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ALGEBRAIC SEMANTICS FOR S2° AND
NECESSITATED EXTENSIONS

R. ROUTLEY and H. MONTGOMERY

Algebraic techniques are used to show that Feys’ system $2°(cf.[1])
and certain necessitated extensions of $2° such as Lewis’ systems S2 and
S3, have the finite model property, and accordingly are decidable.
Representation theorems are then used to establish set-theoretical seman-
tics for the modal systems studied. Where the results obtained are not new
they improve on earlier results (such as those of Lemmon in [3]) in two
respects; first they provide direct algebraic treatments of the systems, and
second they furnish better semantical results (see the discussion of
theorem J for S2). The techniques used however follow those of McKinsey
(in [4]) and Lemmon (in [2] and [3]). Since it is now known that these
techniques do not work for all necessitated extensions of S2°, a somewhat
piecemeal approach is inevitable. Weak results are also obtained for Feys’
system S1° and Lewis’ system S1 (for details of these systems see [1]).

The sentential systems studied are of interest not so much as systems
containing a viable necessity operator ‘[, but as intensional logics which
axiomatise epistemic or other operators. For instance S2° can be
interpreted as an epistemic logic such that ‘0¥ reads ‘it is believed
reasonably that’, and S2 as an epistemic logic where ‘)’ reads ‘it is known
that’. The set-theoretical semantics established are however independent
of these epistemic interpretations.

The basic system examined, Feys’ S$2° has as postulates:

Tl.A&B=3A

T2. A&B3B&A

T3. A&B) &C=3.A&(B&C)
T4, A3 AKA

T5. ASB&B=3C=3.43C
T6. C(A & B) 3OA

Strict Detachment (SD): WA, A 3 B—»+B
Adjunction (A): . A, +B —>+A & B
Substitutivity of Strict Equivalents (SSE): A & B, -C(4)—»+C(B)
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The connectives ‘&’, ‘~’, and ‘¢’ are taken as primitive, and further
connectives ‘v?, D7, ¢=? ‘¥, ¢ 3’ <3’ « and ‘07 are defined as usual.
Also

VA =p; CA & O~A; AA =p OAVO~A; T = p 2 p.

Numerals preceded by ‘F’ refer to items designated by the same numerals
in [1]. The postulates of Feys’ system S1° are obtained from those of S2°
by deleting T6. A necessitated extension of S2° (S1° is an extension of S2°
(81° obtained by adding one or more axioms of the form OC.

Theorem 1 kA iff rOT 3 A, wheve L is any system obtained from S2° by
adding axioms of the form O C for some C.

Proof: Since p 3 p is a theorem of all these systems, by F31.11, if Ky 3
p 3 A then i A. The proof of the converse is by induction over the length
of the proof of A.

1. For every axiom A there is some B such that A &3 0OB. By F43.1,
kOB =3.T 3 B. Hence since £ A, v T 3 B. Hence by Becker’s rule
F46.1, r OT 3 OB, and by substitutivity t OT = A.

2. For the rule of Adjunction F42.21 applies. For Strict Detachment apply
F30.15 to £ OT 3 Aand t A 3 Btogive tOT =3 B whence i B. Finally
if 1 B follows from Kk A by substitutivity of strict equivalents, the same
substitution (after a change of variables where necessary) yields rOT 3 B
from £ OT 3 A.

A similar result holds for extensions of S1°.

Theorem 2 k A iff tOT 3 A, wheve L is any system oblained from S1° by
adding axioms of the form OC for some C.

Proof differs from that of Theorem 1 only at the following points:

1. When A is an axiom since i A, t T 3 B by F35.41. Also since xOT,
t B =3 T by F35.41. Hence by SSE x OT=30B.
2. For the rule of Adjunction T-theorem F35.22 can be applied.

Definitions (cf. [2], [3], and [4]):

Nx =p; -P -x ; Cx=p PXNP -x
X2y=p -xUY ;x)(y=D/x3y.ﬂ.ny
X3 Y=y -PEN-Y); ¥Sy=px 3y.Ny3x

Ix =p x U -x ; 0x =p; ~1x

Since 1x = 1y for any x and y, the subscripts will as usual be omitted.

X =-y=p XN-y
XYy =pyx Ny =x;9 Zx = xLy
Strict identity, symbolised ¢=’, should be distinguished from exten-
sional identity, symbolised ‘=’. These identity relations are explained in
[6], [7], and [8]. The salient point here is that strict identities may be
intersubstituted in modal sentence contexts, but extensional identities may
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only be intersubstituted in extensional sentence contexts and not in general
when they are within the scope of a modal operator such as ‘P’. The
distinction between strict and extensional identity will be exploited in a
subsequent paper, where semantics for systems obtained by adding merely
contingent axioms to S2° are discussed. For examples of such systems
see [5].

