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Abstract The main purposes of this paper are to provide an algebraic anal-
ysis of a certain class of constructive logics with strong negation, and to in-
vestigate algebraically the relations between strong and nonconstructible
negations definable in these logics. The tools used in this analysis are vari-
eties of algebraic structures of ordered pairs called special N-lattices which
were first introduced as algebraic models for Nelson’s constructive logic with
strong negation (CLSN). Via suitable restrictions of the domains, algebras
of this type are shown to be algebraic models for the propositional fragments
of E°, CLSN, Intuitionistic Logic, and E}. The differences between E® and
CLSN are then studied, via the interrelations that the related algebras exhibit
among strong and nonconstructible negations, properties of filters, and their
behavior with respect to classically valid formulas.

Introduction Constructive Logic with Strong Negation (CLSN) was intro-
duced to correct certain nonconstructive properties of Intuitionistic negation (see
Nelson [5], Thomason [11], and Vorob’ev [13]). The logics E°, EY, and E*
(henceforth Effective Logics (EL)) were introduced in Miglioli et al. [4] in or-
der to study the concept of effectiveness in Computer Science. Though thought
to be independent, CLSN and EL are in fact very close. As a matter of fact, the
propositional fragment of E° has the same axioms as CLSN (see Rasiowa [9],
Chapter XII) without the axioms for weak negation and strong implication, plus
the following rules:

(4] [A4] [—A4] [-A4]
B -B -B -1:B
(=T Int) =V (T Int) — 54
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Roughly speaking, the operator T has been introduced to capture classical truth,
in the sense that if CLASS is a classical propositional calculus to which T as the
identical truth function (T(1) = 1; T(0) = 0) is added, then the following holds,
for every formula P:

CLASSFP iff E°+TP

The propositional fragment of EY is equal to E° plus the following rules for
any atomic formula a:

[ma]l [na] la]l [a]
B -B -B -B
- - R2) —— —
(R1) p (R2) ~a
The propositional fragment of E* is equal to ES when the following rule is

added:

TA- (BvC)

E) (TA-B)v (TA-C)

CLSN was studied from an algebraic point of view by Bialynicki-Birula and
Rasiowa (see [1] and [7]-[9]) by means of algebras called N-lattices. While in any
topological pseudo-Boolean algebra H any element ¢ univocally determines its
pseudocomplement ~a by set-theoretical and topological operations, such means
are not sufficient for strong negation in constructive logics; for, in a certain sense,
any element a is determined by its own strong negation —a. Bialynicki-Birula and
Rasiowa bypassed this problem using an involution g from the algebraic domain
D to itself, through a “specular” domain D’. Intuitively speaking, the involution
g simply links any element of D to its own strong negation. Nevertheless, this
algebraic construction is rather complicated, and its intuitive mechanism and its
relation to Kripke-style models are hidden.

A more natural procedure for representing the interdetermination between
a and —a appears to be the following: take as elements of the algebraic domain
ordered pairs (of open subsets of a topological space) and consider the first ele-
ment in the pair as the “positive value” and the second element as the “negative
value” of the pair. Vakarelov [12], starting from an analysis of strong negation
in CLSN, interpreted the exhibition of a “counterexample” as the refutation of
a sentence, and introduced a semantics by ordered pairs called special N-lattices
(SNL). EL and CLSN (as well as connections with Heyting algebras) were al-
gebraically studied in Pagliani [6], where a semantics by ordered pairs, called
POT algebras, was independently used. PT algebras were defined over topolog-
ical T, spaces in order to preserve a natural correspondence with Kripke-style
models for the logics under discussion.

In Sendlewski [10] a variety of N-lattices adequate for E® were indepen-
dently defined while investigating the connections between N-lattices and Heyting
algebras. In the present paper some remarks about this kind of lattice will be
pointed out.
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1 Basic definitions

(b1) Let X be a finite or denumerable set.

