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On the Number of Nonisomorphic

Models of Cardinality λ

Lox-Equivalent to a

Fixed Model

SAHARON SHELAH

A well-known result of Scott [6] is that if 1 and ft are countable and
1 = ooωft, then SI s St. Later, Chang [2] extended this to show that if
c/(λ) = No, 1 and ft have cardinality λ and 1 = ooλft, then I = ft. More
recently, Palyutin [5] has shown that if V = L, I has cardinality X1? and
K = { ft: ft = « ω i 1 and ft = Njf, then, up to isomorphism, K contains either
one member or 2*i members. It has long been known that the first case was
not exclusive (cf. [4]).

For λ = ttj Palyutin needed the fact that V = L implies 0 5 for every
stationary 5 C Wj. In the Theorem below, we extend Palyutin's result to most
other uncountable regular cardinals. Our proof, however, requires a stronger
combinatorial principle of Beller and Litman [ 1 ] which does not hold in the
case of λ weakly compact, and so the restriction in the Theorem.

By Shelah [6] the GCH is not enough to guarantee the conclusion even for
λ = ttl5 because the "theorem" would imply the following. For λ regular and G
a λ-free group of cardinality λ, up to isomorphism Ext(G, Z) has eitherj or 2 λ

members. However, by [6], "ZFC + GCH + Ext(G, Z) = Q for some G, G = *V'
is consistent.

We now proceed to the theorem and its proof. The result was announced
in [8].
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Theorem {V = L) Let λ be regular and not weakly compact.1 Let 1 be a
model of cardinality λ and K = { 31: 31 = ^ 1 αrcd TV = λ}. 77*e«, wp to isomor-
phism, K contains either 1 or 2λ members.

Proof: We may assume without loss of generality that 1 has universe λ itself.
For a < λ we use α* to denote the sequence of length a whose 0 t h entry is β. We
use xa to denote the sequence of variables of length a whose 0 t h entry is xβ. It is
well-known (cf. [2]) that for any sequence m* of length less than λ there is a
formula φm* of Z/(2λ)+λ s u c n that for any model 31 and sequence n* of the same
length as m*, 5ft t= φm*(n*) iff ( l , m * ) = ooλ(3M*) In other words, (^^de-
scribes the °°λ-tyρe of m* in 1, tpoo\(m*, 1 ) .

We now define a set S of ordinals less than λ that will be used for the rest
of the proof. Let

The proof divides into two cases, depending on whether or not S is stationary.
At first, the definition of S may look a bit puzzling since the situations for
limit and successor ordinals seem different. However, because we only care
whether S is stationary, we are essentially only interested in the limit ordinals
anyway. We consider first the case in which S is not stationary. The proof does
not differ from that in [5] in any material way, but we include it here to make
our paper self-contained.

Claim If S is not stationary, then all members of K are isomorphic.

In this case there is, by definition, a closed set C unbounded in λ and
disjoint from S. Since λ is regular we may write C = ίδα: α < λ | where δ α is
increasing and continuous in a.

Let 31 e K. Again we may assume 5ft has universe λ. For each α < λ we
will define a partial isomorphism fa from 1 to 31. The domain and range of/α

will each include a. In addition, if β < a, fa will be an extension of fβ. Thus
/ = U ί/α: « < λ} will be an isomorphism from 1 onto 31. It will also be
arranged so that for α > 0, / α has domain δ^ for some β > a, and so that
( » , δ j ) = ~λ(ft,/a(δ*)), where / α ( δ | ) is the sequence of length δβ whose £ t h

element is /α(£)
First, for a = 0, we let f0 be the empty function.
Next, suppose a = β + 1 and fβ has been defined with domain δ 7 so that

( l , δ * ) = ooλ(3l,fβ(δ*)). First, by the back-and-forth property, there is some
£ < λ such that ( l , δ * , £ ) = «λ(ϊl,/^(δ*),i3). Now, choose p > y such that
£ < δ p . Next, choose a sequence (av)v<5 such that ( ! , δ * , £ , δ * ) Ξo o λ

( 1 ,fβ(δ*),β,(av)v<tp). Now, define fa so that /αO) = av, for v < δ p, and fa will
extend/β.

Finally, suppose a is a limit ordinal. This is the more interesting situation.
Let us suppose that for each β < a we have defined fβ as required with domain

yβ e C. Let μ = U γ , . Then μe C since C is closed. We will let δa = μ and define

U β<a

JiX fβ We must show that this choice will satisfy our requirements. First,

the requirements on the domain and range are satisfied by induction. Since

μ e C, μ 4 S. Thus, 1 1= VJCY Λ φβ*Ocβ) -» <M*M)Y Since 31 = ^Έ, 31 f=
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V3cμ( A φβ*(Xβ) -> φμ*(xμη. Furthermore, since for each β < α ( l , 7 ^ * ) =ooλ

WJβiΎβ)), we also have SI t=φβ*(f(yβ*)\β), and hence » 1= β^μφβ<f(yβ*)\β).

