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Validity in Intensional Languages:

A New Approach

WILLIAM H. HANSON and JAMES HAWTHORNE

Although the use of possible worlds in semantics has been very fruitful and
is now widely accepted, there is a puzzle about the standard definition of validity
in possible-worlds semantics that has received little notice and virtually no com-
ment. A sentence of an intensional language is typically said to be valid just in
case it is true at every world under every model on every model structure of the
language. Each model structure contains a set of possible worlds, and models
are defined relative to model structures, assigning truth-values to sentences at
each world countenanced by the model structure. The puzzle is why more than
one model structure is used in the definition of validity. There is presumably just
one class of all possible worlds and just one model structure defined on this class
that does correctly the things that model structures are supposed to do. (These
include, but need not be limited to, specifying the set of individuals in each world
as well as various accessibility relations between worlds.) Why not define validity
simply as truth at every world under every model on this one model structure?
What is the point of bringing in more model structures than just this one?

We investigate these questions in some detail and conclude that for many
intensional languages the puzzle points to a genuine difficulty: the standard defi-
nition of validity is insufficiently motivated. We begin (Section 1) by showing
that a plausible and natural account of validity for intensional languages can be
based on a single model structure, and that validity so defined is analogous in
important respects to the standard account of validity for extensional languages.
We call this notion of validity “validity,”, and in Section 2 we contrast it with
the standard notion, which we call “validity,”. Several attempts are made to dis-
cover a rationale for the almost universal acceptance of validity,, but in most
of these attempts we come up empty-handed. So in Section 3 we investigate
validity, for some intensional languages. Our investigation includes providing
axiomatizations for several propositional and predicate logics, most of which
are provably complete. The completeness proofs are given in the Appendix,
which also contains a sketch of a compactness proof for one of the predicate
logics.
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1 Truth and validity in extensional and intensional languages By an exten-
sional language we mean one containing (at most) the usual quantifiers and
truth-functional connectives, identity, individual constants and variables, sen-
tence letters, and n-ary predicate letters (n = 1). The notion of an interpreta-
tion (a nonempty set plus an assignment of truth values to sentence letters,
objects from the set to individual constants, and n-ary relations on the set to
n-ary predicate letters) is taken as basic and understood, as are the usual
definitions of satisfaction and truth under an interpretation. Interpretations of
extensional languages will sometimes be called E-interpretations in order to dis-
tinguish them from interpretations of intensional languages to be defined later.
The assignments made by an E-interpretation to the nonlogical symbols of an
extensional language will be called the extensions of these symbols under the E-
interpretation in question. An extensional language L will often have an intended
interpretation which provides the intended extensions of its nonlogical symbols.
Given all of these notions, we can say that a sentence ¢ of an extensional lan-
guage L is true iff ® is true under the intended interpretation of L, and that &
is valid or logically true iff it is true under all interpretations of L. A valid sen-
tence is thus one that comes out true no matter what nonempty set is taken as
the range of its variables and no matter what extensions based on this set are
assigned to its nonlogical symbols.

The aim of this definition of validity is clearly to capture the intuitive
notion of truth under all possible circumstances (or in all possible worlds) for
every extensional meaning assignment to nonlogical terms. The definition as
stated may actually go somewhat beyond this goal, however, for it allows any
nonempty set as the domain of an E-interpretation. In so doing, it bypasses such
questions as “Are there possible worlds containing only a finite number of
individuals?” If mathematics is necessary (i.e., true in all possible worlds) and
if mathematical objects are treated realistically, the answer to this question will
be “No”. But the definition of validity just given is designed to be as metaphysi-
cally accommodating as possible. It allows as domains of interpretations the
most austere and bizarre worlds that anyone might think possible. Thus, if a sen-
tence is valid, it is surely true under all meaning assignments in all possible
worlds, but, depending on one’s theory of possible worlds, there might be sen-
tences true under all meaning assignments in all possible worlds that are not
valid. There are two reasons why this apparent defect in the definition of validity
is not as serious as it may seem. First, by countenancing the domain of each
interpretation as the formal counterpart of a possible world it avoids intractable
disputes about the nature and number of possible worlds and thereby yields a
notion of validity that is precise and capable of being investigated by rigorous
methods. Second, it could be argued that our intuitive notion of validity encom-
passes not just truth under all meaning assignments in all possible worlds, but
truth when interpreted on or applied to any problem or subject matter as well.
If this is correct, then the fact that the definition of validity refers to all interpre-
tations is a virtue. For any interpretation can be thought of as the domain of
a problem or subject matter along with a meaning assignment connecting the
objects involved to the language. Actually we don’t consider the apparent defect
a defect at all, for we are willing to construe possible worlds broadly enough to
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include the domain of any subject matter. On this broad construal, each
nonempty set of objects constitutes a possible world.

The foregoing is presented as a standard against which to measure defini-
tions of truth and validity for intensional languages. By an intensional language
we mean one that contains, in addition to the resources of extensional languages,
sentential connectives for necessity, obligation, counterfactual conditionals, or
other such notions. Pressed to be more precise about what we mean by an inten-
sional language, we would say that it is one that contains intensional contexts,
where an intensional context is one within which all and only expressions having
the same intension can be exchanged salva veritate. Formal accounts of truth
and validity for intensional languages often define the intension of an expres-
sion as a function that assigns to each possible world w the extension of that
expression at w. On this account a proposition is a function from worlds to truth
values, an n-ary relation-in-intension is a function from worlds to sets of n-tuples
of individuals, an individual concept is a function from worlds to individuals.
These notions can be made precise using familiar model-theoretic methods due
to Kripke and others. Thus if L is a language containing » non-truth-functional
connectives, a model structure for L is a sequence (G,K,R;,...,R,, V), where
K is a nonempty class (called an index class), G € K, the R; are relations on K
satisfying certain formal constraints (e.g., reflexivity, symmetry, transitivity),
and ¥ is a function such that for each index w € K, ¥(w) is a nonempty set. A
model is then defined as an ordered pair (v, ), where 72 is a model structure
and v is a valuation function that makes an assignment to each sentence and
predicate letter of L at each index (i.e., each member of the index class) of 7.
These assignments then lead, via familiar recursion rules, to a truth value for
each sentence of L at each index of 7.

This theory of models provides us with a precise way of defining intensions
as functions from possible worlds to extensions, but it also allows much more.
For although it will be convenient to think of the index class K of any model
structure as a class of possible worlds, not all such classes really contain possible
worlds, even on our broad construal of that notion. And obviously only one
such class is the class of all possible worlds. Thus to give a formal account of
intensions as functions on possible worlds it would seem we should restrict our
attention to just one model structure, call it 8, in which K is the class of all
possible worlds, G is the actual world, y(w) is the set of all the things that exist
in w, for each w € K, and each R; is a relation between possible worlds (a world
accessibility relation) that forms the basis of a recursion rule for one of the
non-truth-functional connectives of L. Intensions can now be defined as
functions from the indices of $ to extensions definable using 8. Each valuation
v of a model (v, 8) thus assigns an intension to each sentence of L. Many
different models can of course be defined on 8, and there may be one model on
8, call it (m, 8), that provides what we would ordinarily call the intension (or
perhaps the intended intension) of each nonlogical symbol of L. For example
if L contains the predicate ‘is red’, then m will assign to this predicate at each
world w the set of things that are red in w. Thus the intension, or meaning, of
‘is red’ is on this analysis a function whose value for a world w is the set of
things red in w. We call $ the intended model structure and m the intended
meaning assignment for L.
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Words from natural languages, such as ‘red’, are not usually included in
formal languages, so there is usually no standard intended intension for the
nonlogical symbols of such languages. The interest in an intended meaning
assignment is thus usually transient; a user exploits a specific meaning assign-
ment only for some immediate purpose. In contrast, the intended model struc-
ture 8 is eminent among model structures for intensional languages, for it is
central to the theory of meaning of such languages.' This centrality is reflected
in three ways. First $ provides the basis for valuation functions that are genuine
meaning assignments (not just functions defined on some arbitrarily selected
index set) and which therefore determine an extension for each nonlogical
symbol at each possible world. Second, since the actual world is an index of 8,
each meaning assignment defined on 8 determines what we might call the exten-
sion simpliciter —the extension at the actual world — of each nonlogical symbol.
Finally, the accessibility relations of S fix the meanings of the intensional con-
nectives and prevent them from varying from model to model.?