(b2) Let 7(X) be a T, space on X and OP7(X) the set of open subsets of 7(X).

(b3) Let D;(X) be a set of ordered pairs @ = {x,p(x)» in whichxNp(x) = O
and x,p(x) € OP7(X).

Intuitively, x will denote the “positive value” of o and p (x) will denote its
“negative value”. We will call the first element of an ordered pair the term and
the second element the index.

The following situations can be distinguished, if we do not set particular con-
ditions over 7(X) (I denotes the interior operator, C denotes the closure oper-
ator, and — denotes the set-theoretical complement):

(N1 ICh(x)cI—x forming the domain D, (X) (The general case)
(N2) ICo(x)=1—x forming the domain D, (X)
(N3) p(x)=I—-x forming the domain D;(X).

2 Algebraic definitions We now present a general set of operations for each
a,b € D, 3 such that a =(a,,a,), b = (b, b,) (we will not distinguish algebraic
symbols used on ordered pairs from set-theoretical symbols used on the elements
of ordered pairs):

(A1) (X,0)=1;(T,X)»=0
(AZ) an=<a1Ub1,azﬂb2)
(A3) aﬂb=(alﬂb1,a2Ub2>
(A4) a-b={(—a; Uby),a; N by)

(weak relative pseudo-complementation)
(AS5) Ta =(<ICa;,—Ca;) (classical truth operator)
(A6) —a={(aya). (strong negation).

From (Al), (A2), and (A3) the following are immediate: aU1=1,aN 1 =aq,
aU0=gqg,andaN0=0.
We can now define the following quasi-ordering relation:

QO0) ax<vbiffa—->b=1.

More precisely, because the equation @ - b = 1 depends only on the terms a and
b and not on their indices (see (A4)), the relation < is indeed a quasi-ordering
for domains of type D, and D,. That is, the antisymmetry property does not
hold: we can have a,b € D, (D,) suchthat a b =1but nge b < 1.

If a & b =1 we say that a and b are weakly equivalent. So we have that in
D, and D, substitution of weak equivalents and the weak counterpositional law
do not hold.

However we can define a stronger relative pseudo-complementation:

(A7) a=b=(a—->b)N (~b~- —a)
PO) a=<bdiffa-b=1.

It is easily verified that < is a partial ordering.
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3 Constructive and nonconstructive negations Given this base, if we want
an operation for nonconstructive negation we have to introduce, following Ze-
man [14], an operation ¢ such that the following hold:

(NC1) (a—-va)-ya=1
(NC2) -a-ya=1
(NC3) Ja—-a<1l.

So let us introduce the following two operations.
(A8) ~a=a-0
(A9 =a=a—- (bN b).
Proposition 1 Let Y be ~ or =. Then (NC1), (NC2), and (NC3) are satisfied.

Proof: ~{ay,ay) ={ay,a;) > (D, X) ={I(—a; U J),a; N X) ={(—Cay,a,).
But a; < —Cay, so —={a;,a,) » ~{a,,a,) =1 and ~{a;,a,) > —{a;,a,) < 1.

=(ay,ay) ={aj,a) = <{byN by, b, U b;). But b; N b, = I (from (b3)), so
={a,,ay) = {(—Cay,a; N (by U by)). Then —<a;,a,) - ={a;,a,) =1 and
={a;,a) - 7{a;,a) L 1.

(a;,a3) = (—Cay,x) = I(—a; U —Cay),(a; N x)). But —a; 2 —Cay, so
(aj,ay) = {—Cay,x) = (—Cay,(a; N x)), whence straightforwardly (¢ > ~a) -
~a=1and (a— =a) > =a=1.

4 Special lattices and logics with strong negations

Proposition 2.1 0, =(D(X),N,U,—,~,=,,1,0) is an algebra (which we
shall call a “special Nelson lattice” (SNL)).

Proposition 2.2 0, =(D,(X),N,U,»,~,=,—,1,0) is an algebra (which we
shall call a “special effective lattice” (SEL)).