Definition: A structure M= (M, N, U, -, P) is a mac algebra iff M is a set
of elements, closed under operations N, U, -, P, such that

(i) (M, n, U, -) is a non-degenerate Boolean algebra (with strong identity =).
(ii) for all x, yeM, P(x Uy) = Px U Py, i.e., P is additive over U.
(iii) ~(N1 < PO).

Definition: A structure M= (M, N, U, -, P) is a joined mac algebra iff it
satisfies conditions (i), (ii), and

(iii") If Px = PO then x = 0, for x ¢ M.

A mac algebra is a modal algebra with strong identity which satisfies
the requirement that N1 does not precede PO, in other words that PO is not
designated. A joined mac algebra is a modal algebra (in the sense of [2])
which satisfies McKinsey’s requirement ([4], p. 120) that if -px is
designated then x =0. Since 1#0 is a non-degenerate Boolean algebra
(iii") implies
(iii'") PO £ P1

a condition which would suffice in place of (iii) or (iii') in some of the main
theorems (Theorems A-E) which follow. (iii) is chosen because it provides
the weakest condition on Kripke models for S2°.

Theorem 3 In any modal algebva M= (M, N, U, -, P)

(i) for x,vyeM,N(x Ny) =Nx NNy.

(ii) for x,ve M, if x€y, thenNx €Ny and Px < Py.
(iii) for xe M, N1 =Nx iff N1 € Nx.

(iv) for xe M, Px = PO iff Px< PO.

Definitions: (i) A structure M = (M, D, N, U, -, P) is a modal matrix iff M
is a set of elements closed under 2-place operations Nand U and 1l-place
operations - and P and D is a non-null subset of M. The matrix is proper
iff D C M.

(i) A function v,;: A— M, i.e., from wiff of logic L to elements of M,
provides a wvaluation (or assignment of values) under matrix W and pro-
vided these conditions are satisfied:

V(A & B) = v(A) N v(B); v(~A) = -v(4); 1(OA) = Pr(4)

i.e., provided v is a homomorphism.

(iii) A matrix M satisfies wif A iff for every valuation under M, v(A) € D;
otherwise A is falsified by M. A matrix satisfies a modal system ., is an
L -matrix, iff it satisfies every theorem of .£; and it is characteristic for a
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modal system [, is an L-chavracteristic matrix, iff it satisfies all and only
the theorems of L.

Definition: A modal matrix M = (M, D, N, U, -, P) is usual iff

(i) WM is proper, i.e.,D CM;

(ii) D is a filter of M, i.e., for x, yeD, x NyeD and for xeD, yeM,
X UyeD;

(iii) if x &3y €D thenx =y,

Lemma 1 If M is a modal matvix satisfying vequivements (ii) and (iii) of
the previous definition and satisfying p 3 p, then:

(i) x=yiffx SyeD.

(ii) x€yiffx 3 yeD.

Proof: (i) Since p 3 p is a theorem x 3 xeD. Since D is a filter of M,

x S3xeD. Thus, if x =y then x =3 y e D. The other half of (i) is immediate
from the definition above.

(ii) Ly iffx Ny =xiff x Ny SxeD, by (i), iff ¥ 3 ye D, since

XNYySSx  =xNy 3x.0.x 3 xNy.
-P((x Ny) N=x) .N. =-P(x N =(x Ny)).
L-PxNyN-x U.xN0-x .U xN=-y).

L -Px N -y) =ox 3 .

"o

The finite model property is first established in detail for S2°, in
Theorems A-E (for $2°).

Theorem A M= (M, D, N, U, -, P) is a usual S2°-matrix iff (M, N, U, -, P)
is a mac algebrva (ov a joined mac algebra) and D ={x: N1 € x},

Proof: 1. Let M= (M, D, N, U, -, P) be a usual S2°-matrix. Then

(i) (M, n, U, -) is a Boolean algebra. This is proved as in McKinsey [4] and
Lemmon [2].

(ii) D ={x: N1€x}. If Nl1<x, then by Lemma 1, N1 3 xeD. Since
520 O(p D p), NLeD. Thus since M is usual xeD. Conversely if xeD,
apply the derived rule: if k5,04 then k5,0 0T 3 A. Thereby N1 3 xeD, so
by Lemma 1, N1 £ x.

(iii) P(xU y) SBPxU Pye D since pC(AvB) SSCAvOB. Hence by the
identity requirement on usualness P(x U y) =. Px U P y.

(iv) To show ~(N1 < P0) suppose for a reduction, N1 € PO. Then POe D.
But -P0 =N1le D. Hence since D is a filter 0 = PO N -P0e D. Thus for all
xe M, xe D, contradicting usualness of the S2°-matrix.

