ON THE RELATION BETWEEN FREE DESCRIPTION THEORIES AND STANDARD QUANTIFICATION THEORY

RICHARD E. GRANDY

Meyer and Lambert [2] constructed a mapping which takes formulas of free quantification theory into formulas of standard quantification theory and preserves validity. One adds a one-place predicate D to the vocabulary and translates thus:

For atomic P, $\sigma(P) = P$

$$\sigma(A \to B) = \sigma(A) \to \sigma(B)$$

$$\sigma(-A) = -\sigma(A)$$

$$\sigma((x)A) = (x)[Dx \to \sigma(A)].$$

There is also an interesting mapping τ from models of free quantification theory (FQ) to models of standard quantification theory (SQ). If \mathfrak{M} is a model for FQ such that $\mathfrak{M} = \langle D, D^*, R \rangle$, then $\tau(\mathfrak{M}) = \langle D \cup D^*, R, D \rangle$. In other words, the domain of the SQ model is the union of the two FQ domains, each predicate letter receives the same interpretation as in FQ and the predicate letter D is assigned the domain of the FQ model. It is easy to show that for any sequence α , α satisfies A in \mathfrak{M} iff α satisfies $\sigma(A)$ in $\tau(\mathfrak{M})$.

One can construct a similar pair of mappings for Scott's free description theory [3], which is obtained by adding to free quantification theory the two schema

I)
$$(y)[y = \neg xA] \longleftrightarrow (x)[x = y \longleftrightarrow A]$$
 where y is not free in A
II) $-(Ey)[y = \neg xA] \to \neg xA = \neg x(x \neq x)$.

Models of the Scott system are simply models of FQ with the further requirement that one specify an element of D^* which is the denotation of all bad descriptions. In order to construct a mapping τ for this system, we

^{1.} Thus the rather lengthy discussion of nominal interpretations in [2] could have been dispensed with since including them gives the same class of valid formulas.

need to add a constant α and to extend our previous mapping by further stipulating that

$$\sigma(\exists x A x) = \exists x [(Dx \& (y)(Dy \rightarrow [Ay \longleftrightarrow x = y])) \lor [\neg(Dx \& (y)(Dy \rightarrow [Ay \longleftrightarrow x = y])) \& x = \mathbf{a}]].$$

The correlated mapping τ from models to models is the same as in the first case with the additional stipulation that **a** is assigned an element of D^* .

In [1] I presented a system of intensional free description theory. The system is intensional in that the schema $(x)[A \leftrightarrow B] \rightarrow \exists xA = \exists xB$ is not valid. The question I wish to consider now is whether that system also can be mapped in a trivial way into SQ. Of course one cannot show the non-existence of trivial mappings unless one has some characterization of triviality; consequently what I shall show is that there are no mappings σ and τ such that σ is a simple mapping from formulas of IFD to formulas of SQ and τ is an ultrauniform mapping from models of IFD to models of SQ such that $\mathfrak{M} \models A$ iff $\sigma(\mathfrak{M}) \models \tau(A)$. A mapping of formulas of IFD to formulas of **SQ** is simple iff τ has the properties (a)-(d) and $\sigma(\neg xA)$ is a formula whose only non-logical symbols are D, R and those of A and further $\sigma(\neg xA)$ is the result of substituting A for B in $\sigma(\neg xB \models \neg xB)$ if A and B have the same free variables. The extra relation R is permitted in order to attempt to characterize the definite description operator. A mapping τ from models of IFD to SQ is ultrauniform iff when $\mathfrak{M}_i/i \in I$ is a class of models of IFD and F an ultrafilter on I

$$\tau(\pi \mathfrak{M}_i/F) = \pi \tau(\mathfrak{M}_i)/F,$$

or, in other words, if the mapping of an ultraproduct is the ultraproduct of the mappings.

An interpretation of IFD is a quadruple $\langle \phi, D, D^*, \theta \rangle$, where D and D^* are disjoint non-empty sets; π is a function defined on all subsets of $D \cup D^*$ whose values are elements of $D \cup D^*$, and $\theta(x) \in D$ iff $x \cap D = \{\theta(x)\}$, ϕ is a function which is defined on all terms, wffs, predicate letters, and function symbols of IFD and is such that

- (a) For any wff A, $\phi(A) = T$ or $\phi(A) = F$.
- (b) For each variable $v, \phi(v) \in D \cup D^*$.
- (c₀) For each P_i^0 , $\phi(P_i^0) = T$ or F.
- (c_n) For each P_i^n , n > 0, $\phi(P_i^n) \subseteq (D \cup D^*)^n$.
- (d) For each atomic wff $P^n(s_{1i}, \ldots, s_n)$, $\phi(P^n(s_1, \ldots, s_n)) = T$ iff $\langle \phi(s_1), \ldots, \phi(s_n) \rangle \in \phi(P^n)$.
- (e) $\phi(\sim A) = T \text{ iff } \phi(A) = F$.
- (f) $\phi(A \rightarrow B) = F \text{ iff } \phi(A) = T \neq \phi(B)$.
- (g) $\phi((v)A) = T$ iff for every interpretation $\langle \psi, D, D^*, \pi \rangle$ such that ϕ and ψ agree on all predicate and function letters and all variables except possibly $v, \psi(A) = T$.
- (h₀) For each f_i^0 , $\phi(f_i^0) \in D \cup D^*$.
- $(h_n)^{11}$ For each f_i^n , $\phi(f_i^n)$ is a function with domain $(D \cup D^*)^n$ and range included in $D \cup D^*$.