Let {(e) be the following translation from formulas of the language of E°,
L(E®), to SEL: For any propositional variable x and any formulas P, P’:

f@x)=p  (for p€ D,)
S (PAP) =((e)(P)N{(e)(P)
$E)(PVvP)=¢(e)(P)U {(e)(P)
$E@)(P—P) ={(e)(P)—{(e)(P)
$(e)(~P) = ~¢(e)(P)
$(e)(TP) =T{(e)(P).

Proposition3  E° | P iff SEL E {(e)(P).

Outline of Proof: For any SEL A, (X) let us denote by val® a valuation of for-
mulas from the language L(E®) A, (X) based on {(e). Let K = (K, <,>) be a
Kripke model for E° (see [4]), where 3> denotes the forcing relation. Consider-
ing the topological space 7(K) of the cones of K, let A,(K) be the SEL built
over 7(K). Va,a’ € K we define the following relation:
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M ax>A iff « € (val®(A)),
Q) a'> A4 iff &’ € (val®(A)),.

Then for any formula P and any « € K the forcing relations of K are preserved
by val® and vice versa, and via the completeness theorem for Kripke models for
E° (see [4]) we have: If E° If then SEL ¥ ¢(e)(A) for any wff A € L(E°).

Definition 3.1 Following Rasiowa [9] (Chapter 5, par. 3) let G(X,) be a
pseudo-field of some open subsets constituting a base for the topological space
7(X1); let g(x) be the involution defined on X = X; U X,, X, N X, = & (for
simplification), card(X;) = card(X3); and let B(X) be the class of all the sub-
sets Y € X satisfying conditions (b1), (b2), and (b3) of [9].

Theorem 3.2 (Rasiowa) Let QP(X) = (B(X),X,N,U,»,~,1), where N
and U are set-theoretical operations, and Ya,b € B(X):
B2.D)a-b=(I-(aNXHNU BNX)NU (XN —g(X;Na))UX,Nb)
(3.2.2) "a=X—g(a)

(3.23) ~a=a—- X

Then QP (X) is a quasi-pseudo-Boolean algebra of open subsets of X connected
with the pseudo-field of sets G(X;).

Theorem 3.3 (Rasiowa) Any quasi-pseudo-Boolean algebra is isomorphic to
a quasi-pseudo-Boolean algebra of sets. More precisely, it is isomorphic to a
quasi-pseudo-Boolean algebra of open subsets of a compact T, topological
space. (This latter type of algebra is called QPBT.)

Theorem 3.4 (Rasiowa) For any formula P of L(CLSN):
CLSN P iff QPBT E P.

Proposition 4 Let A (X)) = (D;(X;),N,U,—,~,—,1,0) be an SNL built
over the topological space 7(X;). Let QB(X;) = (B(X;),N,U,>,~,—,1,0) be
a QPBA connected with G(X,). Then A,(X,) and QB(X,) are isomorphic.

Outline of Proof: Let us consider the following mapping from D;(X;) to
B(X,):

SfKay,a)) = a; U g(+ay)

where g is the involution on X = X; U X, and +a = X, N —a. We have to ver-
ify, for instance, that f(a — b) = f(a) - f(b).

Sfla—b) =f(ay,a2) - (by,b,))
=f(I(=a, U by),a; N by)
= (I(=a; U by)) U g(+(a; N by))
S(a) = f(b) = (a1 U g(+a3)) » (b U g(+by))
= (I(= (X1 N (a; U g(+a2))) U (X1 N by U g(+b,)))
U (X2 N —g(X, N (a1 Vg(+a2)) U (X2 N (b1 U g(+b2)))
= ([(=a; U b)) U (X2 N —g(a;)) U g(+bs).
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Now all we have to show is that g(+ (a; N by)) = (X2 N —g(a;)) U g(+b;). But
(X2 N —g(a) U g(+by) = (X2 N —g(ay)) U g(+by)
=g(+a;) U g(+by)
=g(+ (a1 N by)).