(iv') If Px = PO then N- x =N1, so by (ii) N- xe D. Also, using F43.1,
N-x 3.1 -xe¢D. Since M is usual, 1 3 -xeD, and by Lemma 1,
1< -x. Since too -xZ€ 1, -x =1, and thus x = 0. Hence too P1 # PO.

By (i)-(iv) it follows that (M, n, U, -, P) is a mac algebra and that D =
{x: N1 € x} and by (i)-(iv’) that the quintuple is a joined mac algebra.
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2. Let (M, n,U, -, P) be a mac algebra: to show that the postulates of $2°
are satisfied by M = (M, D, N, U, -, P), where D = [x: N1 < x], and that this
modal matrix is usual.

(i) Consider the Axioms T1-T4. These are necessitated versions of
postulates effectively guaranteed by the Boolean algebra (M, N, U, -).
Consider T1. Its valuation v(A & B 3 A) =. v(4) N v(B) 3 . v(4). Let v(A4)
be x and v(B) =y. Now for any x,yeM,1=.xNyDx,soNl=Nxny>
%) =.xNy 3 x. Hence for all x, ye M, xNy 3 xeD,i.e., Tl is satisfied.
Similarly for T2-T4.

(ii) By Boolean algebra x Uy N (-y U 2) €x U y; hence N(x Uy) NN(-y N 2) =
N({(x U y) N (-y U z)) €EN(x U ). Thus:

1 =N(-xU ) NN(-y N 2) DN(-x U y);
and
NI=Nx 3 yNny 3z2.x3y);s0(x 39Ny 32 3.x 3zeD.

Thus any valuation of T5 belongs to D, hence T5 is satisfied.

(iii) Since x N y< x, P(x Ny) € Px. Thus as P(x N'y) 3 Pxe D, T6 is satis-
fied.

(iv) The tasks of showing that M is usual and that the rules of $2° preserve
satisfaction almost coincide. D ={x¥: N1 € x}is a filter of M. Since NleD,
D is not empty. If x,yeDthenas NI1€xandN1<y N1€xNy,soxNye
D. Therefore Adj is also vindicated. If xe D, yeMthen N1€x<€x Uy, so
xUyeD. For strict detachment suppose xe D and ¥ 3 ye D. Then x <y so
¥y =xUyeD. For substitutivity, suppose x &3ye D. Thereby x 3 yeD and
9 3 xeD,sox<yandy<x,andx =Y.

(v) D is proper since 0¢D. Suppose otherwise OeD. Then N1<0. As
0 € N1 in a Boolean algebra, 0 = N1. Also since 0€ 1, N0 < N1 =0. Hence
NO =N1=0and PO =P1 =1. Thus N1 € PO contradicting ~(N1 < P0). Since
N1l e D, D is not null.

(v") In case the algebra is joined NO£D. Suppose otherwise NOe D. Then
N1 €NO. Since 0 €1, NO € N1; so NO = N1. Therefore by (iii’) 0 = 1 con-
tradicting the non-degeneracy of the algebra.

Definitions: A wff A is S-satisfied (falsified) by a mac algebra M = (M, N,
U, -, P) iff it is satisfied (falsified) by the corresponding S2°-matrix
(M, D’ n,u, -, P>-

S =ps{x: N1<x}.
From these definitions S-satisfaction and S-falsification result.
Theorem E Let M =M, N, U, -, P) be a mac algebra (ov a connected mac
algebva) and let a,,...,a, be a finite sequence of elements of M. Then
theve is a finite mac algebra (joined mac algebra) M, = (M,, N}, Uy, =1, Py
with at most 2272 elements such that:
(i) for 1<i<w,a; eMy;
(il) forx,yeM,x Ny =x Ny;
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(iii) for x, ye M, x Uy y =x U y;
(iv) for x e My, =, x = ~x;
(v) for x e M, such that Px e M,, Px = Px.

Proof: Let M, be the Boolean subalgebra of M generated by a,, .. ., a,,
PO, P1. By Boolean algebra results, there are not more than 222
elements in M,. Define N,, U;, -, as the restrictions of N, U, - to M;. For
x€M, ¥ is covered by v iff ye M, and Py e M, and ¥ € y. That (i)-(v) are
satisfied and that requirements (i) and (ii) on a mac algebra are met is
proved as in Lemmon [2], p. 55 or McKinsey [4], pp. 124-125. Since 0¢ M,
1eM,, POeM,, PleM,, P,0 =P0. Also N;1=-,P,0=-P0 =N1. So, since
~(N1 € P0), ~(N;1< P,0). In case M is joined, it suffices to show, because
of Theorem 3 (iv), that if P,x € P,0 then ¥ =0. But since P,0 = PO and
Px< P.x, if P,x < P,0 then Px £ PO. Hence x = 0, when M is joined.