If L is an intensional language, we define an interpretation of L (also called
an I-interpretation) as an ordered pair (v, w) consisting of a valuation v defined
on 8 and a world w from the index class K of 8. An I-interpretation is similar
to an E-interpretation in that it provides a set that functions as a domain of
quantification and an assignment to each nonlogical symbol of the language.
For the I-interpretation consisting of the valuation v and the world w the set in
question is y(w), and the value assigned to a nonlogical symbol is the intension
of that symbol under v. An I-interpretation also provides the basis for an assign-
ment of truth values to sentences of L. For (v, w) these will be the truth values
assigned to sentences at w under v. We shall call (m,G) the intended I-
interpretation of L, and say that a sentence of L is frue iff it is true under
(m, G). This definition of truth is intuitively correct, since m gives us the
intended intensions of the expressions of L, and truth is just truth at the actual
world. It is also exactly analogous to the definition of truth for extensional
languages given above: truth under the intended interpretation. This account of
truth, or something very much like it, is the basis of several contemporary
attempts to explain certain non-truth-functional contexts.?

It is useful to frame definitions of semantical terms for intensional lan-
guages in terms of I-interpretations because this facilitates comparison with defi-
nitions of the corresponding terms for extensional languages. Thus we have
already seen that truth turns out to be truth under the intended interpretation
for both extensional and intensional languages. Another term definable using
Linterpretations (although no parallel term is definable for extensional languages
using E-interpretations) is analyticity. Analytic sentences have been thought of
as those whose truth depends solely on the meanings of the words they contain.
If we identify the meanings of nonlogical words with intensions, then we can
plausibly define the analytic sentences of L as those that are true under every
Linterpretation containing the valuation m. Thus an analytic sentence is one
whose truth depends on the intensions of the expressions it contains (hence the
restriction to m), but not on any nonlinguistic fact (hence the consideration of
all possible worlds).

We can also use I-interpretations to give plausible definitions of logical
truth and validity. A sentence ¢ of L is logically true iff ¢ is true under every



VALIDITY IN INTENSIONAL LANGUAGES 13

I-interpretation. Logical truth is thus equivalent to truth at every world under
every valuation definable on the model structure 8. Since consideration of all
valuations definable on 8 exhausts the ways in which intensions can be assigned
to nonlogical symbols of L, logical truth amounts to truth in all possible worlds
under all assignments of intensions. Our account of validity is now simply to
identify it with logical truth: a sentence ¢ of L is valid iff ¢ is logically true. This
account of validity seems plausible in its own right, and thinking of it in terms
of I-interpretations shows that it is analogous to the definition of validity for
extensional languages. The latter point is worth emphasizing. In determining
validity for both extensional and intensional languages we consider the result of
taking different sets of individuals as the range of the quantifiers (in the inten-
sional case these are the different sets of individuals existing in the various pos-
sible worlds) and then making different assignments to the nonlogical symbols
relative to this choice of a domain of quantification (in the intensional case these
are the different assignments of intensions). When a sentence comes out true
under all such assignments relative to all such domains, we consider it valid.

We believe that the semantical notions we have defined for intensional lan-
guages are natural, plausible, and interesting. There is, however, a potentially
unsatisfactory feature of these definitions analogous to that mentioned earlier
in our discussion of extensional languages. This is the fact that they all refer to
the model structure 8§ whose index set K is the set of all possible worlds. Since
the nature and number of possible worlds are matters of dispute and puzzlement,
formal work in the semantics of intensional languages may seem all but impos-
sible if 8 and K are understood in this way. We think the proper response to this
worry is the one we mentioned earlier in connection with extensional languages:
some idealization of the notion of a possible world is needed if semantics is to
yield any interesting results, and that notion should be construed broadly rather
than narrowly. Using this general approach we should seek to determine what
formal contraints 8 and K must satisfy in order for interesting theorems to hold,
and then ask ourselves if these contraints count for or against a particular
metaphysical view of possible worlds. There are many such views, and we now
offer sketches of three of them. What is most noteworthy about these views,
from our point of view, is that as long as they satisfy certain minimal con-
straints, they are all compatible with the formal results presented in Section 3.

One way of understanding possible worlds is what we previously called the
broad construal. On this view any nonempty set of objects constitutes a possible
world, and so we could take K to be the class of all nonempty sets and ¢(w) to
be w, for each w € K. This would be a nominalistic view of possible worlds. A
world is fully individuated only by the totality of objects which exist in it.
Objects are primitive on this view. They cannot be individuated in terms of
anything more primitive.

Alternatively, we may want to assign the same set to many different pos-
sible worlds so as to reflect the intuitive idea that exactly the same individuals
may exist in more than one world. On this approach K and y can’t be specified
as succinctly as on the former. K would have to be some suitably large index
class and y a not entirely trivial function defined on K which has the class of
all nonempty sets as its range. This alternative accommodates a pluralistic realist
metaphysics. One version of this view is that a world is fully individuated by the
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totality of its objects and the properties and relations they exhibit there. Another
“more metaphysical” version holds that two different worlds may contain
precisely the same objects exhibiting precisely the same properties and relations.
In both versions objects, properties, and relations are primitives; they cannot
be individuated in terms of anything more primitive. In the second version,
possible worlds are primitive as well. )

A third alternative for K and ¢ arises from a monistic realist metaphysics.
This is the view that objects are only fully individuated by the totality of
properties and relations they exhibit, and a world is fully individuated by the
totality of its objects. Only the properties and relations are primitive on this
view. If two worlds have an object in common, then they must have all objects
in common, since the object they share must exhibit precisely the same properties
and relations to the other objects. Cross-world identification of objects is purely
conceptual on this view. An object in one world may have one or more
counterparts in another world, but no object inhabits more than one world.

Although the metaphysical views motivating these three approaches differ
significantly from one another, the difference between the approaches themselves
is insignificant for some interesting results in logic, assuming that on each
approach K is at least denumerable, and that for each nonzero countable
cardinal 7, there are at least denumerably many w € K such that the cardinality
of Y(w) is 7. (These assumptions are used in the completeness proofs given in
the Appendix. Other assumptions needed only for the system PAN are given in
Section 3.) Cardinality considerations such as these have been sufficient for
important results in semantical investigations of extensional languages. Section
3 and the Appendix show that the present assumptions yield interesting results
for intensional languages.

The notion of validity defined above, when made precise by specifying K
and v in the way just discussed, we call validity,. It is the main object of study
in Section 3. While we find validity, a natural, interesting, and, as Section 3 will
show, fruitful notion, it does have one curious feature: it is quite different from
the definition of validity for intensional languages commonly found in the
literature. That definition is that a sentence ¢ of an intensional language L is
valid if and only if ¢ is true at every index under every model on every model
structure for L. We call this notion validity,. In the next section we discuss
some relations between validity; and validity,, and inquire about the appropri-
ateness of validity,.

2 Validity; and validity, If K and ¢ of the single model structure § in-
volved in validity, can be specified in a way that makes K plausibly represent
the set of all possible worlds, then validity, is far more intuitively satisfying
than validity,. We think our comments on truth, analyticity, logical truth, and
validity, in the previous section make this clear. What then is the reason for the
widespread interest in validity,? We seriously doubt that it is due to others hav-
ing failed in their attempts to give precise and plausible specifications of
validity,, since we know of virtually no one other than Carnap and Kanger who
has even tried.# In Section 3 we report on our efforts in this direction and show
that some interesting formal results about validity,, including recursive axiom-
atizability, are provable for certain intensional languages. In this section, how-
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ever, we consider several reasons that might be given for studying validity, and
find most of them seriously deficient.’

The first thing to notice is that validity, is in an obvious way a generali-
zation of validity,, for validity, involves not only the model structure § but
every model structure that has some of the same formal properties as 8. (The
formal properties in question are of course the conditions on the accessibility
relations R; that must be met by each model structure of a language L.) But the
mere fact that validity, generalizes in this way on a plausible and interesting
notion of validity does not make it plausible or interesting. How might it be
thought to? Are we to think of the model structures other than 8§ that are
involved in the definition of validity, as representing ways that possible worlds
might have been? Surely this is unsatisfactory. The whole point of invoking
possible worlds in the first place was to provide a foundation for our notion of
possibility. Any attempt to analyze this notion in terms of possible sets of
possible worlds would be gratuitous.

