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Infinite Truth-Functional Logic

THEODORE HAILPERIN

What we cannot speak about [in X, or fewer propositions] we must pass
over in silence.
L. Wittgenstein [emended]

1 It is oft-mentioned that universal and existential quantification are gen-
eralizations of, respectively, conjunction and (nonexclusive) disjunction. Thus,
for a finite domain and in a language having a name for each individual of the
domain, the universal quantification of an open sentence with one free variable
is equivalent to the finite conjunction of all instances of the open sentence
obtained by substituting names of the individuals for the variable. Similarly for
existential quantification and disjunction. For infinite domains, or for languages
which lack names for all elements of the domain, quantifiers do, implicitly,
express conjunctions or disjunctions over all elements of the domain. Histori-
cally the motivation for the introduction of quantifiers was the need to express
the notions of “all (individuals)” and “some (individuals)”, rather than that of
generalizing conjunction and disjunction. The kind of generalization of connec-
tives achieved by quantifiers is restricted to the case of components all of which
are instances of one and the same open sentence, thus depending ultimately on
a subject-predicate analysis of atomic sentences and the associated notions of
a domain of individuals and their properties. Conceivably the world could be
viewed in other ways than exclusively in terms of individuals (objects) and their
properties. Logical theory shouldn’t preclude the possibility, remote as it may
seem, of a language whose atomic sentences express a world view and yet have
no—or no known —inner structure relating to logic. But how could there be for
such a language anything beyond ordinary truth-functional (propositional, sen-
tential) logic?

Our intention here is to explore a form of logic which, indeed, considers
the analysis of sentences only into truth-functional components. It is, however,
more than ordinary truth-functional logic in that it includes the notion of an infi-
nite conjunction of sentences. Despite its rather slender conceptual basis it can
nevertheless be used to do first-order quantifier logic: Truth-functional logic,
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supplemented with the notion of infinite conjunction, suffices for the develop-
ment of quantifier logic.

2 We assume we are dealing with a formal language which has a countable
sequence A, A,,...,A,,... of atomic sentences. The inner structure, if any,
of these sentences is for the present of no concern. Using these atomic sentences
as a basis, and with negation and finite and infinite conjunction, we define what
a formula for such a language is. First a list of the symbols used:

(a) The letter ‘A’ with a subscript which can be of three kinds:
(i) numerals: ‘1°, 2, ‘3’,...
(i) indices: ‘i°, ¢, ‘k’, ...
(iii) arithmetic function expressions (in some standard notation) hav-
ing indices or numerals in argument places: e.g., 2i — 1’, 3/ +
2j’, 2-5 = 1, etc.
(b) connectives: ‘=, ‘A’
() and-quantifiers: ‘A;’, ‘A;%, ‘A, ...
(d) left and right parentheses: ‘C, ‘).

From now on we shall adopt that abuse of language which drops the sin-
gle quotes used to form a name of what’s enclosed and use symbols and expres-
sions as names of themselves.

For formulas we use a recursive specification:

(a) The letter A with a subscript is a formula.

(b) 1If ¢ is a formula, so is —¢.

(¢) If ¢ and ¢ are formulas, so is (¢ A ).

(d) If ¢ is a formula, so is A\;¢ (and similarly for any index in place of

i).

We assume the other logical connectives to be defined as usual in terms
of = and A, and that generally recognized conventions, e.g., omission of paren-
theses, prevail. We introduce V;¢ as an abbreviation for = A;—¢ and refer to
V; as an or-quantifier. It will sometimes be convenient to include v and V; as
official symbols of the language. The terminology scope of a quantifier, and free
and bound for individual variables as used in ordinary quantification theory,
will be taken over here and used correspondingly, with indices i, J, k, . .. playing
the role of the individual variables. A closed formula, i.e., a sentence, has no
free indices.

Turning to semantics, we now specify how truth values accrue to sentences
from an assignment of truth values to the atomic sentences A, A,,...,A4,,...
We shall use 1 (true) and 0 (false) as truth values and it will be convenient to
assume that they have their numerical properties as integers. A sequence v,
U, ...,Up,... of truth values is a model. There are (using Cantorian counting)
2% models. We now specify the meaning of a senfence o has the value v in a
model M.