Theorem C 82° and each of its consistent extensions, has a chavacteristic
usual modal matrix.

Proof as in McKinsey [4], p. 122-123.

Theorem D k5,04 iff A is S-satisfied by all mac algebras (ov by all joined
mac algebras).

Proof: If kA, then A is satisfied by all S2° matrices, so it is satisfied by
all usual S2° matrices (M, {x: N1 €x},n, U, -, P). Thus A is S-satisfied by
all mac algebras. If ~Ik,0A then there is a characteristic usual modal
matrix which falsifies A; to this a mac algebra corresponds. Therefore A
is not S-satisfied by all mac algebras.

Theorem E Let A be a wff with v subformulas. Then i, A iff A is §-
satisfied by all mac algebras (joined mac algebvas) with not move than
2242 olements.

Proof as in Lemmon [2], p. 56 (with a, # 1 replaced by ~(N1 € g,)).

Corollaries 1. S2° has the finite model property, and so is decidable.
2. kA iff A is S-satisfied by all finite mac algebras.

Some of the development for S2° is easily parallelled for S1°.

Definition: A structure M = (M, N, U, -, P) is a tom algebva iff M is a set of
elements closed under operations N, U, -, P such that

(i) (M, n, U, -) is a non-degenerate Boolean algebra;

(il) P(xnz)gpPxny)uP(-yNna);

(iii) ~(N1 < PO).

Although the principle if x €y then Px € Py no longer holds generally, the
principle that if x =y then Px = Py and NXx = Ny of course holds.

Theorem A (for S1°9 M=(M, D, N, U, -, P) is a usual S1°-matrix iff
(M, N, U, -, P) is a tom algebra and D =S.

Proof is similar to that of Theorem A for S2°. Consider, e.g., 2(v) of
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Theorem A (for S2°) Suppose 0eD. Then 0 =N1, so 1= P0. Thus N1< PO
contradicting ~ (N1 € PO0).

Theorem C (for S1° S1° has a characteristic usual modal matvix.

Theorem D (for S1° k. ,A iff A is S-satisfied by all tom algebras,

510
Proofs are as for §2°.

Theorems A-E are now developed for S3°. The theorems are simpli-
fied if the standard S3° postulate

T7. O(ADB) 3.0(0A>0B)
is replaced, first by its (S2°% deductive equivalent
T7'. OA 3 .0(0B > 0A4)

(compare Lemmon [3], p. 195). The equivalence is proved thus:

kwdA 3B 3.04D0B by F33.311
ko (AD. A 3 B 3.04>5. 04008 by F42.12
ke (DAD.0ADOB) 3 .0ADOB by F34.1
kpOA 3.A 3B =3.04=30B by F46.1

Since, given T7', 0(A D B) 3 .04 3 O(A D B), T1 follows by F31.021.
Conversely, since

koA 3.B 3 A

OA 3 .0B 3 0OA, i.e., TT', follows applying T7. Secondly, TT7' is
(52°) deductively equivalent to

T7". OA =3.0T 3 OA.

T7" follows from T7' by substitution. Conversely,

kB 3T by F43.1
kOB 30T by F46.1
by TT" 3 TT by F45.30, F45.31

CA= . OAv.CA&OT).

Proof: One half follows from p = . pvqand F41.41; the other half follows
by contraposing T7'' and using F42.12.

Lemma 2 ig

Definition: A mac algebra (joined mac algebra) is strictly divective when
(iv) Px=P(Px - PO .U. x) for xe M.

Theorem A (for S3° M =(M, D,n, uU, -, P) is a usual S3°-matrix iff
(M,n, U, -, P) is a strictly divective mac algebra (or connected mac
algebra) and D = {x: N1 € x}.

Proof: This extends Theorem A for S2° in the relevant respects.

1. A usual S3°-matrix guarantees (iv) as a consequence of Lemma 2.
2. In any mac algebra, since 0 €y, PO< py. Hence in turn, Px - Py< Px -
PO, (Px- Py) Ux<Z(Px - PO) Ux. Thus, by (iv),
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(@) P[(Px - Py) Ux]< P[(Px - PO) U] = Px.
Now:

(b) Nx D N(Ny O Nx) = -Nx U N(-Ny U Nx)

P-xU-P(-P-9yNP-x)

o m

Also: 1=P(P-xN-P-y)UP-xU-P(P-xN=-P-y)
P(P-xn-P-y»U=-x]U-P(-P-yNP -2
P-xU-P(-P-yNP-x) by (a)
ZNx D N(Ny D Nx) by (b)

N

Hence N1 €Nx =3 N(Ny D Nx); so T7' is satisfied.