Let {(n) be a translation from formulas in L(CLSN) to SNL such that, for
any propositional variable x and p € Dy, {(n)(x) = p, and for any formula P,
£(n) (P) is ¢(e)(P) without ¢(e)(TP), plus the following additional translation
rule: {(n)(~P) = ~{(n)(P).

Via the isomorphism f we have a Kripke-style interpretation of QPBT al-
gebra QB(X): let val* be a valuation of formulas from the language L(CLSN)
to SNL based on {(n); thus if val*(A4) = x then f ! (x) = (X; N x,+g(X2 N x))
(it is easily seen that f ~!(x) € D;(X;)), and so x = {a:a> A} U {B: 8 A4},
where «, 3 belong to a Kripke-style Thomason model isomorphic to A; (X;).

Proposition 5 (Vakarelov) (Corollary to Proposition 4) For any formula A
of L(CLSN):

CLSN F A iff SNL F ¢(n)(A4).

Proposition 6 If we add the following condition to conditions (b1)-(b3) of
Definition 3.1:

b4 ICg(YN X,) =IC(YN X)),

and let D’'(X) be the new domain, then D’(X) and the domain D,(X) defined
on the same topological space coincide.

Outline of Proof: We will prove that the function f defined as in Proposition
4 is biunivocal between D, (X) and D’(X). Remembering that f ~!(a) = (X; N
a,+g(X, N a)) for a € D’ (x), we have to prove for every Y that IC(+g(X; N
Y) = +C(X;NY). From (b4) we have +ICg(Y N X;) = +IC(Y N X;) and so
CI+g(YNX,) =CI+ (YN X;). From (b2) we have that g(Y N X,) is closed,
and from (b1) that YN X is open. Thus IC + g(YN X,) =ICI + g(Y N X3) =
ICIC+ (YNX;)andsoIC - g(YN X;) =+ CI(Y N X;) = +C(Y N X;).

5 Properties of special N-lattices and special effective lattices

Proposition 7.1 In any SEL or SNL.:
(7.1.1) Ta=~~a
(7.1.2) Ta<Ta.

Proof: (7.1.1) from (B1). (7.1.2) from (C2), (C4), and the fact that ICx & —Cx
under the general condition.

Proposition 7.2 In any SEL:

(7.2.1) " Ta=T—a

(7.2.2) —Ca; N —Ca, = I

(7.2.3) Ta = (—Ca,,—Ca;)

(7.2.4) 0o (anna)= (a— a) A (ma—a).
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Proof: (7.2.1) from (C2), (C4) and the fact that, under the restriction (N2),
ICa, = —Ca;. (7.2.2) and (7.2.3) from (N2). For (7.2.4), consider that @ » —a =
(I(—al U 02),01 N al> = <—‘Ca],al> and "a—-a = <I(—(12 U al),02 N az> =
(—Ca,,a,). Together with (7.2.2) these equivalences yield (7.2.4).

Proposition 7.3 In any SNL:
(7.3.1) —Ca; N —Cay, 2 &
(7.3.2) 0o (anna)= (a— —a) A (ma—a).

Proof: (7.3.1) follows from (N1), and (7.3.2) follows from (7.3.1) according to
the proof of (7.2.4).

The latter proposition makes manifest the main topo-algebraic differences
between the general case (N1) and the restriction (N2).

We call any (eventually void) even sequence of symbols from the set {~,—}
a positive modality, and any odd sequence a negative modality. We say that two
modalities M and M’ are weakly equivalent (strongly equivalent) iff Ma - M'a
and M’a— Ma (Ma = M’a and M’a = Ma). We say that two modalities M and
M’ are weakly distinct (strongly distinct) iff they are not weakly equivalent
(strongly equivalent).