Consequently, we must also have 311= <pμ*(/(μ*)). Then, of course, ( 1 ,μ*) = ooλ

(3^,/(μ*)), and this finishes the proof in the first case.
We now must consider the more difficult case in which S is stationary.

Our object is to prove the following:

Claim If S is stationary, then K has 2 λ nonisomorphic models.

For each σ e 2 λ we will construct a model 1 σ e K with universe λ such
that if σ Φ o' e 2λ, then s l σ ^ l σ /. This will, of course, prove the claim.

In order to carry out the above, for each a < λ and η e 2 α w e will define
ordinals δη, pη<λ and a function /η: δ η ^ P η We regard fη as defining a model
l η with universe δη . The isomorphism type of l η is obtained by letting
tp(δ*, lη) = tp(fη(δ*), 1 ) , for quantifier-free formulas. We also need to control
Tη = ίpooλ(/η(δ*), 1 ) . The idea is to view l η as an approximation to l σ with
universe λ where η = σlα. In order for this to make sense, we must arrange
things so that if a < β, then rσ t α C τσ\β, though not necessarily so that fσ\a C /σt/3.
In fact, this last requirement would create serious problems when we had to
"split" so as to obtain nonisomorphic models at the end. On the other hand,
a certain amount of this sort of extension is necessary in order to have

a σ = . λ».
In the construction we will use two combinatorial principles which hold

in L. The first is that 0^ holds for each stationary X C λ. We state 0^ in the
following form:

For each a < λ there are ηa Φ va and gα: a. -> a such that for any σ Φ
σ e 2 λ a n d g : λ-*λ,

\aeX: σlα = τ?α, σ' lα= va and g\a = ga\

is stationary in λ.

The second is due to Beller and Litman [ 1 ]:

Let X be stationary in λ. Then there is a set Xo C X, and for each limit
a < λ a set Ca such that:

(1) Xo is stationary in λ
(ii) for all a < λ, Xo Π a is not stationary in a
(iii) Ca is closed unbounded in a

(iv) canxo = o
(v) if 7 is a limit point of Cα, then Cy= Cα O 7.

Now, since S is stationary we may apply the Beller-Litman principle and
obtain sets So, Cα, <x < λ as described. Now we begin the details of the argu-
ment. Leaving the construction for the end, let us assume that for each a < λ
and 77, v e 2a we have defined δη, p η < λ and fη such that

< ! ) Λ?: δr]^Pη

(2) if |3 < a, then δηl/3 < δη, pηlβ < p η , and Tη|β C r η

(3) if α 4 SQ, & a limit ordinal, and δ is a limit point of Ca, then fφ C fη

(4) 0ίCδη,αCpη
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(5) if α e So, δ ^ , P%t/j, δ ^ , pVξiβ < a for all β < a and gα: α ^ α, then

</τ?α(^(«*))) and <Λα(α*)> realize contradictory Z^-types.

We may now form models I σ for each σ e 2 λ as described earlier. We show
now that these models behave as claimed.

A. If σ Φ σ' e 2\ then l σ ^ l σ , .

Suppose to the contrary that g is an isomorphism from l σ onto l ^ In particu-

lar then, g: λ 3̂ 0 λ. It is then easy to see that the set A = ία < λ: g: a ^ qc] is

closed unbounded in λ. By assumption, the set B = {a e So: σ\a = ηa, σf\a = v^

and g\a = gα} is stationary in λ. Furthermore, by condition (2), the set

C = ία < λ: δη^, Pηαi|3, δ ^ , p^i^ < α: for all ]3 < α! is also closed unbounded in

λ. Thus A Π B Π C is not empty. Now, for a e A Π B Π C, by condition (5)

</τϊα(g(α*))> and </%(α*)) realize contradictory types. Since these are respec-

tively just the types of g~\<x*) in l σ and α* in l σ r , g is not an isomorphism,

contrary to our assumption.

B. I f σ e 2 \ then t ^ ^ l .

Consider the set

F - \fσ\b' δ is a limit of Ca for some δ < a < λ, a 4 So\.

By definition of l σ , F is a set of partial isomorphisms from l σ to 1 . By
conditions (3) and (4) and the properties of the Beller-Litman family, F is seen
to have the Karp back-and-forth property corresponding to Z,ooλ, since λ is
regular.

C. The construction can be carried out.

The proof is by induction on a < λ. For α = 0 and η the empty sequence we
may take δn = pn = fn = 0. For a = β + 1 and η e 2a, we may disregard condition
(3) and by a previous observation, since without loss of generality we may
assume So contains only limit ordinals, we may also disregard (5). It is quite
easy to satisfy conditions (1), (2), and (4). Simply let δ η = δη\β + 1, pn = pη\β + 1
and / η = /η|β u Kδηi/3, Pη\β>\> The above conditions will then hold by induction.

For a a limit ordinal we will consider two subcases separately, determined
by whether or not Ca contains a last limit point. Before doing this we make the
following sub claim.