Theorem B (for S3° The enunciation of this theorem is exactly the same
as that of Theorem B for S2° except that ‘strictly directive mac algebra’
replaces ‘mac algebra’.

Proof: It needs to be shown
P = Pl[(Plx - P,0) UX]

given Px = P[(Px - PO) Ux]. Since POeM,, P,0 =P0. Let y;, Vs ,---,¥n
cover x¥ so that P,x=Py,NPY,...,Py,. Since ¥x<y; PxZ Py, Also
P,x< Py;. Hence P,x - P,0Z Py; - PO; and so (P,x - P,0) Ux < (Py; - PO) U
x€ (Py; - PO) U y;. But P[(Py; -~ PO) U ;] = Py; e My, so that (P,x - P.0) U x
is covered by (Py; - P0) U y;, for each ¢. Suppose the remainder of the
cover of (P, x - P,0) U x is given by 2,,..., Zn. Then

P.[(Px - PO)Ux]=P[(Py,-PO)U]IN...P[(Py,-PO)UY]NP2y,... P2y

Py,N...Py,NP2y,...,P2, =P xNP2y,...,P2p<Pyx.

[l

Conversely, as 0€x,0< P,0 and (8) Px € Px U P,0. Since P,0 = PO, POZ
Px, and Px € Px generally, P,0< Px. Hence P,x - P,0=0; P(Pwx - P,0) =
PO="P,0. So P,(Px - P,0)=P(Px - P,0)=P,0. Now, by (8), Px€PxU
Py(Pyx- P,0) € P((Px - P,0) UX).

Theorems C-E (for S3° Enunciation and proofs ave divect adaptations of
those for S2°,

Hence $3° has the finite model property and is decidable.
Analogous results hold for the weak modal system C3,, the system
obtained from Lemmon’s C2 by adding the postulate

A7'.0(A D B) DO(0A D OB).

AT' is deductively equivalent with respect to C2 to

A7. OA ©.0O(0B > 0OA4).

Lemma R, CA=CUV. A & OT).

Definition: A modal algebra (as defined in Lemmon [2]) is directive when

Px = P(Px - PO .U. x) for x e M.
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Theorem A (for C3,) M =(M, D, 0, U, -, P) is a regular C3y,-matvix iff
(M, N0, U, -, P) is a directive modal algebva and D =[x: x = 1].

Proof is similar to that for S3° replacing ‘=’ by ‘=’ and ‘€’ by ‘<’. Defini-
tions of ‘regular’ and ‘<’ are as in Lemmon [2].
Theorems B-E (for C3,) Enunciations and proofs are adaptations of those
for S3°.

The system D3, is obtained by adding to C3, the deontic postulate
A5. 0OA D ~0O~A.

Definition: A modal algebra is deontic when P1 = 1.

Theorems A-E (for D3,) Proofs combine those for C3, with Lemmon’s
results for D2 in [2].

Systems $2°¢ and $3°¢ are obtained from systems S2° and S3° respec-
tively by adding the postulate,

OA5. 0A =3 ~O~ A,
Definition: A mac algebra is strictly deontic when Nx € Px.
Theorems A-E (for $2°¢ and §3%9)

Proof: The relevant extras are these: Theorem A: 1. A usual 52%(or $3°%)
matrix guarantees Nx =3 Pxe D, and so Nx £ Px, in virtue of 0 A5. 2. Since
Nx<€ Px, 1 =-PxUPxZ-NxU Px. Thus N1 €Nx =3 Px; so OAb is satis-
fied.

Theorem B: Given Nx € Px, N,x € P,x follows, since Px< P,x and N,x =
-P, - xENux,

Definition: A mac algebra is s#rictly epistemic when

x % Px for xe M.

Strictly epistemic mac algebras correspond of course to S2-matrices, and
strictly epistemic strictly directive mac algebras to S3-matrices. In case
a strictly directive mac algebra is strictly epistemic the strictly directive
requirement can be replaced by a strict transitivity requirement Px =
P(Px - P0). Strictly epistemic mac algebras are strictly deontic.

Theorems A-E (for S2 and S3)

Proof: The relevant extras are these: Theorem A: 1. A usual S2 (or S3)
matrix guarantees x € Px in virtue of the S2 postulate A 3 OA (F36.0).
2. Since x € Px, 1=-xUx<€-xUPx, and N1€x 3 Px, so A 3 OCA is
satisfied.

Theorem B: Given x € Px, x € P,x follows, since Px € P,x quite generally.

