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ON THE RELATION BETWEEN FREE DESCRIPTION THEORIES
AND STANDARD QUANTIFICATION THEORY

RICHARD E. GRANDY

Meyer and Lambert [2] constructed a mapping which takes formulas of
free quantification theory into formulas of standard quantification theory
and preserves validity. One adds a one-place predicate D to the vocabulary
and translates thus:

For atomic P, σ(P) = P

σ(A — B) = σ(A) — σ(B)

σ(-A) = MA)

σ((x)A) = (x)[Dx-> σ(A)].

There is also an interesting mapping τ from models of free quantifica-
tion theory (FQ) to models of standard quantification theory (SO). If 9W is a
model for FQ such that m = (D, £>*, R), then τ(m) = (ΰU D*, R, D). In
other words, the domain of the SQ model is the union of the two FQ
domains, each predicate letter receives the same interpretation as in FQ
and the predicate letter D is assigned the domain of the FQ model. It is
easy to show that for any sequence of, a satisfies A in SP1 iff a satisfies σ(A)
in τ(STί).1

One can construct a similar pair of mappings for Scott's free descrip-
tion theory [3], which is obtained by adding to free quantification theory the
two schema

I) (y) [y = ΊxA]<r->(x) [x = y <-> A] where y is not free in A
II) -(Ey) [y = ΊXA] — ixA = ix(x Φ X).

Models of the Scott system are simply models of FQ with the further
requirement that one specify an element of D* which is the denotation of all
bad descriptions. In order to construct a mapping r for this system, we

1. Thus the rather lengthy discussion of nominal interpretations in [2] could have
been dispensed with since including them gives the same class of valid formulas.
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need to add a constant α and to extend our previous mapping by further
stipulating that

σ(lxAx) = ΊX[(DX & (y)(Dy - [Ay *^x = y])) v [-(Dx & (y)(Dy
— [Ay*-*x = y])) & x = a]].

The correlated mapping r from models to models is the same as in the
first case with the additional stipulation that α is assigned an element of D*.

In [1] I presented a system of intensional free description theory. The
system is intensional in that the schema (x) [A <-> B] —* ΊxA = ΊxB is not
valid. The question I wish to consider now is whether that system also can
be mapped in a trivial way into SQ. Of course one cannot show the
non-existence of trivial mappings unless one has some characterization of
triviality; consequently what I shall show is that there are no mappings σ
and T such that σ is a simple mapping from formulas of IFD to formulas of
SQ and τ is an ultrauniform mapping from models of IFD to models of SQ
such that 9W \=A iff σ(3W) N τ(A). A mapping of formulas of IFD to formulas
of SQ is simple iff r has the properties (a)-(d) and σ(ΊxA) is a formula
whose only non-logical symbols are D, R and those of A and further σ(~\xA)
is the result of substituting A for B in σ(lxB ϊ=ΊxB) if A and B have the
same free variables. The extra relation R is permitted in order to attempt
to characterize the definite description operator. A mapping r from models
of IFD to SQ is ultrauniform iff when Wit/ie I is a class of models of IFD
and F an ultrafilter on /

τ(iτmi/F) = τϊτ{mi)/F,

or, in other words, if the mapping of an ultraproduct is the ultraproduct of
the mappings.

An interpretation of IFD is a quadruple (0, D, D*, θ), where D and D* are
disjoint non-empty sets; π is a function defined on all subsets of DUD*
whose values are elements of DUD*, and θ(x) eDiffxΠD = {θ(x)}, φ is a
function which is defined on all terms, wffs, predicate letters, and function
symbols of IFD and is such that

(a) For any wff A, φ{A) = T or φ(A) = F.
(b) For each variable v, φ(v) e D U D*.
(c0) For eachP?, 0(P?) = TOY F.
(cn) For each P?, n > 0, 0(P?) c (D U D*)n.
(d) For each atomic wff Pn(su,..., sn), 0(P n (5 1 ? . . . , sn)) = T iff (φ(sj,...,
φ(sn)) e φ(Pn).
(e) 0(~A) = Tiff φ(A) = F.
(f) φ(A — B) = F iff φ(A) = TΦ φ(B).
(g) φ{(v)A) = T iff for every interpretation (ψ, D, D*, π) such that 0 and ψ
agree on all predicate and function letters and all variables except possibly
υ, ψ(A) = T.
(h0) For each/?, 0(/?) eDUD*.
(hw)n For each fZφ(fl) is a function with domain (D U D*)n and range
included in D U D*.
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(i) φ(fn(su . . ., sn)) = φ(fn)(φ(s1)9 . . ., φ(sn)).
(j) φ(s = t) = Tiiiφ(s) = φ(ί).
(k) φ(LxA) = Θ({d: for all <ψ, D, £*, 0), if ψ agrees with 0 on all predi-
cate and function letters, and on all variables except x, and ψ(x) = d, then
Ψ(A) = T}).

A wff is said to be valid if for every (φ, D, D*9 θ), φ(A) = T.

Theorem There is no pair σ, r ŝ c/z that σ is simple, r is uniform and if
m ^FΌA thenτ(m)\jQσ(A).

Proof: We must first define the notion of an ultraproduct of models of IFD.
The usual definition of ΈΏJF can be applied also to D* to obtain a definition
of ΉD*I/F, and the interpretation of predicates will be as usual. We need
only define then πθi/F where θ is the function that interprets the descrip-
tion operator. If X is a set of elements of 7rDz / F u iΐD*i/F9 and α is an
element of nΌjF U πZ)*, /F, then

τϊθi/F(X) = ir(θi(Xi))/F,

from which it follows that ΉΘ{/F(X) = α iff {i:θi(X) = at}e F.
Consider the following set of models 9Wf , ieω.

Di = ω, D* = {Λ, b]
θi(X) = diίXf]D = {d}
θi(X) = aiί XΠ Dis finite and not a unit set
θi(X) = B otherwise.

Let G be an atomic predicate and let the interpretation of G in Wli be
{n: n ̂  i + 2}. Further let the constants α and b be assigned a and b
respectively in each Wli.

Lemma Los's theorem does not extend to IFD.

Proof: Choose a non-principal ultrafilter F on ω and consider πSWt / F . The
sentences (Enx)Gx each hold in at most one model and, since F is non-
principal, therefore all such sentences are false in πWli/F. Therefore G is
infinite in πWli/F. Let X be the set of elements of ΏjF which are assigned
to G. By the definition πθi/F(X) = a iff {i: 0f (X, ) = α, }e F, but {z: 0,-(Xt-) =«,-}
is empty since Xf is infinite. Thus Ί^Gx = α is false in πSŴ  /F. But
ΊxGx = a does hold in all 9W, and thus {f: mi \=xGx = α}e F. Thus Los's
theorem does not extend to IFD and in this particular case no ultrauniform
σ and simple r exist which have the desired properties. It is perhaps worth
mentioning that IFD is compact (by a simple modification of the complete-
ness argument given in [1]) even though Los's theorem does not hold.
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