Subclaim Without loss of generality we may assume that for every a e So,
Ca has no last limit point.

Proof: First, we consider the case in which λ = Hv It is easy to see that without
loss of generality we could have assumed that So contained only ordinals 7 such
that 7 > 0 and if £ < 7, then ξ + ω < 7. Now, if a e So, choose an < a, n < ω

such that 0^ + ω < an+1, an is a limit ordinal, and a = U α w . Now let Ca =
n<ω

\an + k: n e ω, 1 < k < ω}. Then Ca Π So = 0 and Cα has no last limit point.
Now we consider the case in which λ > N^ First we consider the easy

case in which So contains only ordinals of cofinality >ttv Now if 7 were the
last limit point of Ca, then since Cα is closed unbounded in a we would have
7 = 7 0 < 7J <, . . ., an ω-sequence of elements of Ca, viz., the successors of 7 in
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Ca increasing to α, and contradicting the assumption that a has cofinality > ^ x .
Next we consider the more general case.

Stage A: We define by induction on n e ω, for every increasing sequence υ of
length n of ordinals <λ, a closed, bounded subset Cυ of λ with last element a
limit such that

1. Cυ\ι is an initial segment of Cυ, for / < n
2. the last element of Cυ is bigger than the last element of v (for n > 0)
3. the set Sv = !δ: δ < λ, Cυ is an initial segment of Cδ, cf(δ) = Kji is a

stationary subset of λ.

The CVs may be defined as follows. First let C<> = φ. Assume Cυ is defined. For
each a < λ and for every δ e Sυ, except for <λ many, there is an initial segment
Cu,α,δ of Cδ with last element 7(1;, a,δ) a limit >α, and bigger than the last
element of Cυ. By Fodor's Lemma there is some 7 such that {δ e Sυ: 7(1;, α, δ) =
7! is stationary. Now define Cy^<α) = Cτ

Stage B: Now we redefine the Cδ's to satisfy the requirements. We let

C* = ί δ : i f ι ; e δ < ω , t h e n C l ; C δ }

s$ = son c*

( C δ i f δ ^ S J o r c / ( δ ) > « 1

U Cυ\n if δ not as above, where

y e δ , increasing and unbounded.
It is easy to check that the sets S$,C*, satisfy the requirements for S, Cδ.

We now may return to the limit case of the construction. We consider
first the case in which Ca has a last limit point β. We may write C-β as
{β = β0, βlf β2, . . .1 with βn < βn+1, n e ω. By the subclaim we may assume a 4 So

and so we need not be concerned with the "splitting" condition (5). Let
δ = U δ-,1/3 . p = U pΏ\βv, and r = U Tv\e. Then r is an L^-type realized in 1.

neω tHn neω ι y n neω IHn

To see this we use the fact that for n < m, τβn -> 3xTβm(x), where x is the

sequence of variables (xξ)δ ,. < ξ < δ ( , to construct a realizing sequence (recall

that r is equivalent to a formula in Lμλ for some fixed μ sufficiently large). Then

Tφ ^^x τ[fn\β(δ*\β), t ] , where x is the sequence of variables (x^δ^β<^<δ- Now,

select a sequence α* = (a^)δ ]β^^<δ of elements of 1 such that 1 ^ τ[fη\β(δ*\β),

α*]. Now, define fn so that fΆ extends fΆ\β and so that fn(%) = a$ for δη\β < ζ < δ.

Now, let p^ be large enough to contain range f'n U p. Next, choose δ η so that
δη - δ = Pη - (range fn U p). Finally extend /η to fv taking the elements of
δη - δ 1 - 1 onto the elements of pη ~ (range fn U p) in any way whatsoever.
This will satisfy conditions (l)-(4), by induction.

We now consider the case in which Ca has no last limit point. First, in
view of condition (3) we may define a function / b y / = U \fφ\ β is a limit
point of CJ. Now, if a 4 So we may define fn = f and δ η and pn in the obvious
way.

Finally let us suppose ae SQ and condition (5) does apply, with all nota-
tion as in the condition. Let us also assume that </(g(α*))> a n d <Λα(

Q:*)) d°
realize the same type, where fv is defined (without having any difficulties) as
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U \fV(3fβ' β is a limit point of CJ. If they realize different types then we can

just let /ηα = /, etc. Now we must "split". This is no problem since a e So.

Simply choose a sequence (a^<Oί of elements of 1 such that for each β < a,

<tf£>£<0 realizes rη^, but (a^>^<a and (/(α*)> realize contradictory types. Now,

define / ' : a-+M by /'(£) = ag-i^y Finally, let / % extend / ' and be from some

ordinal 1-1 onto another ordinal containing U p ^ in its range. Then fna,

along with the obvious choices for δ % and ρna will satisfy all conditions since

a e So and so condition (3) is vacuous.

NOTE

1. Remark added in proof: Now we know that the theorem is false for λ weakly compact; it
is possible to get any number of models between 1 and λ+. See [9].
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