A model structure (m.s.) is an ordered quadruple & = (G, K, N, R),
where K is a set of items, GeK, N C K, and R is a binary relation on K.
An m.s. is a Lewis model structure (I.m.s.) iff G e N,

Definition: @ =p; K - N.
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K+, the algebva on m.s.K, is the ordered structure (M, N, U, -, P)
where

(i) M= PK, i.e., the power set of K;

(ii) n, U, - are the set-theoretic operations of meet, join, and complement
restricted to M;

(iii) PA = {H: (SH")(H'€¢ A & HRH')vHe Q}, for Ae M.

The set theory assumed is familiar extensional set theory with single
identity ‘=’, single (improper) inclusion ‘C’, and non-ontological quantifiers
‘A’ and ‘S’.

Lemma N # Q.
Proof: Ge N or Ge @ but not both.
Lemma I any algebra on any m.s.

(i) PA = @, where A is the null set,
(ii) -PA =N.
(iii) @ C PA, for any A € M.

Theorem F If ® is a Lewis model structure then & is a mac algebra,

Pyroof: Conditions (i) and (ii) on a mac algebra are established as in
Lemmon [2], Theorem 15. (The terminology is of course adjusted.)
ad (iii) Since ® is a Lewis m.s., Ge N and so G£ Q. Therefore (SH)(HeN &
HF Q). Now if -PA C PA, then N C Q; whence ~(SH)(HeN & HfQ), and a
contradiction. So ~(-PA C PA).

Theorem G Any finite mac algebra is isomovphic to the algebra on some
finite Lewis m.s.

Proof: Let M ={(M, N, U, -, P) be a finite mac algebra. Then for some R,
(M, N, U, -) is isomorphic to the algebra of subsets of ®, by Stone’s
representation theorem, under isomorphism ¢ say. It suffices to add to
Lemmon’s proof in [2] of Theorem 17, the following detail showing that
when M is a mac algebra, ® is a Lewis m.s. Since in a mac algebra
~(-P0 £ P0), by the isomorphism ~(¢ - PO C ¢P0), where C corresponds to
€. Thus, where P* is the possibility operation in &+, ~(-P*¢0 C P*¢0),
i.e., ~(-P*A C P*A). Hence, by lemmata, ~(N c Q). Thus (SH)(HeN).
Call such an H, G, i.e., G =e¢H: HeN. Since GeN, ®is a Lewis m.s.

Theorem H k,,A ff

(i) A is S-satisfied by ®* for all I,m.s. K.
(ii) A is S-satisfied by & for all finite l,m.s. K.

Proof: If k,,A then A is S-satisfied by all mac algebras, by Theorem D;
and so by &*, for all (finite) l.m.s. ®, since these are mac algebras, by
Theorem F. Conversely if ~i5,,A then some finite mac algebra S-falsifies
A, by Theorems D and E. Hence, by Theorem G, A is S-falsified by &* for
some (finite) m.s. K.
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A valuation model for a wif A on an m.s. ® is a binary function v(p, H),
where p ranges over sentential variables of A and H over items of K, whose
values lie in {T, F}. A value v(B, H) for any subformulae B of A for a given
valuation model for A on an m.s.® is defined recursively as follows: if B
is atomic v(B, H) is as in the valuation model; v(~B, H) = T iff v(B, H) = F;
vV(BODC,H)=T iff v(B,H)=Forv(C,H)=T;v(OB,H) =Tiffv(B,H) =T
for all H' ¢ K such that HRH', and He N.

Wif A is true in valuation model v(p, H) for A on m.s. & = (G, K, N, R)
at H'e K iff v(A, H') = T. A is S2°-true on model v(p, H) on Lewis m.s.
®=(G, K, N, R) iff v(4, G) = T. A is S2°-valid in & = (G, K, N, R) iff A is
true in all models on m.s.® at all H'e N, i.e., at H' e K where H'{ @ for all
H'eK. A is S2°-valid on Lewis m.s. ® = (G, K, N, R) iff A is S2°-true in
all models v(p, H) on l.m.s. ®. A is S2°valid iff A is S2°-valid in all Lewis
m.s.

Lemma A is S2°%wvalid iff A is S2°-valid on all l.m.s.

A is 82°-wvalid over m.s.® = (G, K, N, R) iff, for every H'eK, H'¢ N
materially implies A is true in all models in m.s.® at all H' ¢ K.

Where v(p, H) is a valuation model for a wff A, which contains variable
p;, on an m.s.K,

V(p;) =py {H: HeK & v(p;, H) = T},
and an assignment U to the variables p,,..., p, of A from ®" is defined:

A =(V(py),..., V(D).

For any assignment % from Q% to the variables of A, Vy(B) is the value
assigned to subformula B of A in &+ for the assignment 2. Where % is an
assignment A = (4,,...,4,), with A; C K, from & to the variables of 4, a
valuation model vy(p, H) for A on R is defined thus: ve(p;, H) = T iff He A;.