Proposition 8 Up to (strong) equivalences, the following are all and only the
distinct modalities for SEL’s and SNL’s:

SEL
positive weakly distinct modalities: &,~—
negative weakly distinct modalities: —,~
positive strongly distinct modalities: &, ~,~—,~~
negative strongly distinct modalities: —,~,7~—,—~~,

SNL
positive weakly distinct modalities: &,~—,~~
negative weakly distinct modalities: —,~,~~—
positive strongly distinct modalities: &, ~,~~,~=1,71~~=
negative strongly distinct modalities: —,~,~~=1,"1~~ ~"1~,

Proof: The proof is given by the following reductions of the modalities based
on terms and indices of the ordered pairs:

(A) Negative modalities of length 1:
1) ~<xp) =<(px)
(2) ~<{x,p) ={(-Cx,x).
From Proposition 1.
(B) Positive modalities of length 2:
(1) x> =)
2) ~~<{x,y) ={ICx,—Cx)
(3) ~—<xy) =<(-Cy,»)
4) 7~Lx,p) =<x,—Cx)
From (A) and the fact that —C — Cz = ICz for any (open) subset z.
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(C) Negative modalities of length 3:
1) 7y = AKX p)
2) ~~~(x,p) = 1~~(x,y) = (—Cx,ICx)
(3) "~ (xy) =y —-Cy)
@ ~~—xp) =<ICy,—Cy)
(5) "~y = ~~(y) = ~77(x,y) = ~(x, ) = (-Cx,x).
From (A), (B), and the fact that IC—Cz = —CICz = —Cz for any open
subset z.
(D) Positive modalities of length 4:
1) "Xy =)
R) ~~~~(5,p) = ~~~(X,)) = ~~T~X,y) =~ ~~(X,y) =
e~ (Y)Y =~~~ Y) = ~~ Y)Y = ~~(X,p)
(3) —|“|~—|(x,y> = ~ﬂ~—|(x,y> = ~"(x,y) = ~=({Xx, ¥
@) "~ {x,y) = ~a~(X,Y) = 1 ~L{X, )
(5) ~~{xy) = ~~~{x,y) = (=Cy,ICy).
From (A), (B), and (C).
(E) We now increase the length of the irreducible modalities of length 4:

(1) "~~x ) = ~~Ux») (From (B)(1))
Q) ~~~x,y) = ~~{x,p) (From (D)(2))
B) "~~~ Xy =~~~ ) (From (D)(2))
@) ~~~~x,y) = ~~x, ) (From (D)(2))

(F) Now note that in any SEL we have by (N2) that:
—Ca; =1Ca, and —Ca, =1Ca;.

Proposition 9 In an SEL, Va,b € D,(X):
(9.1) a has the form {(x,D) iff x is dense in 7(X)
9.2) T{<x,J) =1
9.3) aU —a < 1; aVU —a has the form {x,)
9.4) T(aU -a) =1
9.5 a->b=1iffa; € b,
(9.6) If a— b then ~b— —a is a dense element (that is, it has the form {x,J))
(9.7) If ma— b then b — a is a dense element
(9.8) In any SEL, a Special Filter of the First Kind, V (see [9], Chapter 5,
par. 4) is maximal iff exactly a or —a belongs to V, for any a
(9.9) The counterpositional law fails in the SEL’s
9.10) bN b0
9.11) If a = (D,x) then for each b, a > b =1
9.12) ~(bN-b)<1; T (bN b)) =1
9.13) Tae ~=ago=~ao==go ~qge =q
(9.14) SEL ET¢(e)(A) iff CLASSFA
(9.15) More generally, for any positive modality M = MM, such that M, = ~
or My = =, SEL FM¢(e)(A) iff CLASS F A.

Proof:
(9.1) Since @ =ICY = —CX, Cx = X.
(9.2) From (AS5) and (9.1).
9.3)aVU ~a={a; Up(ay),p(a;) Na;). But from (b3), p(a;) Na; = & and
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so from (9.1) a; U p(a,) is dense in 7(X). For since 7(X) need not be totally
disconnected, in general (a; U p(a;)) € X.