We first note that a sentence has one of the four forms:

(i) Ay, where N is either a numeral, or a number expression resulting
from the substitution of numerals for indices in an arithmetic func-
tion expression.
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(ii) —¢, where ¢ is a sentence

(iii) ¢ A Y, where ¢ and y are sentences

(iv) A;¢, where ¢ is a formula having no free index except possibly i.
(Here i is representative of any index.)

Conditions determining the truth value which a sentence o has in a model

(i) If ois Ay, then it has the value v, in M, where v, is the n’th mem-
ber of the sequence M, n being the number named by the number
expression N (e.g., A,.5_; has the value vy).

(ii) If ois ¢ and ¢ has the value v in M, then —¢ has the value 1 + v
(modulo 2) in M.

(iii) If ois ¢ A ¥ and ¢ and ¥ have, respectively, the values v and w in M,
then ¢ A ¥ has the product value vw in M.

(iv) Let o be A;¢ and let ¢[n/i] be the sentence resulting on replacing all
free occurrences of i in ¢ by the numeral n. If ¢[n/i] has the value
w,in M(n = 1,2,...), \;¢ has the value [ w, in M.

n=1

A sentence o is true in (a model) M if it has the value 1 in M; it is valid
if true in every M. A formula is valid if the sentence which is its and-quantifier
closure is valid.

It is a relatively easy matter to show that the analogues of axioms in any
of the various axiomatic formulations of first-order logic are valid formulas of
infinite truth-functional logic, and also that the analogues of the rules of infer-
ence preserve validity. For example, consider the axiom (schema)

(1) vx¢ -y,

where y is the formula resulting from ¢ by replacing each free occurrence of x
in ¢ by a term ¢ which is free for x in ¢.
Its analogue would be:

(2) /\l¢ - ¢’

where ¢ is the formula resulting from ¢ by replacing each free occurrence of the
index i by a subscript s which is free for / in ¢, i.e., which is such that no index
present in s would thereby lie within the scope of an and-quantifier with the same
index.

To see that (2) is valid, suppose that the distinct free indices in (2) are all
replaced by numerals and that the result is

B) Nig¢™ > y*,

where ¥ * is ¢*[s*/i] (s*, because s may have occurrences of a free index). Now
s* names some numeral #n,, say, so that in any model the value of ¢*[n,/i]
would be the same as that of ¢*[s*/i]. Thus in any model A;¢* would evalu-
ate to a product one of whose values is the same as that of ¢*. This implies the
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truth of (3) in any model. Since the substituted numerals in (3) were arbitrary
we conclude that (2) is valid. As an example with an inference rule consider

¢
Vxo,

)

which would have as its analogue

¢
Nig”
This clearly preserves validity since the closures of ¢ and A;¢ are, apart from
the arrangement of the initial quantifiers, the same sentence. Thus an axiomatic
formulation for deriving valid formulas of infinite truth-functional logic using
schematic letters for formulas (as in the examples) would be identical in appear-
ance with that of first-order quantifier logic except for the quantifier symbols.
The presence of item (iii) under (a) in the listing of symbols is significant.
Without it the system would be formally the same as a trivial, one-predicate,
monadic predicate calculus, with A; in the role of vx and A, in the role of
A(x). Introduction of item (iii) under (a) provides for the capability of select-
ing out infinite subsequences of A, 4,,...,A,,...; e.g., the derivable for-
mula A;A; - N\;A,; has no counterpart in ordinary quantifier logic.

)

3 Any one of a variety of completeness proofs for first-order logic may now
be carried over to infinite truth-functional logic, establishing that a formula is
derivable if and only if valid. However there are some matters of detail that
require comment.