A better way of understanding validity, may be to think of the model
structures other than 8 not as shadowy representatives of the ways possible
worlds might have been, but rather as providing a variety of different kinds of
interpretations of the language in question. This approach to validity,, which
we call the structural approach, may be what Thomason has in mind when he
says

I should mention at this point that I am conceiving of the notion of a
model structure (and hence of a possible world), as used in the semantics
of modal logic, as an abstract or structural concept having a number of
kinds of realizations. . .. For instance, possible worlds may be interpreted
temporally, metaphysically, linguistically (as “state descriptions”) or
probabilistically (as sample points in a probability space).6

On the structural approach, the mere fact that two model structures share
certain formal features (e.g., that a certain relation between possible worlds
and another relation between moments of time are both reflexive and transi-
tive) is seen as sufficient for using both in determining whether a sentence is
valid,. A valid, sentence is thus one which expresses a truth of logic when its
intensional connectives are read in a variety of different ways. The trouble
with validity,, when so understood, is that it can’t be expected to give us a
complete account of the logic of any of these readings. For instance, if we are
interested in alethic modality, we cannot take the fact that a sentence is
invalid, to indicate that it fails to be a truth of logic when its intensional con-
nectives are read as alethic modalities. It may only indicate that it fails of
logical truth when its intensional connectives are given temporal readings.
Thus on the structural approach, validity, can be thought of as giving a com-
plete account only of what is common to the logic of a great many intensional
connectives, most of which are never even specified.

Once it becomes clear that the structural approach leads to this curious
interpretation of intensional connectives, it loses much of its interest. For
surely we want a model-theoretic semantics to give us, for each operator in
the language, a specific reading in which we are interested. We want if to give
us complete accounts of both truth and validity for the language, where each
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operator is understood in a specific, fixed way. The structural approach does
not do this. If someone nevertheless insists that the structural approach gives
an adequate justification of validity,, we can only point out that he or she
considers it adequate to treat some operators of a language differently than
others. For it is only the intensional connectives, not the truth-functional con-
nectives or quantifiers, that must on this approach be thought of as embody-
ing the common structural features of several different connectives.’

Having mentioned temporal locutions in our discussion of the structural
approach to validity,, it seems appropriate to say something about tense
logics at this point. Expressions like “It is and always will be the case that” are
similar to intensional contexts, and the standard semantics for tense logic is
similar to that for intensional logic, but based on an index set containing
moments of time rather than possible worlds. This is quite appropriate if the
only nonextensional connectives in the language are temporal ones. What we
are interested in is the treatment of validity usually found in this kind of
semantics, a treatment quite similar to validity,. We think this treatment may
be justified if a certain view about the nature of time is correct, even though
we see no general justification of validity, for intensional languages. Con-
sider two alternatives. If we believe that the logic of temporal locutions is
such that the moments of time must be ordered as, say, the real numbers
taken in order of magnitude, then it will be proper to employ in the semantics
of tensed languages only model structures that have the real numbers as their
index sets. Indeed, if it were not for the fact that we want to allow that differ-
ent individuals might exist at a given moment of time, we could restrict atten-
tion to a single model structure. If on the other hand we believe that logic
dictates only that the moments of time are, say, simply ordered but that the
structure of time is otherwise contingent, then the semantics must contain
model structures with index sets having many different structures.® If we
adopt the former approach to tense logic we are claiming that there is only
one possible structure of time, but if we adopt the latter approach we are
allowing that time may have any one of a large class of structures. There are
rough but obvious similarities between validity, and the former approach,
and between validity, and the latter. And the latter approach has some intui-
tive plausibility in tense logic, for it makes sense to say that although time in
fact has a certain structure, it might have had any of a number of other struc-
tures. Yet the analogous statement about possible worlds —that the structure
of possible worlds might have been different than it is—does not make sense.
The difficulties in finding any way of making sense of validity, are persistent,
and the widespread interest in validity, remains puzzling.

Perhaps the most promising way of justifying that interest (although it
may not explain it historically) is to be found in recent work in pragmatics.
The basic idea is that the proposition expressed by a sentence depends on the
context in which the sentence is uttered. Thus Stalnaker [24], for example,
takes what he calls an interpreted sentence to be a function from contexts to
propositions, where a proposition is, as usual, a function from possible
worlds to truth values. And he believes that not only sentences containing
demonstratives and indexicals, but also those containing modal expressions
(which are, of course, intensional sentences) should be dealt with in this way.
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When you say “We shall overcome”, I need to know who you are, and for
whom you are speaking. If you say “that is a great painting”, I need to
know what you are looking at, or pointing to, or perhaps what you
referred to in your previous utterance. Modal terms also are notoriously
dependent on context for their interpretation. For a sentence using can,
may, might, must or ought, to determine a proposition unambiguously, a
domain of ‘all possible worlds’ must be specified or intended. It need not
be all conceivable worlds in any absolute sense, if there is such a sense.
Sentences involving modals are usually to be construed relative to all possi-
ble worlds consistent with the speaker’s knowledge, or with some set of
presuppositions, or with what is morally right, or legally right, or normal,
or what is within someone’s power. Unless the relevant domain of possible
worlds is clear in the context, the proposition expressed is undetermined.
[24], pp. 384-385

If Stalnaker is right in thinking that the possible worlds that figure in the
semantical analysis of at least some intensional languages are best thought of
as relative to contexts, then validity, becomes a much more plausible notion.
Each of the different model structures used in the definition of validity, can
now be thought of as representing the worlds possible relative to some con-
text. The formal semantical analysis expressed in the notion of validity, takes
the form it does because of the informal pragmatic base on which it rests. Of
course there is a certain idealization involved here. Since any nonempty class
K can serve as the index class of a model structure, acceptance of validity,
tacitly endorses the idea that for any (finite or infinite) cardinal A4, there is a
context relative to which there are just A possible worlds. But this is not a
serious objection. The notion of a context is too vague to allow us to choose
the index classes of model structures in any other way. This idealization is of
a piece with the one we noted in Section 1 that allowed any nonempty set to
be the domain of an E-interpretation. Without such idealizations, formal
work in semantics would be all but impossible.

We thus seem to have found a way of justifying the interest in validity,
for intensional languages after all, at least if the contention that intensional
expressions are context-relative is correct. The main difficulty with this
justification is that when logicians attempt to formalize the pragmatic notions
on which it is based, what they come up with does not always fit the justifica-
tion. Kaplan’s “On the logic of demonstratives” [11], for example, incor-
porates contexts as well as possible worlds into model structures, and it treats
propositions as the values of functions whose arguments are contexts. But the
set of possible worlds dealt with in a structure is fixed for the structure; it
does not vary with contexts. Furthermore, different structures may contain
different sets of contexts, and validity is defined as truth at every context in
every structure. This latter move makes it look as though contexts themselves
are relative to something, and that this is why many different sets of them
(each represented by a different structure) are used in the definition of
validity. But to what are contexts relative, we may ask, and why? These ques-
tions are analogous to the ones about possible worlds and validity, with
which we began.
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In spite of these difficulties with formal work in pragmatics, we admit
that the approach advocated in the quotation from Stalnaker does provide a
coherent and not implausible way of understanding validity,. We seriously
doubt, however, that much of the formal work done on validity, in the last
twenty-five years has been motivated by this way of understanding things,
and we suspect that many of the logicians who have done this work would not
even accept it as a rationale for their work. What is needed is greater aware-
ness on the part of intensional logicians of philosophical questions that arise
about the most basic concepts with which they deal. Much more philosophical
discussion would be required before the Stalnaker approach could be confi-
dently adopted as the rationale for validity,.

Before presenting our own alternative to validity, in Section 3, we want
to consider one more attempt to invest this notion with interest. Perhaps we
have made a mistake in concentrating so much of our attention on validity,.
For if validity, could be shown to coincide with validity;, then it could be
seen as a mere technical device for studying an intrinsically interesting notion
of validity. Indeed, this may be possible for some intensional languages—
those that can be shown to have universal model structures. A universal
model structure for a language is one such that a sentence is valid under this
model structure (i.e., true at all indices under all models on this structure) iff
it is valid,. Universal model structures exist for the most common systems of
propositional modal logic as well as for some quantified modal systems (e.g.,
the systems 7+ BF, S4 + BF, LPC + S5 of Hughes and Cresswell [5], Chap-
ters 8-10, all of which contain the Barcan formula, as well as LPC + T and
LPC + S4, which do not). If the universal model structure of a system can be
plausibly identified with the model structure 8 used in the definition of
validity,, then, for the language in question, validity, and validity, coincide.
Unfortunately there is an important class of intensional languages that have
no universal model structures. Consider any intensional language L contain-
ing a connective for S5 logical necessity (i.e., a connective L such that L¢ is
true at any index under a model iff ¢ is true at every index under this model).
It is easy to show that the sentences

@ ~LEx)(y)y=x
and
b) ~LExX)@y)(x#y& (2)(z=xvz=Y))

are not valid, in L. For it is always possible to specify a model structure of L
in which each domain associated with an index contains the same finite num-
ber of individuals. If that number is one, this model structure will invalidate
(a); if it is two, it will invalidate (b). And it is clear that the only way a model
structure of L can invalidate sentences like (a) and (b) is by associating
domains of the same cardinality with each index. But then no single model
structure can invalidate both (a) and (b). Hence there is no universal model
structure for validity, in L. So no matter how we specify 8 for L, validity,
will not coincide with validity,.

