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In this note we show that input resolution with paramodulation (IP) is
strictly weaker than unit resolution with paramodulation (UP).

First we introduce some notation. A is always an atomic sentence and p, q
are always statement letters. Ij, for X = IP, UP, I (input resolution), or U (unit
resolution), means derivability by means of the rules of X.

We work in a fixed first-order language and consider only ground clauses.
E is the set of all clauses of the form \~]t0 = tl9 ~L4(f/), 4(ίi-/)i together with all
those of the form [t = t}.

A set L of literals is consistent if Ί3/ e L I e L.
If L is a consistent set of literals and C is a clause we say L N C if L Π

C Φ φ or 3/χ e C 3/2 e C lx Φ l2 Λ /1 4L Λ l2 $L.
If Q and C2 are clauses define [C2lp]Cx = Cγ if p I Q, [Q/plQ = (Q -

ίp}) U C2 if /? e Cj. If 5 is a set of clauses define [CVplS = ([C2/p]Cy. Cx e 5}.

Substitution lemma Suppose there is a UP derivation ofC1 from S with no
clause containing ~Λp and with \p\ at most as its last clause, then for each C2

there is aC3C [C2/p]Ci such that [C2/p]S Ijjp C3.

The proof of the substitution lemma is routine.

Soundness lemma // L is a consistent set of literals and S a set of clauses
then L &SUE=*SUE Viφ.

Proof: Prove by induction on the length of an input derivation of C from SUE
that 3/e C(/eZv Ί 4 L).

Completeness lemma // S is a set of clauses then there is a consistent set of
literals L such that SUE\i[φ=>L N S U E.
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Proof: Let L be the set of all literals / such that SUE ^{ft.lf SUE \ff Φ then
SUE lήjφsoZ, is consistent. LetC= Ul9...9ln\ e S U E. If n = 1 then lλ e L so
L N C. If w > 1 and / b . . ., ln.λ e L then 5 U E Ijj \ln \ so ln e L and L h C. Thus

The soundness and completeness lemmas tell us that input resolution with
equality axioms is complete for the three-valued semantics represented by con-
sistent sets of literals.

Proposition S \^φ^SU E tf 0.

Proof: Prove by induction on the length of an IP derivation of C from S that if
L is a consistent set of literals with L N S U E then 31 e C (I e L v I 4 L). Thus
SUE \t{φ =* S1 fTjpφby the completeness lemma.

Proposition S U £ t y 0 = > S t u p 0 .

Proof: Suppose S lήjp"0 and select a new statement letter p. Define L - \A:
S tϋpMϋ U{-U:SU{M, pϋ fΰpίp!}. By the substitution lemma with C2 = φ,
L is a consistent set of literals. We shall show that for C e S U E L fc C.
Gzse 1. C = \AU . . . , ^ , - U H + I , . . ^Ί^Ai+m^i^^andΊ^!, . . .,ΊAniAn+u . . .,
^ r t + w e L. Since 5 bup" 0, by at most m applications of the substitution lemma
S lΰpMso/eL.
Case 2. C = {1t0 = ίl5 Ίi4(ί,), X ( ί w ) I 6 £.
Subcase 1. t0 = ίl9 i4(ί, ) e L. Since 5 t̂ p {ί0 = tx\ and 5 t̂ jp \A(tj)\, S \^
{Ait^i)] so L N C
Subcase 2. tQ = r1? ~\A(t^i) e L. Since ^ hfjp {r0 = tx] and S U {{̂ (/j.,-),, p|}' hϋfp
{/?}, we have 51 U \\A(ti),p}\ \^ \p\ so Ίi4(ί, ) e ί a n d l N C
Subcase 3. A(Ji\^Ait^{)e L. Since 5 [<jp {^(ί,-)} and 5 U {U(r !_,-)> PH ίϋp{p},
we haveiS U \{to= th p\\ fϋp ίp) so ~U0= ίj e l and L NC.
Thus by the soundness lemma S U £ \t\φ.

We now show that S \χ^ φ ψ S U E if 0 . We specify the first-order lan-
guage to contain only the constants a, b, the monadic predicate P, and the
statement letter q (together with equality). Let S = {{Pa, a = b\, \Pb\, ΠPa, q\,
{~\Pa, ~Ίq\] and let L = {a = a, b = &, /ft), then L is a consistent set of literals
and it is easily verified that L N S U E. Thus SUE ϊfϊ 0 by the soundness
lemma. However, S hfjp 0 as can be seen from the following UP derivation:

\Pa, a = b\ \Pb\

\Pa\ ΠPa,q\

\

< {q\ * ΠPa, ^Q\

0
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