(9.4) From (9.2) and (9.3).

(9.5) From (A4).

9.6) If a— b ={x,y) then =b— —a={w,y) for some w. Soifa—b =1,
y = and wis dense in 7(X).

(9.7) Similar to the proof of (9.6).

(9.8) If a; N by = D then a, U b, is dense and thus a; N b, + &. So let us
consider an element a such that neither a € V nor —a € V. If thereis a y € V such
that y N a = (J,x) for some x, then y N —a # J, and we set V' =V U {—a}.
Otherwise we set V' =V U {a}. In either case, V' is proper and VS V. So V is
not maximal. The opposite side is straightforwardly verified.

(9.9) From (9.5).

(9.10) From (9.5) and the fact that b N b = (D, x).

(9.11) From (9.5).

(9.12) From b N =b = {(J,x), (9.2), and (9.3).

(9.13) First of all, notice that from (N2), —Ca, = ICa,. For some x € a, and
w € —Ca; we have the following: =—a = (—Cay,x); == a = (ICay,w);
=~~a = {ICa;,w); and ~=a = {ICa;,—Ca;). The proof for ~~a and ~—a fol-
lows from 8(B).

(9.14)-(9.15) (Outline) If P is classically valid, then for each val®, val®(P)
has the form (x,). The result then follows from (9.2) and (9.13).

Proposition 10 In any SNL,va,b € D;(X):

(10.1) a has the form {x,D) if x is dense in 7(X). (The converse does not hold)

(10.2) T(aU —a) <1

(10.3) (9.5), (9.9), (9.10), and (9.11) hold in any SNL

(10.4) (9.6), (9.7), and (9.8) fail in any SNL

(10.5) T(aU ~a) =1

(10.6) ~—(aU —a)=1

(10.7) ~=~aeoTao =~ae==a< ="ge ~7q

(10.8) Let ¢’ be a translation from the classical connectives in to the operations
of SNL such that the classical “—” is interpreted over the SNL “—”, and
let ¢” be a similar translation such that the classical “—” is interpreted over
the SNL “~”. Let the other connectives be interpreted by ¢{(e). Then
(10.8.1) If SNL FT{’(A) then CLASS |- A. More generally:
(10.8.2) For any positive modality M, if SNL FM¢'(A) then CLASS +

A.
(10.8.3) SNL FET¢"(A) iff CLASS + A. More generally:
(10.8.4) For any positive modality M = MM, such that M, = ~ or

M, = ~, SNL F M{”(A) iff CLASS I A4.

Proof:

(10.1) From (N1).

(10.2) a U —a has the form ( y,), but for (N1) y may not be dense in 7(X),
so Ta = (ICy,—Cy) = (X,D).

(10.4) From (10.1).

(10.5)aU ~a =(a; U —Ca,,a, N a,) =<d,D) with d dense in 7(X). The
proof then follows from (A5).
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(10.6) From Proposition 8(B)(3).

(10.7) From the proof of (9.13) and (N1), ICa; € —Ca,, ICa, < —Ca,).

(10.8) Any classical theorem under the translation {” is a dense element while
not every classical theorem under the translation ¢’ has the form (x,2). So from
(10.2), (10.5)-(10.7), and Proposition 9 the result follows.

6 Special lattices and intuitionistic logic In any topological space
I(aN b) =IaNIb. So in any domain Dj; of type (N3) we have, for va,b € Ds:

aUbe Ds; Ta € D;.

But this does not hold for the operations —», -, =, ~, and N. By Proposi-
tion 8 we have, for va € Dj;:

—~a € Djs; 1=q € D;; ~~a € Dj.
But note that only “—~" leaves the terms of the ordered pairs unchanged. So
we can define on Dj; the following operations:

(A10) anb=-~(aNb)
(A11) awb=-~(a—-Db)
(A12) Na=-~"a

A13) ya=-1~~a="~=aq.