Of course it may be possible to show that some intensional languages do



VALIDITY IN INTENSIONAL LANGUAGES 19

have universal model structures that can plausibly be identified with §, but
the burden of proof is on the advocate of valildity,. In any event, we think
we have said enough to cast serious doubt on the wisdom of treating validity,
as the standard notion of validity for intensional languages. In the next sec-
tion we provide an alternative approach.

3 Formal treatment of validity, We have criticized the way semantics for
intentional languages is usually developed and interpreted, and we have sug-
gested a more plausible line. In particular, we have suggested that the interest-
ing notion of validity is validity, because it is defined to coincide with logical
truth on the intended model structure (i.e., truth at all possible worlds under
all meaning assignments to terms). Now we will discuss, in rapid order,
several semantical systems for intensional languages which exemplify our pre-
ferred approach. Among these will be propositional and quantified systems
for a single modality interpreted, alternatively, as logical necessity, analytic
necessity, and nomic (e.g., physical) necessity. The treatment of “contingent
necessity” in the system for nomic necessity suggests a reason for continued
interest in validity,.

3.1 PL and QL The language of PL consists of a standard language for
propositional logic and a modal operator ‘L’. Sentences of PL are defined
according to the usual recursive formation rules. Metalinguistic variables ‘a’,
‘B, ‘y’, etc. stand for sentences of PL, and ‘(a« &B)’, ‘~a’, and ‘Lo’ stand
for the conjunction, negation, and logical necessitation of sentences of PL.
The semantics of PL is defined on the intended model structure (G, K, ) dis-
cussed in Section 1. Meaning assignments to sentence letters proceed as
follows: for each we K and v a valuation function for PL, and for each
proposition letter a of PL, v(a, w) € {¢,f}. Truth of a sentence under a
meaning assignment at a world is defined using the usual recursion clauses.
For each w € K and valuation function v:

(1) for each proposition letter o, T(c, v, w) iff v(a, w) =1¢

(2) for each sentence o of PL, T(~«a, v, w) iff not T(«, v, w)

(3) for each sentence o and 3 of PL, T((x & B), v, w) iff T(«,v,w) and
(B, v,w)

(4) for each sentence o of PL, T(La, v, w) iff vo'vw'T(a,v’,w’).

Analytic truth of a sentence under a meaning assignment v is defined as truth
under that assignment at all worlds: AT («, v) iff vweE K T(«, v, w). Logical
truth is defined as analytic truth under all meaning assignments: L7 («) iff
VvAT (o, v). The valid sentences are just the logically true ones: Val,(«) iff
LT(x).

In PL the notion of logical truth is expressed in the object language by
the modal operator L, since for any given v, w, and « the following holds:
T(Lo, v, w) iff LT(«). All theorems of propositional S5 are valid sentences of
PL. The following axiom schemata and rules of inference, which characterize
S5, are sound for PL, where (a D3) and Mo abbreviate ~(a & ~8) and
~L~a, respectively:
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Al If o is an instance of a tautology (of propositional logic), then +a.
A2 If —a and —a D B, then 4.

A3 If ~a, then +—Lo.

Ad LoD a.

AS FL(aDB)D (LaDLpB).

A6 Mo D LMa.

But these axioms are not complete. For example, any sentence of form ‘Mo’
where « is a proposition letter is valid in PL (i.e., for any such « there is some
v and w for which v(a, w) =¢, so VO'VWT(~L~a,v’,w’')). Still, member-
ship in the set of valid sentences of PL is decidable. For any sentence « of PL
there is an effective procedure for producing a logically equivalent sentence in
modal conjunctive normal form, i.e., a sentence which is a conjunction of
sentences of the form (Layv ... v La,v MBv~y), where the «;, 8, and y are
nonmodal sentences of propositional logic. This modal conjunctive normal
form theorem holds because the S5 axioms are sound. So « is (decidably)
valid just in case each conjunct is (decidably) valid. And a conjunct is (decid-
ably) valid just in case some sentence of form (c;Vv @) is a tautology, or
(y v B) is a tautology.’

QL is just PL extended to first-order quantifier logic with identity. Here
‘a’, ‘B’, ‘4’, etc. represent (possibly open) well-formed formulas; ‘x’, ‘y’, ‘x;’,
‘xy’, etc. represent free variables; ‘=’ represents identity; and ‘(x)’, ‘(»)’,
etc. represent universal quantifiers. The semantics is again defined on the
intended model structure (G, K, ). The meaning assignments are the valua-
tions v such that: for each proposition letter « and w € K, v(a, w) € {t, f};
for each n-ary predicate letter o and w € K, v(a, w) € ¢(w)". Note that for
QL a meaning assignment to a predicate letter o always specifies the extension
of o at a world as a collection of things in that world. Assignments of things
to free variables are functions s such that for every x and weK,
s(x, w) € y(w). These functions are like meaning assignments in that what
they assign to a symbol at a world is always something from that world.

Satisfaction is a quarternary relation such that for each v, s, and w € K:

1) sat (x=y,v,s,w) iff s(x, w) =s(y, w)

(2) for a a proposition letter, sat (o, v, s, w) iff v(a, w) =t

(3) for a an n-ary predicate letter, saf (ax;...X,,v,s, w) iff {(s(x;, w),...,
s(xn, w)) € v(a, w)

@) sat (~a,v,s,w) iff not sat (o, v, s, W)

B) sat ((x&B),v,s,w) iff sat (a, v, s, w) and sat (B, v, s, w)

©6) sat ((x)a, v, s, w) iff vs'(Vy(s'(y, w) = s(y, w) or y is x) only if
sat (a,v,8",w))

(7 sat (La,v,s,w) iff vo'vs'Vvw’ sat (o, v',s’, w’).

Metalinguistic predicates for truth at a world under a meaning assignment,
analytic truth under a meaning assignment, and logical truth are defined as
follows:

T(a, v, w) iff Vs sat (o, v, 5, W)
AT(a,v) iff vwT(a, v, w)
LT(x) iff VAT (, v).
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Validity is again defined to coincide with logical truth: Val,(«) iff LT(x).
Again, the notion of logical truth is expressed in the object language by ‘L’,
since for any given v, w, «, and s, we have sat (Lo, v, s, w) iff LT(a).

The axiom schemata and inference rules of propositional S5, together
with the following axiom schemata and rules for predicate logic with identity,
an anti-essentialist axiom, and an infinite list of logical possibility axioms, are
sound in QL. (Here D, =, v, 3, and M are the obvious abbreviations).

A7 If —a, then —(X)a.

A8 ~(x)ax D ay, where ay is the result of the substitution of y for just
those occurrences of x in ax which are free and outside the scope of modal
operators, and y is free in ay wherever x is free in ax.

A9 F(x)(aDB) D (oD (x)B), provided every occurrence of x in « is
bound or within the scope of a modal operator.

Al10 x=Xx.

All F(x=yD (ax=ay)), where ay is the result of the substitution of y
Sfor just those occurrences of x in ax which are free and outside the scope of
modal operators, and y is free in ay wherever x is free in ax.

Al12 —(La=L(x)a).

LP, =MC,, where Cy is (3x1)(x2)X; = X;.

LPz FMCz, where C2 is (Elxl)(axz)(~x1 =X & (X3)(X3 =X VX3 = Xz)).

LP, +MC,,, where C,, says, in the obvious way, that there are exactly n
things.

These axioms are not complete for QL. But the theorems of this system
form a subset of the valid sentences of QL which is closed under uniform sub-
stitution of open formulas for predicate letters (where the substituted formula
contains the same variables free and outside the scope of modal operators as
are free in the predicate letter substituted for).!'® A similar relation holds
between the theorems of S5 and the valid sentences of PL. As with PL, sen-
tences of the form Ma, for an atomic sentence «, are also valid.

Not only is this axiomatic system not complete for QL, QL is not recur-
sively axiomatizable. If it were, then first-order predicate logic would be
decidable. For, from a recursive axiomatization of QL one could generate an
effective enumeration of its valid sentences. And in such an enumeration
either o or M ~ a would eventually occur, for any sentence o of first-order
logic. This would yield a decision procedure for first-order logic.

3.2 PA and QA PA and QA are propositional and first-order systems for
analyticity. Their syntax is that of PL and of QL with L replaced by A and M
replaced by U. The semantics of PA is the same as that of PL but with
semantical rule (4) replaced by the following:

(4’) For each sentence o of PA, T(Aa, v, w) iff vw' T(a, v, w').
The semantics of QA4 copies that of QL except for rule (7):

(7)) Sat (Aa,v,s,w) iff vw'vs’sat (o, v,8', w’).