- (i) $\phi(f^n(s_1, \ldots, s_n)) = \phi(f^n)(\phi(s_1), \ldots, \phi(s_n)).$
- (j) $\phi(s = t) = T \text{ iff } \phi(s) = \phi(t)$.
- (k) $\phi(\mathbf{t}xA) = \theta(\{d: \text{ for all } \langle \psi, D, D^*, \theta \rangle, \text{ if } \psi \text{ agrees with } \phi \text{ on all predicate and function letters, and on all variables except } x, \text{ and } \psi(x) = d, \text{ then } \psi(A) = T\}).$

A wff is said to be valid if for every $\langle \phi, D, D^*, \theta \rangle$, $\phi(A) = T$.

Theorem There is no pair σ , τ such that σ is simple, τ is uniform and if $\mathfrak{M} \models_{\mathsf{FD}} A$ then $\tau(\mathfrak{M}) \models_{\mathsf{SO}} \sigma(A)$.

Proof: We must first define the notion of an ultraproduct of models of **IFD**. The usual definition of $\pi D_i/F$ can be applied also to D^* to obtain a definition of $\pi D^*_i/F$, and the interpretation of predicates will be as usual. We need only define then $\pi \theta_i/F$ where θ is the function that interprets the description operator. If X is a set of elements of $\pi D_i/F \cup \pi D^*_i/F$, and \mathbf{q} is an element of $\pi D_i/F \cup \pi D^*_i/F$, then

$$\pi \theta_i / F(X) = \pi (\theta_i(X_i)) / F$$

from which it follows that $\pi \theta_i / F(X) = \mathbf{a}$ iff $\{i: \theta_i(X) = a_i\} \in F$. Consider the following set of models \mathbf{M}_i , $i \in \omega$.

> $D_i = \omega$, $D_i^* = \{a, b\}$ $\theta_i(X) = d$ if $X \cap D = \{d\}$ $\theta_i(X) = a$ if $X \cap D$ is finite and not a unit set $\theta_i(X) = B$ otherwise.

Let G be an atomic predicate and let the interpretation of G in \mathfrak{M}_i be $\{n: n \leq i+2\}$. Further let the constants \mathbf{a} and \mathbf{b} be assigned a and b respectively in each \mathfrak{M}_i .

Lemma Łoś's theorem does not extend to IFD.

Proof: Choose a non-principal ultrafilter F on ω and consider $\pi \mathfrak{M}_i/F$. The sentences $(\mathbf{E}^n x)Gx$ each hold in at most one model and, since F is non-principal, therefore all such sentences are false in $\pi \mathfrak{M}_i/F$. Therefore G is infinite in $\pi \mathfrak{M}_i/F$. Let X be the set of elements of D_i/F which are assigned to G. By the definition $\pi \theta_i/F(X) = a$ iff $\{i \colon \theta_i(X_i) = a_i\} \in F$, but $\{i \colon \theta_i(X_i) = a_i\}$ is empty since X_i is infinite. Thus $\exists xGx = \mathbf{a}$ is false in $\pi \mathfrak{M}_i/F$. But $\exists xGx = \mathbf{a}$ does hold in all \mathfrak{M}_i and thus $\{i \colon \mathfrak{M}_i \models xGx = \mathbf{a}\} \in F$. Thus Łoś's theorem does not extend to IFD and in this particular case no ultrauniform σ and simple τ exist which have the desired properties. It is perhaps worth mentioning that IFD is compact (by a simple modification of the completeness argument given in [1]) even though Łoś's theorem does not hold.

REFERENCES

[1] Grandy, Richard E., "A definition of truth for theories with intensional definite description operations," *Journal of Philosophical Logic*, vol. 1 (1972), pp. 137-155.

- [2] Meyer, Robert K., and Karel Lambert, "Universally free logic and standard quantification theory," *The Journal of Symbolic Logic*, vol. 33 (1968), pp. 8-26,
- [3] Scott, Dana, "Existence and description in formal logic," in *Bertrand Russell: Philosopher of the Century*, ed., Ralph Schoenman, George Allen and Unwin Co., London (1967).

Princeton University
Princeton, New Jersey