Proposition 11 0; =(D;3(X),n,U,m,N\,v,1,0) is an algebra. (We will call it
a “special Heyting lattice” (SHL).)

Proposition 12 Let A5(X) be an SEL with domain D,(X) and let D,(X)*
be the set of terms of the ordered pairs in D,(X). For any operation { in A,(X)
let & be ¢ restricted to D,(X)*. Then the algebra HA, (X) = (D,,(X)*,~1,N;,
Ui,~1,11,0,) is isomorphic to the pseudo-Boolean algebra H(X) = (D, (X)*,
~,N,U,=,1,0) (where the operations are the usual ones for topological pseudo-
Boolean algebras). Moreover, let A;(X) be an SHL with domain D5 (X); if the
pseudo-complementation ~ is interpreted as the SHL \, then HA,(X) is iso-
morphic to A;(X).

Outline of Proof: For any a € D,(X)* we define the following mapping:
f(a) =(a,—Ca).
We now prove the last isomorphism for the case (—):
fla -1 b) ={d(—aVU b),—CI(—a U b)).

But from Proposition 8
f(a)nf(b) = (a,—Ca)n{b,—Cb)
=({I(-aVUb),—CI(—a VU b)).

Moreover, for any subset x,—Cx is unique, so fis 1—1.
Let {(h) be the following translation from any propositional variable x and
any formulas P, P’ of the propositional intuitionistic calculus INT to SHL:
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§(hy(x) =p  forpe D,
S(M)(PAP) = () (P)n(h)(P)
$(h)(Pv P) = (h)(P)U ¢(h)(P)
{(h)(P=P) = (h)(P)nf(h)(P)
$(h)(=P) = N (h)(P).
Then:

Corollary 13 INT | P iff SHL k ¢ (h)(P).

Concluding remarks We would now like to underscore some of the syntac-
tical differences between the logics E® and CLSN. In E° there is no symbol for
nonconstructive negation, and for each logical constant y there is a rule for the
strong negation of ¢ (including strong negation itself and T). The two rules —T-
Introduction and T-Introduction taken together match our definition (AS), even
if we have not literally translated them algebraically. As a matter of fact, al-
gebraically speaking, Ta = (¢ = 0) » 0 = ~a — 0, and thus we have that = Ta
is different from ~a =a — 0:

-Ta ={(—Ca;,ICa,); ~a=(—Ca,a;)
and so

—~a £ Ta =Ta.

The literal translation of = T-Introduction is =~. But again, in order to conserve
the properties of T defined by natural deduction in E° we have to translate T
(algebraically) in a different way. Let us now illustrate these particular relations
between the calculus and the algebraic interpretation, paying special attention
to the syntactical introduction of a nonconstructive negation in E°.

From (9.13) and (10.7) we have:

In SNL

(a) ==a=<=-a
(b) ~~a < ~ma.

In SEL

@) ==ae =-a
®) ~~ae ~na.

From the algebraic point of view, the differences between (a)-(b) and (a’)-(b")
derive from the difference between (N1) and (N2). Now we are going to see that
it is possible to introduce syntactically into E® more than one plausible noncon-
structive negation (pairwise constructively incompatible).

Using the expressive capabilities of the calculus, let us introduce into E° a
sign for nonconstructive negation, ¥, in one of the following weakly equivalent
ways:
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D1 yAo -TA
D2) YyAoT-A
D3) YA o (A-pnp).

Assume that we have introduced such a y as a new rule into E®. We can now
prove in E°:

" WA o YA

From left-to-right we need not use the T-rules (which are the specific rules of
E®), but this implication is provable in SNL (see point (b) above). But from
right-to-left the T-rules are required. So, in view of (b’), the operation “~” de-
fined by (A8) ought to be a good algebraic candidate for .