22 WILLIAM H. HANSON and JAMES HAWTHORNE

In the semantics of PA(QA) truth at a world under a meaning assignment,
analytic truth under a meaning assignment, and logical truth are all defined as
for PL(QL). A is an object language operator for analyticity in both systems:
for any «, T(Aa, v, w) iff AT(a, V).

In the L-systems sentences of form Ma, for atomic sentence «, are valid
because:

LT(Ma) iff vo'vw'T(Ma, v’, w’)
iff vo'vw’avawT («, v, w)
iff 303IwT (o, v, w).

But, for o atomic, sentences of form Uqx are never valid in the A-systems.
There is some v which assigns « the meaning of a contradiction (i.e., AT(a =
(B& ~B),v)). For this v, not awT(«, v, w). So not LT(U«), since

LT(Ua) iff vovyw'T(Ua, v, w")
iff vovyw’awT(a, v, w)
iff voawT(«, v, w).

The S5 axioms and inference rules for PL with L and M replaced by A
and U, respectively, are sound and complete (see the Appendix) for PA. And
since theoremhood for S5 is decidable, validity for PA is decidable. The
axioms and inference rules for QL with the substitution of A and U for L and
M are sound and complete (see the Appendix) for QA. QA is a quantified S5
system, but Axiom 12 and the AP-axioms (which copy the LP axioms) are
nonstandard for such systems. The reference to free variables in the scope of
modal operators in Axioms 8, 9, and 11 is also nonstandard. Axiom 11 makes
QA a contingent identity system, and Axiom 12 is an anti-essentialist axiom.
The AP axioms assert the analytic possibility that there are precisely n
objects, for each natural number n greater than zero. They are valid for QA
because there is a finite nonempty domain of each cardinality associated
with some world in the intended model structure (G, K, ¢). This feature of
QA also ensures the validity of all sentences of form U((x)a v (x)~a).!!
These sentences can be derived from (Axiom AP;) together with the theorem
(@x)(x2)x=x; D ((x)a v (x)~a)). Indeed any sentence with a logical form
that guarantees its truth at a world solely because of the size of the world’s
domain will be analytically possible.

Axiom 12 indicates the reason Axioms 8, 9, and 11 treat free variables in
the scope of a modal operator as though they are bound. The analyticity
operators effectively bind all free variables within their scope. (Ua = U(3x)a
is also derivable.) Semantically this seems plausible. The soundness of Axiom
12 flows from semantical rule (7°):

sat (Aa, v, s, w) iff vw'vs’ sat (o, v,5", w) .

This rule is a plausible adaptation to the theory of analyticity of rule 7 for

QL:
sat (Lo, v, s, w) iff vo'vw'vs’ sat (a, v, s, w’') .

Rule (7) is right. The logical truth of an n-ary open sentence applied to an
n-tuple of objects should not depend on the meanings of predicates, or the
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nature of the world, or the natures of the particular objects involved. Logical
truth concerns only logical form. Analytic truth concerns only logical form
and the meanings of predicates. Thus, an open sentence is analytic of an
object if and only if it is analytic of every object in every possible world.

In Section 1 we described several views on the individuation of worlds and
their objects. On the monistic realist view there is no distinguished cross-world
identification of objects. Objects are only individuated by the totality of
properties and relations in which they participate in a world. Any linking of
objects across worlds is merely conceptual. Cross world individuals are to be
represented by individual concepts, and this can be done in terms of meaning
assignments to predicate terms. An individual concept may be defined in the
object language as follows: for monadic predicate term F, A(x)(FxD (y)(Fy D
¥y =x)). Semantically, T7(A(x)(FxD (y)(Fy Dy =Xx)),v, w) iff yw'(v(F,w’) =
@ or (3a)(a € Y(w’) and v(F, w’) = {a})). On this view individual concepts
define cross-world individuals. The only legitimate sense in which a cross-world
individual exists is as an individual concept. In the object language one can assert
that the individual exists ((3x)Fx), that it satisfies a predicate, «, analytically
(A(x)(Fx D ax)), and that it is identical to or analytically identical to another
individual ((x)(¥)((Fx& Gy) Dx=y) and A(x)(Y)((Fx& Gy) Dx=yY), re-
spectively). QA suffices for the object language expression of all cogent propo-
sitions involving analyticity and individuals, i.e., all propositions cogent on the
individual concept view of the cross-world identity of individuals.

All other metaphysical views described in Section 1 maintain that the
individuation of objects is world independent. On these views the notion of an
individual concept described above is still legitimate, but some individual con-
cepts will pick out “real individuals” (i.e., they will pick out the same individual
at each world in which it exits, and go uninstantiated at all other worlds). Those
views do not invalidate the notion of analyticity defined in QA. But they do
imply the cogency of another “more essentialist” notion of analyticity:

(7%) sat (A*a,v,s,w) iff vw'vs’ ([Vx free in «, s'(x, w') =s(x, w)] only if
sat (a, 0,8, w')).

The antecedent on the right side of (7*) is needed because the assignments of
individuals to variables, as defined at the beginning of this section, need not pick
out the same object at different worlds for the same variable. (Redefining the
assignments to do so would require patching in an account of how the variable
is treated when the object doesn’t exist at a world. Rule (7*) accomplishes the
same thing.)

Let QA™ be the system obtained by replacing (7) by (7*) in QA. Sen-
tences of the form (A*«a = A*(x)a) are not generally valid in QA*. In par-
ticular, for a monadic predicate letter ‘F’, there is a meaning assignment v
and an individual s(x,w) in Y(w) such that saf(A4*Fx,v,s,w) but not
sat (A*(x)Fx, v,s,w). This can only happen if the individual in question
(call it ‘@’) exhibits F wherever it appears, but not every individual does
this (i.e., vw’ if a € y(w’), then a € v(F, w’), but 3w’ab € y(w’) such that
b & v(F,w’)). Only in cases where individuals like ¢ are not picked out by an
individual concept under a meaning assignment does the expressive power
of QA* differ from that of QA. If a is picked out by v(G, ) (.e., if
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v(G,w’') = {a} for a € y(w’), and v(G, w') = D otherwise) then we can get
the previous effect in QA. For let a satisfy the conditions given in the two
most recent parentheses and let s(x, w) = a. Then saf ((Gx & A(x)(Gx D Fx)),
v, s, w), but sat (~A(x)Fx,v,s, w). So with the aid of individual concepts we
can say in QA that @ has v(F, ) analytically, and we can also say that not
everything does. QA * supercedes QA only in the ability of its object language
to analytically attribute properties to bare, conceptually unrepresented, cross-
world individuated particulars. The logic of QA* may be worthy of a more
thorough investigation, but not here. We don’t know whether it is recursively
axiomatizable.

QA” has one other notable feature not shared by QA4: (x=y D A*x=y)
is valid in QA*, whereas QA is a contingent identity system. Indeed,
(~Ax =y) is valid in QA. But if these features of QA seem implausible there
is QA ™ or an alternative system which lies between QA and QA*. We call it

QA=:

(7=) sat (A =«,v,s,w) iff vw'vs'(vxvy free in ofs’'(x,w’) =s'(y,w’) iff
s(x, w) =s(y, w)] only if sat (o, v,s’, w')).

Rule (7=) requires its notion of analyticity to respect only the identifications
of values of free variables, not their cross-world individuality.

QA< is not a contingent identity system; (x =y D A™x =) is valid. But
QAT is reducible to QA in the sense that for every sentence of QA~ there is an
equivalent sentence of QA. To see this first note that every open sentence A~ «
with free variables x; . . .x, of QA~ is logically equivalent to a sentence of form
Viri & A=(x1) ... (x,)(7w; D o)), where each ; is a distinct way of identifying
and distinguishing values of all free variables of « (e.g., for some i, 7; is (x; =
XNH&X EX3&Xx =x4&. .. &x3=x5&...&X,_1 # X,)) and ‘V} represents the
disjunction for each i of the formulas (7; & A~ (x;) ... (x,;)(m; D «)). For non-
modal @ it is easily shown that sat ((m; & A~ (x) ... (x,)(7; D B)), v,s, w) in
QA= iff sat ((m; & A(xy) ... (x,)(m; D B)),v,s,w) in QA. This establishes the
link between QA= and QA, for any formula of QA~ successively replaces
subformulas A=« with Vi(m; & A(x1) ... (x,)(7w; D a)) from the inside out. A
straightforward mathematical induction on the depth of nested modal formulas
of QA= establishes that the formula resulting from the operation is satisfied
by (v, s, w) in QA just in case its twin in QA ~ is satisfied by this same sequence
in QA~.