A form of the completeness proof well-suited to be used as a framework
for our comments is the one in Chapter 31 of Quine’s Methods of Logic, third
edition. The proof begins with the prenex normal form of the negation of a
closed formula (Quine’s proof allows for the possibility of more than one prem-
ise, but we shall drop this generality), and derives in a prescribed manner, by
repeated successive uses of universal and existential instantiation, additional for-
mulas and, ultimately, quantifier-free instances of the matrix of the starting for-
mula. The quantifiers are instantiated to variables (which are proxies for
individuals of some as yet unspecified domain) and there can be infinitely many
instances of the matrix generated by the process. The proof then goes on to
show —and this is the crucial part —that either some finite subset of the matrix
instances is truth-functionally inconsistent (and thereby the starting formula is
false in any model), or else there is an assignment of truth values to the atomic
formulas having an appearance somewhere in any of the matrix instances which
makes all of the instances simultaneously true. While the proof then goes on to
use this assignment to define a model (interpretation for the predicates) in which
the starting formula is true, this is as far as a parallel proof for infinite truth-
functional logic can go, since in place of the referred-to atomic formulas we
would have occurrences of the letter A with subscripts that are arithmetic func-
tion expressions with argument places occupied by indices. Our proof would
then continue by relabeling the subscripted A’s as A;, 4,,...,A4,,... (which
in no way disturbs the truth-functional relationships) and then conclude, in
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the case of the second alternative, that there is an assignment of values to 4,,
Ay, ..., A, ... (i.e., a model) which makes all the matrix instances and then the
starting formula, true. Our conclusion would be the same but with a different
meaning for “formula” and for “model”.

As an immediate consequence of the completeness proof for infinite truth-
functional logic we have the following Léwenheim-Skolem type result.

Theorem There is a countable set of models such that if a formula is true
in each model of the set, then it is valid, i.e., true in all models.

Proof (using the axiom of choice): By the completeness result each consistent
sentence has at least one model, i.e., a model in which it evaluates to true. There
are only a countable number of consistent sentences ¢,, n =1, 2, 3,...; for
each select a model M,,. The set of all such M, is the countable set of the the-
orem. To show this let y be a sentence true in all M,,. Its negation, =y, is dif-
ferent from (i.e., not logically equivalent to) any ¢, since there is at least one
assignment of values to 4,, A,,...,A4,,... making one false and the other
true. But =y, differing from every consistent sentence, must be inconsistent, and
¢ then valid.

The following schematic truth-table diagram is a pictorial representation
of the Theorem. (We use now T and F in place of 1 and 0.)

All consistent

sentences
N

Ay Az |- - 1| d2]- - - | Y| Y

Ml V11 Uipg | =+ - T F |T

M2 Uy Upyp | = = T F |T

. . A . Ko rows

The rows under 4;, A,,..., A,, ..., 2% in number, are the models; the por-
tion above the dashed line contains the models M,, M,,... of the theorem.

The sentence -y, differing in value from each ¢, in at least one line (model)
can’t be a consistent sentence. Hence ¢ is valid.

4 It is fairly clear that infinite truth-functional logic should support, i.e.,
be sufficient for carrying out logical inferences of, a first-order predicate lan-
guage. One simply thinks of the atomic sentences of the first-order language as
mapped onto the A, A;,...,A,,... in such a way that those referring to a
given predicate can be selected out. As an example, consider a first-order lan-
guage having two singulary predicates P and Q, and a binary predicate R. To
P(x), Q(x), and R(x,y) we associate Aj;, A1, and Asz; jy+2, Where f(i, /)
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is an arithmetic function establishing a one-to-one correspondence between
ordered pairs of positive integers and the positive integers. The indices present
in the subscripts keep track of the variables involved in the predicate expressions
and the congruence classes (0, 1, or 2) of the subscripts tells which predicate is
being imaged. More complicated expressions involving connectives and quan-
tifiers are handled in obvious fashion; i.e., Vx(P(x) — Q(x)) is represented by
Ni(A3z; =~ Asziy) and

vx[3y(P(x) A R(y,x)) = 3y(Q(x) A R(y,x))]
by
NilVj(As;i A Aspiy2) = Vi Az A Aspgin+2)] -

Clearly, for first-order predicate languages there is no advantage in using
the symbolism of infinite truth-functional logic. But if some being comes along
with a language in which there are a countable number of unanalyzed atomic
sentences and wants to do logic, then we are ready for him, her or it. In a more
serious vein, we see that quantifier logic can have a semantic basis (that of our
Section 2) which is simpler and more ontologically neutral than that of the usual
Tarskian type.
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