Lemma (i) Wheve v(p, H) is a valuation wmodel for wff A on m.s. K =
(G, K, N, R), for all He K, v(A, H) = T iff He Vy(4).

(ii) Where W is an assignment to the variables of wff A from K for some
m.s. ®=(G, K, N, R), for all He K, vy(4, H) = T iff He Vy(A).

Proofs as in Lemmon [2], p. 61,

Theorem I (i) Wheve ® = (G, K, N, R) is any Lewis m.Ss., A is S-satisfied
by K" iff A is S2%wvalid in, ov on, K.

(ii) Wheve R is any m.s., A is satisfied by & iff A is S2°-valid over
(provided paradoxical implications are admitted).

Proof: (i) (a) Let A be S-satisfied by &*, and consider a valuation model
v(p, H) for A on ®. Then Vy(A) D N*K, where N* is the necessity operator
in &+ and Y is any assignment from &% to A’s variables. Now N*K =
-P*A=-Q=N. Thus Vy(A) DN. Since then, for all He N, He Vy(4), it
follows by Lemma (i) that for all He N, v(A, H) = T. Hence A is S2°-valid
in ®. Since too Ge N, v(4, G) = T. Hence A is $2°-valid on K.
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(b) Let A be S2°valid in ®, and consider an assignment ¥ to the variables
of A. Since A is S2°-valid in R, for all He N, vy(A, H) = T. Hence by
Lemma (ii) for all He N, H e Vy(A). As then Vy(A) D N, Vy(4) D N*K. Thus
A is S-satisfied by ®*. For A is S-satisfied by & iff the value of A for
assignments from /" to its variables is designated, i.e., includes N*K.
Next let A be S2°-valid on l.m.s. ® and consider any assignment 2 to the
variables of A from K*. Since A is S-valid on ®, vy«(4, G) = T, whence by
Lemma (ii), Ge Vy(A). Since however, G may be any element of ®, since
that is G=eH: He K, N C Vy(4); and that A is S-satisfied follows as
before.

(ii) Where ® is an m.s. which is not a Lewis m.s. N is null. Then, for
every H if He N then He Vy(A) is true vacuously provided the if-then is
paradoxical. Likewise, for any H, if He N then v(4, H) = T, holds vacu-
ously.

Theorem J (i) k,0A ¥ A is S2°-valid.
(ii) k,0A Hff A is 82°%-valid over all m.s. (provided paradoxical implications
ave exploited).

Proof: (i) kA iff A is S-satisfied by ®* for all 1.m.s. ®, by Theorem
H (i), iff A is $2°valid in all l.m.s. &, by Theorem I (i), iff A is S2°-valid.
(ii) Similar to (i) but using Theorem I (ii).

Definition: An m.s.® is stvictly epistemic (S epistemic) iff (AH)(HeQ v
HRH).

Theorems F-J (for S2)

Theorem F (for S2) If R is a strictly epistemic l.m.s., then ™ is a
strictly epistemic mac algebra.

Proof: Because of Theorem F (for S2° it suffices to show that when
(AH)(He QvHRH), ACPA for ACK. Now given the premiss, HeA
materially implies He A & (HRHv He @), which in turn implies (HeA &
HRH)vHeQ, and so implies (SH')(H'¢ A & HRH')vHe @, i.e., He PA, as
required for a classical inclusion.

Theorem G (for S2) Any finite strictly epistemic mac algebrva is isomovphic
to the algebra on some finite strictly epistemic l.m.s.

Proof is similar to Lemmon [2], Theorem 19, p. 59.

For the remaining systems considered it is enough to establish
Theorems F and G. For Theorems H-J they follow as before. The main
connections may be summed up in a table like this:

System Corresponding algebra Corresponding m.s.
§2° mac l.m.s.
S2 strictly epistemic mac strictly epistemic 1.m.s.

(compare Lemmon [3], p. 207-208). We condense, e.g., the S2 line of this
table to:
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System S2 ~ strictly epistemic mac algebra ~ strictly epistemic l.m.s.

Definitions of truth and validity are of course appropriately modified to
reflect these connections. For instance, wif A is S2-frue on model v(p, H)
on strictly epistemic l.m.s. = (G, K, N, R) iff v(4, G) = T. Definitions of
S2-valid (in) and S2-valid on are similarly modified by replacing ‘(Lewis)
m.s.’ by ‘strictly epistemic (Lewis) m.s.’

Theorems H-J (for S2) are similar in statement (and proof) to those for
S2°, except that ‘strictly epistemic (Lewis) m.s.’ systematically replaces
‘(Lewis) m.s.” and ‘S2-valid’ replaces ‘S2°-valid’. Consider to illustrate:

Theorem J (for S2) (i) 5,4 iff A is S2-valid;
(ii) A iff A is S2-valid over all strictly epistemic m.s. (provided para-
doxical implications are exploited).