The sematical predicates for analytic truth (A7) and logical truth (LT)
in QA4 may be extended in a straightforward manner to predicates for analytic
consequence (AC) and logical consequence (LC): for any (possibly infinite)
set of QA sentences I' and any QA sentence «,

AC(T, a, v) iff vsvw(vB € T sat (B, v, s, w) only if sat (o, v, s, w))
and
LC(T, ) iff voAC(T, o, v) .

Under a given meaning assignment v, the analytic consequences of an
infinite QA theory T' may exceed the analytic consequences of each of I'’s
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finite parts. For proposition letter « let v(a, w) = ¢ just in case w contains an
infinite number of things (i.e., Y¥(w) is not finite). Let ' be the infinite set
{@x)@3y) ~y=x, Ax)3AY)(32)(~x=y& ~x=2& ~y=12),...} (where the
i™ sentence in our specification of T says that there are at least i + 1 distinct
things). Then AC(T, o, v) but for each finite A< T, not AC(A, @, v). So
analytic consequence is not compact for some meaning assignments.

Logical consequence is compact for QA. That is, VI'va in Q4 LC(T, «)
iff for some finite A< T, LC(A, o) (see the Appendix). Let 8 be a conjunc-
tion of all sentences in such a A. Then LC(A, «) iff LT(8 D &), so the QA
axioms provide a recursive axiomatization of the general notion of logical
consequence in QA.

3.3 PAN PAN is a system for propositional modal logic containing the
operator A for analytic necessity and the operator N for (some kind of) nomic
necessity. All well-formed sentences of PA are well formed for PAN, and the
result of substituting ‘N’ for some (or all) of the occurrences of ‘4’ in a PA
sentence is a sentence of PAN.

We will construct a semantics for PAN in which N« asserts the physical
necessity of a. An analogous construction would be equally appropriate to any
kind of law-like, or nomic, necessity operator.

A first attempt might be to extend the intended model structure for PA to
include the class of all physically possible worlds. So the intended model struc-
ture becomes (G, H, K, y), where G, K, and ¢ are as before, H is the class of
all physically possible worlds, and G € H. The semantics is that of PA with the
following additional clause in the definition of truth:

(5) T(No, v, w) iff vw’(w’ € H only if T(«, v, w')).

This approach is unsatisfactory. In this system LT (N« D ANa), since for
any meaning assignment v, IwT(Na, v, w) only if AT(Na, v). To illustrate the
difficulty, let « be a proposition letter and v be a meaning assignment such that
vw(v(a, w) =t iff wis a world in which the nonmodal sentences which state
“the laws of Newtonian mechanics” hold true). So N« says, under v, that the
laws of Newtonian mechanics are physically necessary. Then awT(Na, v, w) iff
vw'(w’ € H only if v(a, w') =t). That is, No is true under v at a world just
in case all physically possible worlds satisfy the laws of Newtonian mechanics.
But current physical theory indicates that the actual world, G, is not Newtonidn;
the laws, being false, are certainly not physically necessary. Thus, not
IwT(Na, v, w); so AT(~Na,v). It is analytically true in this system that
Newtonian mechanics is not physically necessary.

Newtonian mechanics is not physically necessary. But surely this is only
contingently true, not analytic. Physical necessity is a “contingent necessity”; it
is not a function of meaning alone. Our first attempt doesn’t capture this fea-
ture. For modal systems generally the contingent element in the truth of a
sentence under a meaning assignment is represented by the relativity of truth to
a possible world. If the truth of a sentence of form N« is to be contingent, then
truth under a meaning assignment must be relativized both to a possible world
and a possible class of physically possible worlds. There is only one class of all
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possible worlds. But many of its subclasses are analytically possible candidates
for the actual class of all physically possible worlds (just as any of its members
is a candidate for the actual world).

The intended model structure for PAN is ({G, H), J, K, ¥) where G is the
actual world, H is the actual class of physically possible worlds, and K and ¢
are as before (¢ plays no role until quantification is introduced). J is a class of
pairs {(w, W) in which w € W and W is a set of worlds physically possible with
respect to each other. Although K continues to be the class of all possible worlds,
we think of J as the class of all possible physical states of affairs, and we define
truth relative to these rather than to possible worlds. (G, H) € J, and we assume
J has the following properties: if (w, W) € J, then vw' (w' € W only if
(w',W)eJ); vwe K 3IW < K such that {(w, W) € J (since what is true in any
world must be physically possible there). Perhaps not every subset of K is a set
of mutually physically possible worlds. But for PAN we will assume that there
is a W of each nonzero countable cardinality such that for some we W,
(w, W) € J. For it ought to be analytically possible that the number of physi-
cally possible worlds may be any finite or denumerable cardinality (or larger,
though we won’t assume so). Finally, we assume that at least denumerably many
of the W such that for some we W, (w, W) € J, are themselves at least
denumerable. (These last two assumptions are used in the completeness proof
for PAN given in the Appendix, although in the presence of the latter assump-
tion the former is not necessary.)

The meaning assignments v are now functions from elements (w, W) of J
and proposition letters into {¢, f} (i.e., v(a, {w, W)) € {¢, f}). Truth is defined
relative to meaning assignments and members of J:

(1) for proposition letter o, T(c, v, {w, W)) iff v(a,{w, W)) =t

(2) for sentence a, T(~a, v, {w, W)) iff not T(c, v, {w, W))

(3) for sentences o and B, T((a&B), v, {w, W)) iff T(a,v,{w, W)) and
T(B,v,{w, W))

@) T(Na, v, {w, W)) iff vw’(w’ € W only if T(«, v, {w’, W)))

) T(Aa, v, {w, W)) iff vw'vW' ((w', W'y € J only if T(a,v,{w’, W'))).

‘U’ will abbreviate analytic possibility, as in P4, and ‘P’ will abbreviate physical
possibility (i.e., Po abbreviates ~N~«).

PAN treats J and its members in much the same way that PA treats K and
its members. For example, truth-simpliciter (relative to a meaning assignment
only) in PA is defined as follows: T(v, «) iff T(«, v, G). So in PA, T(Ux, v)
iff aw(we K and T(«a, v, w)). Truth-simpliciter in PAN is truth (relative
to a meaning assignment) at (G, H):T(«a, v) iff T(«, v,{G, H)). So in PAN,
T(Ua, v iff awaWw(w, Wye J and T(a,v,{w, W))). Thus in a sense the
ordered pairs {w, W) in J represent the “possible worlds” or “possible states of
affairs” in PAN. But these states of affairs have both a nomic component ()
and a non-nomic component (w). It is because of these two components of a
possible physical state of affairs that a sentence (under a meaning assignment)
can be true at a world in K relative to one nomic component and false at the
same world relative to another. Semantical predicates for analytic truth relative
to a meaning assignment and for logical truth in PAN are defined as follows:
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AT (a, v) iff VIWVW({w, W) € J only if T(a, v, {w, W)))
LT(«) iff VOAT(a, v).

Let PN be PAN restricted to sentences in which ‘4’ and ‘U’ don’t occur.
PN is a propositional modal system for physical necessity alone. Its semantics
is obtained by dropping all mention of ‘4’ from the semantics of PAN. In
particular, logical truth for PN is defined exactly as for PAN. Logical truth in
PN closely resembles the notion of validity, discussed in Section 2. Think
of {w, W) as a model structure ({G, H) is the intended model structure) and
each v as defining a model on that model structure. Now call a sentence of PN
valid, just in case it is true in every model on every model structure. Then the
set of valid, sentences of PN coincides with its set of logically true sentences.
Results of investigations of validity, for S5-type propositional model systems
are easily carried over to PN. The S5 axioms and inference rules (i.e., those for
PL with ‘L’ replaced by ‘N’ everywhere) are sound and complete for PN.

Our disappointment with studies involving validity, is, primarily, that little
thoughtful attention is given to what it represents. For most purposes the
interesting notion of validity is the one which coincides with the notion of logical
truth. For modal systems where the modal operator is supposed to represent
logical or analytic necessity, this is validity,. For systems in which the modal
operator represents some sort of “logically contingent” necessity (e.g., some type
of nomic necessity) a notion resembling validity, coincides with the notion of
logical truth. PAN contains operators for both kinds of modality. In this mixed
system logical truth exhibits features of both validity, and validity,.

The axioms and inference rules of S5 are sound and complete for PA, and
they are sound and complete for PN. The S5 axioms and inference rules applied
to PAN sentences for ‘A’ (in place of ‘L’) and again for ‘N’ (in place of ‘L’),
together with the following A-N axiom and inference rule, form a sound and
complete characterization of logical truth in PAN (see the Appendix):

A-N —(Aa D Na).
U-N If o contains no occurrences of ‘A’ or ‘U’ then +|a| only if —Uaq,
where |«| is the result of erasing all occurrences of ‘N’ and ‘P’ in a.