When we have to specify the corresponding rule for =y, despite the previ-
ous supposition we have several choices for a definiens:

(—upl) WA o 1A

(7¥2) YA o YA
(—|¢3) —uﬁA — 4.

Note that from Proposition (8)(B)(4) we have - ~a - ~~a but not ~~a—
—1~a. This fact together with (y¥*) induces us to consider (—y;) as the most
natural choice. But it remains nevertheless a choice.

If we do adopt (—y;) the algebraic translation ¢ of ¢ is:

$(yA) = ~§(A4).

If we adopt (—y,), the algebraic translation { of y is:
$(¥A) = 7T$(A).

And if we adopt (—y3) the algebraic translation ¢ of ¢ is:
(¥A) = ={(A4).

In any of these cases, in view of (D1)-(D3) the domain of the algebraic interpre-
tation is D,. So E? is a rather peculiar logic, and the nonconstructive negation
of CLSN differs from any of the possible choices for ¢ in E°, as can be seen by
Propositions (9.13) and (10.7).

If we were to adopt simultaneously either (—vy;) and (—y,) or (—y,) and
(—y3) the extension would collapse into a nonconstructive logic.

A close but still constructive extension is given by the logic ES, as we shall
now see.

Proposition 14 An open set x of a topological space 7(X) is called regular
if ICx = x. We say that an element a = {a;,a,) of D;(X),D,(X),D;(X) is reg-
ular if both a; and a, are regular. Then for any regular elements a,b € D,(X)
the following hold.:

(14.1) ra=T-a

(14.2) (a—»b)=T(a—-b)

(14.3) ~(a—>b)=T—(a—b)

(14.4) (aNb)y=T(aNb)
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(14.5) " (aUb)=T-(aUDb)
(14.6) ~(aNb)<T-(aNb)
(14.7) (aU b) =<T(aU D).

Outline of Proof: Let us prove (14.2). (a = b) = (I(—a, U b;),a; N by).
Instead of a direct topological proof note that all we have to prove is that
I(—ICa; UICbh,) = ICI(—ICa, U ICh,). But this is equivalent to proving that
(~~a— ~~b) = ~~(~~a— ~~>b) in a pseudo-Boolean algebra.

The other propositions follow directly from Proposition 8 ((D2) and (C2))
and the fact that IC(a N b) = ICa N IChH.

Proposition 15 For any formula P of L(EY) that does not contain any sub-
formula of the form — (A A B) or A v B, and for any SEL A, (X), we have:
A, (X) Evalt(P) & val*(TP), where val* is a univocal assignment from the set
of propositional variables of L(EY) to the set of regular elements of A,(X), and
the operations are interpreted as for {(e) in Proposition 3.

Proof: By induction from Proposition 14.

Proposition 16 For any formula A and for every evaluation val™ of L(E‘i)
EY F A iff SEL Fval*A.

Proof: Similar to the proof of Proposition 3.

Finally, we note that a proper semantics for E* is the semantics of “evalu-
ation forms” presented in [4], which is not a Kripke-type semantics. Neverthe-
less, we can see that because rule (E) involves essentially the validity of an
implication, by using (9.5) we can reduce the problem of looking for an algebraic
model for E* to the problem of finding a structure in which

(Tya =1 (b Uy ¢) = (Tya -1 b) Uy(Tia —; c))
holds. By Proposition (7.1.1) the latter is reduced in its turn to
(~~a—->(bVc) - (~~a—-b)U (~~a—0)),

and since in any topological pseudo-Boolean algebra ~~a = I — x, for some x,
everything is reduced to the problem of looking for a Kripke model for

(~a— (bUc) » (~a—=b)U (~a—c)

(which is the Kreisel-Putnam principle, see [3]). So we could apply the results
of Gabbay [2] together with the definitions of N, U, ~, =, T, and — to find an
algebraic model for E*. But note that in this case we have to impose a partic-
ular structure over the topological space underlying these SEL’s.
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