That is, given the proviso, iff for every H', H' ¢ N matevrially implies A is
true in all models on all strictly epistemic m.s. at all H'e K.

Theorem J (i) strikes us as a better result than Lemmon’s Theorem 26
in [3], p. 202, which corresponds rather to Theorem J (ii). Unfortunately
Lemmon offers no sufficient definition of his key notion ‘weak validity’; for
truth at 7e N, in terms of which weak validity is to be defined, is nowhere
defined in Lemmon’s papers. The obvious way of defining truth at e N—by
adding ‘& £ @’ to the definition of truth at l ¢ K given in [2], p. 60—renders
Lemmon’s Theorem 26 in [3] incorrect. A way to repair Lemmon’s result
is to use a connective which effectively drops off the cases where truth is
evaluated at some /¢ @; and this can be done by exploiting paradoxical
features of ¢O’, by requiring (in Lemmon’s terminology): A is true for
model ®(v, K) at le(K - Q) in an m.s. (K, Q,U) iff I£ @ D ®"(A, ) =T.
Similarly a better result* for S2-provability is given by the corollary to
Theorem E for S2, in terms of satisfaction in all finite strictly epistemic
l.m.s., than is given by Lemmon’s Theorem 23 ([3], p. 201), in terms of
weak satisfaction in all finite e-algebras. For the matrices corresponding
to Lemmon’s finite e-algebras may be improper. But since improper
matrices satisfy everything, in virtue of features of paradoxical implica-
tion, they can be thrown in without upset.

Definition: An m.s. ® is strictly divective (s divective) iff R is transitive
from pairs of elements in N, i.e., for H,, H¢ N and Hs;€¢ K, H,RH, and
H,RH ; imply H,RH ;.

Theorems F-J (for S3°)

Theorem F (for S3% If ® is a strictly divective l.m.s., then & is a
Strictly divective mac algebra.

*Just as satisfaction in normal (transitive) e-algebras gives, as Lemmon claims
in [3], p. 201, better results for T and S4 than, what is equivalent, weak satisfaction
in closed (transitive) e-algebras.
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Proof: 1t suffices to show, where & is strictly directive, PA = P(PA -
@ .U.A) for AC K. A one way inclusion is immediate. For the other
suppose He P(PA - @ .U. A). If He @ then He PA by a lemma. If then He N,
by definition of ‘P’, for some H', H'¢ PA - Qor H'eA and HRH'. If H' ¢ A
and HRH' then H ¢ PA as required, so it remains to consider the case where
for some H',H'e PA - @ and HRH'. Then H'e N and for some H' H'e A &
H'RH". Since H, H'e N and HRH' and H'RH'' by strict directiveness HRH''.
Thus since H'' € A, by predicate logic, He PA.

Theorem G (for S83°) Amny finite strictly divective mac algebva is isomov-
phic to the algebra on some finite strictly divective l.m.s.

Proof: By isomorphism ¢, P(PA - @ U. PA) = PA, for A C K. Suppose H,,
H,e N, HRH,, and H,RH,. Then H, ¢ P {H,}and H, e P {H;} - Q@ (see Lemmon
[2], p. 56). Thus {H,}C P {H:}- @ C. P {Hs} - QU{H,}; hence P {H.}C
P(P {Hs} - Qu. {H,}) [= P{H,}]. Since H, e P{H,}, H, e P{H,}, that is H,RH, as
required.

The remaining results for S3° simply follow out the connections:
System S3° ~ strictly directive mac algebra ~ strictly directive l.m.s.
Theorems F-J (for S3)

System S3 ~ s epistemic s directive mac algebra
~ 8 epistemic s directive l.m.s.

Proofs of Theorems F-G combine those for S2 and for S3°.
Theorems F-J (for C3,)

System C3, ~ s directive modal algebra ~ s directive m.s. Proofs of
theorems extend those in Lemmon [2] for C2 in much the way that those for
53° extend those for S2°.

Definition: An m.s. ® is strictly deontic (s deontic) iff (AH)(SH"YHRH'v
He Q).
Theorems F-J (for D3,)

System D3, ~ s directive s deontic modal algebra
~ s directive s deontic m.s.

Theorems F-J (for S2°¢ and S3%9)

System S2%¢ ~ s deontic mac algebra ~ s deontic l.m.s.
System S3%¢ ~ s directive s deontic mac algebra
~ s directive s deontic l.m.s.

The methods of the paper also suffice to treat many other necessitated
extensions of S2° which have not so far been discussed in detail in the
literature, for example, the systems S4° and S8 (both explained in [1]).
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