Axiom A-N is clearly sound for PAN. The soundness of (U-N) derives
from the fact that J contains some members of form (w, {w}) because
we assumed it analytically possible that there is only one physically possible
world. Suppose « contains no occurrences of ‘4’ or ‘U’ and |«f is a (non-
modal) propositional logic tautology. Then for any v and for all {(w, {w}) € J
T(c, v, {w, {w})) (since for any subformula of form NB or P8 in «,
T(NB, v, {w, {w}) iff T(B, v, {w, {w})) iff T(PB, v, {w, {w})). It follows that
voilw, WYy e J T(a,v,{w, W)); so Yovi{w, WY& J T(Ux,v,{w, W)); thus,
LT(Ua).

We won’t spell out a quantified version of PAN here. Doing so would
require a philosophical investigation of the individuation of physically possible
objects across worlds within a set of physically possible worlds. Semantical
theories resulting from various positions on the nature of cross-world objects
may impose different degrees of de re to de dicto reduction for quantification
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across the nomic necessity operator. In general, a quantified modal logic for a
contingent necessity operator ‘N’ and analyticity operator ‘A’ will have the fol-
lowing characteristics (for pairs {w, W) satisfying appropriate constraints
resulting from a metaphysical view on the nature of physical necessity and the
cross-world identity of objects):

(1) for n-ary predicate symbols a”, v(a”, {(w, W)) S ( U ¢(w’)>
wew
(2) for individual variables x, s(x, {w, W)) € |J ¢(w’)
wew

(3) sat ((x)a,v,s,{w, W)) iff vs’((s’ agrees with s except on x and
s'(x,{w, W)) € y(w)), only if sat (o, v, 5", {w, W))

4) sat (Na, v, s, {w, W)) iff vyw’(w’ € W only if sat (a,v,s,{w’, W))

(5) sat (Aa,v,s,{w, W)) iff vs'vw'vW’'({w’, W’) satisfies the appropri-
ate constraints only if sat (o, v,s’, (W', W’))

(6) LT(x) iff Yovsvwv W ({w, W) satisfies the appropriate constraints
only if sat (a, v, s, {w, W))).

It should be apparent from the method by which completeness for QA4 and PAN
are proven in the Appendix that if there is a sound and complete axiomatiza-
tion of the set of logical truths (validity, style) which doesn’t contain ‘A4’, then
the logical truths of the full system (with A4) will have a sound and complete
axiomatization.

Appendix In Section 3 we claimed soundness and completeness for PA,
QA, and PAN, and compactness for Q4. Soundness proofs for these systems
are straightforward, so this Appendix is devoted to completeness and com-
pactness.

The completeness of PA is easy to establish since the axioms and rules of
PA are just those of S5 and the semantics of PA is just the Kripke semantics
for S5 restricted to the single model structure 8 = (G, K, ¢). Since we require
K to be at least denumerably infinite, the completeness of PA is immediate from
Kripke’s result in [13] that SS has a denumerable universal model structure.

Completeness proofs for QA4 and PAN have the same general form and
rely on the completeness of the underlying systems to which ‘4’ and ‘U’ are
appended. Consider a language £ containing ‘4’ and ‘U’ and perhaps other
modal operators (e.g., ‘N’ and ‘P’). Let S be the semantics for £, and let Ax
be a set of axioms and rules on £. A sentence 3 of £ is said to be in ACNF (i.e.,
‘A’-conjunctive normal form) if it is of the form

Bi1&...&Bn
where each B is called a major conjunct of 8, and has the form
(A¢yv...vA¢,vUAVII); ,

where the ¢;, A, and II contain no occurrences of ‘A’ or ‘U’. A completeness
proof can be obtained if £ satisfies the following three conditions:
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(I) (@) For each sentence o of £ there is a sentence 8 in ACNF such that
LT(e) iff LT(B)
and
b, iff 5 8 .
(ii) For any sentence 8 is ACNF with major conjuncts §;
LT(B) iff LT(B;), for each j
and

. B iff B, for each j .

(In For each ACNF major conjunct §; there are sentences v;;, vj2, . . .of
£ containing no occurrences of ‘A’ or ‘U’ such that:

(i) LT4(B;) only if LT(vj;), for some i; and
(i) H,vji, for some i, only if H B;.

(I1ID) Ax is complete on S restricted to the set of sentences of £ containing
no occurrences of ‘4’ or ‘U’ (i.e., for any sentence 6 of S not
containing ‘A’ or ‘U’, LT(6) only if H 4).

Given (I)-(III) it is easy to show that for any sentence o in £, LT;(«) only
if -z . For suppose that L7 («). Then by (I)(i) there is a sentence 3 in ACNF
such that LTy(B), and by (I)(ii) LT;(8;) for each j. It follows by (II)(i) that for
each (; there is a vy;; such that LT;(y;;). Hence kv;; by (III), since vy; contains
no ‘A’ or ‘U’. But (II)(ii) now guarantees that ——@;, for each j. Finally, by
(I)(@i) we have 3, and by (I)(i) H;o.

We now go about showing how to establish (I)-(III) for QA4 and PAN.

04

(I) (@) Using Axiom 12 it can be shown that every sentence « is provably
equivalent to a sentence «’, where «’ is like o except that each well-
formed part AB of « has been replaced by AB3’, and 3’ contains
no free occurrences of any variable. Well-known quantificational
theorems (e.g., (x)(y Vv ) = (y Vv (x)é), if x is not free in ) can then
be used to transform each AR’ into AB”, where 3” is either nonmodal
or molecular, and to assure that no quantifier in 8” has any A or U
in its scope. Finally, S5 modal reduction theorems will allow further
transformations so that eventually we get o =6, where 6 is in
ACNF. Hence LT (« = 0), by the soundness of QA. The two parts of
(I)(i) are now immediate.

(ii) The semantics of QA makes a conjunction LT just in case each con-
junct is, and the axioms make a conjunction provable just in case each
conjunct is.

(II) (1) Let C; be a nonmodal first-order sentence which says that there are
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exactly / things. For each major conjunct 8;, take the sentences
Yjts Vj2s- - - to be (p1vA),..., (¢,vA4), (IIvA), and (C;D A), for
each nonzero positive integer i. It is easy to verify that

LT(A¢ v...vAd,v UAvVID) iff
LT(A¢yv...vAd,v UA v AIl).

So it suffices to consider only major conjuncts that contain no
unmodalized disjuncts. We show that

LT(A¢, v A, v UA) only if
LT(¢yv A) or LT(¢pv A) or LT(C; D A), for some i.

Generalization to cases where n > 2 is straightforward.

Suppose neither (¢, v A) nor (¢, v A) nor any of the (C;D A)
are LT. Then there are worlds w;, w,, and valuations vy, v,,
such that T(~¢;, vy, wy), T(~A, vy, w;), T(~e5, v3, wy), and
T(~A, v, w,). And since we assume that for each nonzero countable
cardinal 7 there are at least denumerably many w &€ K such that y/(w)
is of cardinality 7, we can choose w; # w,. (For the proof to gener-
alize to cases where n is arbitrarily large, there can be no finite limit
on the cardinality of K.) Furthermore, for each nonzero positive
integer i, there is a w; € K and a valuation v; such that 7(C;, v;, w;)
and T(~A, v;, w;). Since A and the C; are completely nonmodal, we
can think of the pairs {(Y(w;), v;) as nonmodal first-order models, all
of which verify ~A. So ~A has models of arbitrarily large finite cardi-
nality, and hence by the upward Lowenheim-Skolem theorem it has
a model (Y (w,), v,) of each cardinality 7.

We now specify a valuation v* which combines the features of
vy, Uy, and all the v, that are important for our purposes. Choose v*
so that for any proposition letter or predicate letter o, v*(ct, w;) =
vy (o, wy), and v*(a, wy) = va(a, wy).

For each w such that (w) is of cardinality 7, w; # w # w,,
there is a valuation v such that {y(w), v) is isomorphic and hence
elementarily equivalent to {(y(w,),v,). For each such w let
v*(a, w) = v,(a, w,;), modulo the isomorphism.

It is now easy to verify that T(~¢y, v*, w;), T(~¢,, v*, wy),
and T(~A, v*, w), for all we K.

Hence for any we K, T(~A¢;,v*,w), T(~A¢p,,v*, w), and
T(~UA,v*,w). So (A¢, v Ap,v UA) is not LT.

