ‘M’ is ‘@D is a spy for @), for B);

(10") Morr

and

(11") Kog

or, more perspicuously, as

(11"") Log D Sog

where ‘L’ is D lies for @Y and ‘S’ is ‘@) is a spy for 27.
(11" is also a formalization of:

(11%) If O lies then O is a spy.

That is, S’s expressive power is adequate to exhibit all the logical
structure that is needed for the logic of first-order belief sentences. For
the only postulate regarding the logical acumen of ordinary individuals is
given by the closed-ended postulate (I1). As far as g is concerned, the
logical acumen of g is given by the rules of Q, expressed in S by the
ordinary axiom schemata and (I2) and (I3).
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APPENDIX
Theorem 1 (T1) is a theorem of S.

Proof: Let ‘F?, ‘x’, and “y’ in (I3) be replaced respectively by 1x Q) g°, ¢y,
and ‘2’. We then have

1y*®e | |yzg. O 12*@¢
and by UG, we get (T1).
Theorem 2 (T2) is a theovem of S.
Proof: Let ‘F’ in (I3) be replaced as before and let ¥ and y remain as they

are. We then have

122 | lxyg. D ly*®e¢

and by (I2) and UG get (T2).

The invalidity of (F1), (F2), and (F3) follow from the following con-
sideration: The only assumption we make about the logical acumen of
ordinary individuals is given by (I1). (F1), (F2), and (F3), however, are not
logical consequences of (I1).

If (F4) were a theorem, then for each 7, Di would be a subset of Dg.
But the only link between Dg and D are given in (I1), and the relation there
is I; and not I.

Bar-Ilan Univevsity
Ramat-Gan, Isvael

and

The Hebrew University
Jerusalem, Israel





