Notre Dame Journal of Formal Logic Volume XVII, Number 1, January 1976 NDJFAM

ON NACHBIN'S CHARACTERIZATION OF A BOOLEAN LATTICE

WILLIAM H. CORNISH

A classical theorem of L. Nachbin [6] characterizes Boolean lattices as those bounded distributive lattices in which each prime ideal is maximal. This result has been generalized and applied to non-bounded distributive lattices by G. Grätzer and E. T. Schmidt, see [3], especially p. 276. Recently, D. Adams ([1], Theorem 1) has given a version of Nachbin's theorem for bounded non-distributive lattices. The object of this note is to give a transparent alternative proof of Grätzer and Schmidt's generalization and also to establish a theorem akin to that of Adams.

The notation and terminology follows that of [2] and Stone's Theorem ([2], Theorem 15, p. 74) will be used freely. Incidentally, a proof of Nachbin's Theorem is given in [2], Theorem 22, p. 76; it is a simplication (possibly due to boundedness) of the proof in [3]. For elements x and y of a lattice \mathfrak{L} , let $\langle x, y \rangle = \{z \in L: x \land z \leq y\}$. When L is distributive, $\langle x, y \rangle$ is an ideal. For a detailed account of such ideals, see Mandelker [5].

The following lemma is an extension of [4], Lemma 12.

Lemma 1 A distributive lattice \mathfrak{L} is relatively complemented if and only if for each x, $y \in L$, $(x] \lor \langle x, y \rangle = L$.

Proof: Suppose \mathfrak{e} is relatively complemented and x, y, z are in L. Let w be the complement of x in $[x \land y \land z, x \lor y \lor z]$. Then, $z = z \land (x \lor y \lor z) = z \land (x \lor w) = (z \land x) \lor (z \land w)$. Since $z \land x \in (x]$ and $z \land w \in \langle x, y \rangle$, it follows that $(x] \lor \langle x, y \rangle = L$.

Conversely, suppose the ideal-theoretic condition holds. Let $c \in [a, b]$. Then, $b \in (c] \lor \langle c, a \rangle$ and so $b = c_1 \lor d$ for some $c_1 \le c$ and $d \in L$ such that $c \land d \le a$. Then $b = c \lor d$ and $(d \lor a) \land b$ is the relative complement of c.

Lemma 2 The set of prime ideals of a distributive lattice \mathfrak{A} is unordered by set-inclusion if and only if, for each $x, y \in L, (x] \lor \langle x, y \rangle = L$.

Proof: Suppose the set of prime ideals is unordered. If $(x] \lor \langle x, y \rangle \neq L$ then there is a prime ideal P such that $(x] \lor \langle x, y \rangle \subseteq P$. Since the set of prime filters is unordered, $L \setminus P$ is a maximal filter. But $x \notin L \setminus P$. Hence,

 $y \in L = [x) \lor (L \setminus P)$, and so $x \land a \leq y$ for some $a \in L \setminus P$. Then, $a \in \langle x, y \rangle \subseteq P$ yields a contradiction. Hence, $(x] \lor \langle x, y \rangle = L$.

Suppose $(x] \vee \langle x, y \rangle = L$ for any $x, y \in L$. Let P and Q be prime ideals such that $P \subseteq Q$. If $P \neq Q$ then choose $a \in Q \setminus P$ and $b \in P$. Since $(a] \cap \langle a, b \rangle = \langle a \wedge b]$, it follows that $\langle a, b \rangle \subseteq P$, whence $L = (a] \vee \langle a, b \rangle \subseteq Q$. This is a contradiction and so P = Q.

Theorem 1 (Grätzer and Schmidt [3]) A distributive lattice is relatively complemented if and only if its set of prime ideals is unordered by set-inclusion.

The proof of the following lemma is the same as that of [2], Lemma 5, p. 71; see also [7], Lemma 1.

Lemma 3 Let I and J be ideals of a modular lattice. If $I \cap J$ and $I \lor J$ are principal then so are I and J.

Theorem 2 A lattice \mathfrak{L} with 0 is a generalized Boolean lattice if and only if each of the following conditions is satisfied.

- (i) **£** is modular.
- (ii) Each ideal $J \neq L$ is contained in a prime ideal.
- (iii) The set of prime ideals of L is unordered by set-inclusion.
- (iv) Each filter $F \neq L$ is contained in a prime filter.

Proof: It is sufficient to prove that (i) - (iv) imply that each initial segment of $\mathbf{\hat{v}}$ is a Boolean lattice. Condition (iv) is clearly equivalent to each of the following conditions:

(v) (0] is an intersection of prime ideals.

(vi) For each $x \in L$, $(x]^* = \langle x, 0 \rangle$ is an ideal.

Thus, (ii), (iii) and (iv) imply that $(x] \vee (x]^* = L$ for each $x \in L$, cf. the proof of Lemma 1 or Theorem 1 of Adams [1].

Now let $a \in [0, b]$. As \mathfrak{A} is modular, $(b] = (a] \lor ((a]^* \cap (b])$ while $(0] = (a] \cap ((a]^* \cap (b])$. By Lemma 3, there exists $c \in L$ such that $(a]^* \cap (b] = (c]$. It follows that [0, b] is pseudocomplemented and c is the pseudocomplement a^+ of a in [0, b]. Also $b = a \lor a^+ = a^{++} \lor a^+$, $a \land a^+ = a^{++} \land a^+ = 0$, and $a \le a^{++}$. As \mathfrak{A} is modular, $a = a^{++}$. Hence, by Glivenko's Theorem ([2], Theorem 4, p. 58), [0, b] is a Boolean lattice.

As is shown by the five element non-modular lattice, conditions (ii), (iii) and (iv) are independent of (i), while (i), (ii) and (iii) are satisfied by the lattice obtained by adjoining a new largest element to the five element modular non-distributive lattice.

REFERENCES

[1] Adams, D., "Prime and maximal ideals in lattices," Publicationes Mathematicae (Debrecen), vol. 17 (1970), pp. 57-59.

- [2] Grätzer, G., Lattice Theory. First Concepts and Distributive Lattices, W. H. Freeman and Company, San Francisco (1971).
- [3] Grätzer, G., and E. T. Schmidt, "Characterizations of relatively complemented distributive lattices," *Publicationes & Mathematicae* (Debrecen), vol. 5 (1958), pp. 275-287.
- [4] Katriňák, T., "Remarks on the W. C. Nemitz's paper 'Semi-Boolean lattices'," Notre Dame Journal of Formal Logic, vol. XI (1970), pp. 425-430.
- [5] Mandelker, M., "Relative annihilators in lattices," Duke Mathematical Journal, vol. 37 (1970), pp. 377-386.
- [6] Nachbin, L., "Une propriété characteristique des algebres booleiennes," *Portugaliae Mathematica*, vol. 6 (1947), pp. 115-118.
- [7] Venkatanarasimhan, P. V., "A note on modular lattices," Journal of the Indian Mathematical Society, vol. 30 (1966), pp. 55-59.

The Flinders University of South Australia Bedford Park, South Australia, Australia