Since

H(A¢,v...vA¢,v UAVvII) iff
H(Ad,v...vAP,v UA Vv AIIl),

it suffices to show that if —(¢v A) then ~(A¢v UA), and if
—(C; D A), for any nonzero positive integer i, then —UA. The
former is an easily verified feature for S5, and the latter follows from
familiar features of S5 and the fact that +—UC;, for all i.
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Standard first-order logic is complete with respect to the semantics of
QA. The nonmodal axioms of QA constitute standard first-order
logic.

For each sentence o of PAN there is a sentence 8 in ACNF such
that —a = 3. This, together with the soundness of PAN, is sufficient
for both parts of (I)(i). That —« = 8 is indeed the case can be shown
by appeal to provable biconditionals which allow all occurrences of
‘N’ and ‘P’ to be driven into subformulas of « until no occurrences
of ‘A’ or ‘U’ occur in their scopes. Since ‘4’ and ‘N’ are both S5
necessity operators, these biconditionals are the usual ones for S5 (see
[51, pp. 51-55) and the following that are theorems of PAN:

NAS = Ab
PAS = Ab
N6 & Ay) = (N6 & Ay)
N(6 & Uy) = (N5 & Uy)
N(bv Ay) = (Nb v Ay)
N6 v Uy) = (Név Uy).

Once we have a sentence in which no ‘A’ or ‘U’ occurs within the
scope of an ‘N’ or ‘P’, standard methods of S5 can be used to obtain
an ACNF.

Trivial, as for QA.

For each major conjunct (3;, take the sentences v;i, ¥;2, - - - » ¥jn+2, tO
be (¢, v PA),. .., (¢,v PA), (Ilv PA), |A|. (Notice that here, unlike
the proof for QA, we need only finitely many such sentences.) It is
easy to verify that LT(UA = UPA) and hence that

LT(A¢,v...vAp,v UAvVII) iff
LT(A¢\Vv...vAp,v UPA v AIl).

So it suffices to show that

LT(A¢,v Ap,v UPA) only if
LT(¢, v PA) or LT(¢,v PA) or LT(]A]),

since generalization to cases where n > 2 is straightforward.
Suppose that neither (¢; v PA) nor (¢, v PA) nor |A| is LT.
Then there are possible physical states of affairs (i.e., members of J)
(wy, WL, {wy, Wh), (ws, W3), and valuations vy, v,, vs such that
T(~¢19 Ug, (WI’ Wl))’ vw e WIT(~A’ Ug, <W9 Wl))’ T(~¢2’ U,
<W2a WZ))» vwe WZT(~A’ Uy, (W, WZ))’ and T(~|AI’ U3, <W3, W3>)
And since we assume that there are at least denumerably many W;
such that for some w € W;, (w, W;) € J, and that at least denumer-
ably many of these W, are at least denumerable, we can choose
W, W, W3 so that they are distinct from each other. Furthermore,
since |A| is entirely nonmodal, W; can be {ws}, and since N and P
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are vacuous (i.e., they are the identity function on truth values) at any
one-membered W;, T(~A, vs, (w3, W3)).

We now define a valuation v* such that for any proposition
letter o, VW E le*(a, <W, W1>) = Ul(a, (W, W1>), vwe WZU*((X,
(w, W1)) = va(a, {w, W3)), and V{(w, W) € Jsuch that W, # W #
WZ’ U*(a’ <W, W)) = U3(a, <W3, W3>) Hence T(~¢11 U*, (wl’ Wl>)a
T(~¢y, v*, {wy, W1)), and T(~A, v*,{w, W)), for all {w, W) e J.
So for any {w, W)€ J, T(~Ad;,v*,{w, W), T(~Ap,,v*,{w, W)),
and T(~UPA, v*,{w, W)). Hence (A¢; Vv Ad,v UPA) is not LT.

(ii) Since
F(Ad v...vAp,v UAVvII) iff
H(Adv...vAp,v UPA v AIl),

it suffices to show that if —(¢ v ¢) then ~(A¢ v Uy), and if —|A|
then —UA. The former holds because of the S5 axioms for ‘4’°, and
the latter holds by Rule (U-N).

(I11) Consider that fragment of PAN that contains no occurrences of ‘A4’
or ‘U’. The operative axioms are just those of S5, and, in view of our
assumption that there is a W; of each nonzero countable cardinality,
the semantics is just standard validity,-style semantics for S5. Hence
the LT sentences of this fragment coincide with its theorems.

The foregoing proof of completeness for PAN also provides a decision
procedure for validity. Given any sentences of PAN, there is an effective method
for finding a logically equivalent sentence in ACNF. This ACNF is valid iff each
of its major conjuncts, 3, is, and @; is valid iff at least one of the sentences v;;
is. But these sentences contain no occurrences of ‘4’ or ‘U’ and are decidable
by S5 methods.

Finally, we indicate briefly how compactness may be proven for QA4; i.e.,
we want to show that if « is a logical consequence of an infinite set of QA sen-
tences I'', LC(I'", ), then there is a finite A’ < T’ such that LC(A’, «). It
suffices to show that if every finite subset A of an infinite set I' is satisfied by
a QA interpretation, then I' is satisfied by a QA interpretation.

Let T" be an infinite set of sentences of QA and suppose every finite sub-
set of I has a QA interpretation. Define I'* as the union of ' with the QA4
axioms. Then every finite subset A of I'* has a QA interpretation, (v, w). An
interpretation satisfying a A is defined on the intended model structure
8 = (G, K, V), so each A has a Kripke-type S5 model of form (v’, (w’, W’,y’))
in which (w’, W’,¢’) is a model structure with set of worlds W’. There is a
compactness theorem for the Kripke-type S5 semantics for quantified modal
logic [26], and a Lowenheim-Skolem-like result which says that any satisfiable
set of sentences has a model structure with no more than a denumerable set of
worlds [27]. So I'* has a Kripke-type model {(v”(w”, W”,¥”)) for which W” is
denumerable. Also, 3w € W” such that the cardinality of ¥”(w) is 7, for each
countable cardinality 7, as the QA axioms in I'* require.

Let f map K onto W” such that for all w € K the cardinality of ¥”(f(w))
is the same as the cardinality of y(w). Define v* for the intended QA4 model
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structure so that for every proposition letter or n-ary predicate letter «,
vwe K v*(a, w) =v"(a, f(w)) modulo some 1-1 mapping of Y(w) onto

v (f(w)).

v*

11.

Then 3w € K such that the QA interpretation {v*, w) satisfies I'*. So
, w) satisfies T', for some w in K.

NOTES

. For some purposes an intensional language may be interpreted on a model structure

other than 8. In a tense logic the intended model structure may be as follows: the
indices in K are moments of time in the actual world, G is the present moment,
¥(w) is the set of things that exist in the actual world at moment w, and wR w’
holds just in case w is before w’ in the actual world. Such a model structure may
be of some interest, but it cannot furnish a general theory of meaning for nonlogical
terms.

. A related point is discussed in Section 2 in connection with what is there called the

structural approach to validity,.

. See, for example, Kripke [13] and [14], Montague [19], Kaplan [10], Lewis [15],

Adams [1], and Plantinga [21].

. In view of the early work of Carnap and Kanger, our approach to semantics for

modal logic and our definition of validity are not really new. Carnap studied an ana-
logue of validity,, using state-descriptions, in the 1940s. Validity, as we define it
here was first proposed and studied by Kanger in 1957. But since the publication of
completeness theorems for validity, in Kripke [12], little attention has been paid to
the earlier, more intuitive notion. See Carnap [2], Section 41, Kanger [6], [7], [8],
and [9].

. The question of the philosophical interest of validity, is one that has received sur-

prisingly little attention in the literature. The only discussions with which we are
familiar are Pollock [22] and [23], Makinson [17] and [18], and Plantinga [20],
pp. 126-128.

. Thomason [25], p. 127. It is not at all clear that Thomason advocates what we are

here calling the structural approach, but the passage quoted does suggest it.

. Cresswell [4] has shown that even truth-functional connectives may be treated so

that their interpretation varies from one model structure to another. However, we
do not consider this an appropriate treatment for any connectives in the languages
with which we are dealing.

. See Montague [19], pp. 105-106, for a detailed account of these two approaches to

tense logic.

. See Hughes and Cresswell [S], pp. 51-55, for the S5 normal form theorem.
10.

See Church [3], pp. 192-193, for an account of uniform substitution appropriate
to preserve validity in first-order logic. The relevant notion for the axioms and rules
for QL is Church’s supplemented to treat all variables in the scope of a modal
operator as Church treats (other) bound variables.

Thus QA satisfies a requirement suggested by Pollock [22].
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