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Enumerations of Turing Ideals with Applications

DAVID MARKER*

Abstract We examine enumerations of ideals in the Turing degrees and give
several applications to the model theory of first- and second-order arithmetic.

A Turing ideal is a collection of subsets of ω closed under Turing reducibility
and join. If / is a countable Turing ideal we say that E is an enumeration of /
if and only if / = {En:n Eω] where En- {m:(n,m) G E}. Enumerations of
Turing ideals play an important role in the study of degrees coding recursively
saturated models of Peano Arithmetic (see [5]). Our goal in this paper is to point
out some simple facts about enumerations of Turing ideals and examine their
consequences in the model theory of first- and second-order arithmetic.

1 ^-incompleteness theorems We consider three subsystems of second-order
arithmetic, RCA0, ACA0, and WKL0. RCA0 is axiomatized by P~~ (Peano
Arithmetic without the induction axioms), the axiom of extensionality and the
schemas of Σ?-induction and recursive comprehension. WKLQ is obtained from
RCA0 by adding an axiom saying every infinite subtree of 2 < ω has an infinite
path. ACA0 is obtained from RCA0 by adding the schema of arithmetic compre-
hension. For further information on these theories the reader should consult [7].

Our recent interest in this subject was motivated by considering the follow-
ing incompleteness theorem of Steel.

Theorem 1.1 (Steel [9]) Let T be an ^-consistent arithmetic extension of
ACA0. There is an ω-model M of Tsuch that M (= "there is no ω-model of T".

Thus even in ω-logic T does not prove its own ω-consistency. Steel's result
is actually much stronger. Suppose M = (ω,X) and N = (ω, Y) are models
of RCAQ. We say that M » N if and only if there is E G X an enumeration
of 7. If M N "there is an ω-model of T", then there is an E G X such that N =
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(ω,{En:n E ω}) is a model of T. Clearly M » N. Steel's result shows that the
collection of models of T has » minimal elements. In fact he proved the
stronger result that the collection of models of Γis well founded under » . This
is reminiscent of KreisePs version (see [8]) of the second incompleteness theorem.

The situation is dramatically different if we weaken T.

Definition S C (P(ω) is a Scott Set if and only if
(1) S is a Turing ideal
(2) If Γ c 2 < ω is an infinite tree recursive in an element of S, then Γhas an in-

finite path recursive in an element of S.

The second requirement is equivalent to the requirement that every consis-
tent theory in S has a completion in S.

It is easy to see that the Scott sets are exactly the ω-models of WKL0.
In [6] Scott showed that if T is a complete extension of Peano Arithmetic then
Rep(Γ) = {{n: φ(n) E T]: φ a formula) is a Scott set.

Proposition 1.2 If Mis an ω-model of WKL0, then there is N, an ω-model
of WKLQ with M » N. Thus WKL0proves (in ω-logic) its own ^-consistency.
In particular, below any model there is an infinite descending ^>-chain.

Proof: Let M = (ω,S), where S is a Scott set. S contains T, a completion of
Peano Arithmetic. But then Rep(Γ) is a Scott set and S contains an enumera-
tion of Rep (Γ).

For RCAQ it is easy to see that the ω-models are exactly the Turing ideals.

Lemma 1.3 If E is an enumeration of a Turing ideal I, then E£I.

Proof: If E El, consider m such that Em = {n:n £En}.

Corollary 1.4 IfRec is the collection of recursive sets, (ω, Rec) N uthere is
no ω-model of RCA0".

In Section 2 we show there are infinite descending chains of ω-models of
RCA0 + -i WKLQ. In Section 3 we build other models of RCA0+ "there is no ω-
modelof RCA0."

2 Generic enumerations Let / C (P(ω) be a countable Turing ideal. Let
P = [p: ω -• I\ domain ofp is finite}. If G C P is a reasonably generic filter then
g = u G is a function from ω onto /. Let E C ω be defined by (n,m) EEif and
only if m E g(n). E is a generic enumeration of /.

Let ΓC 2 < ω be a tree with no infinite path in /. We will show that suitably
generic enumerations do not add paths to T Let D = {p EP:p \\- Φe is not a
path through Γj.

Claim D is dense.

Proof: Let p E P. We may assume that p determines EO,EX.. .En and gives no
information about the rest of E. Let Ep denote the portion of E determined by
p. σ and r will range over finite ways to extend Ep.

Case 1: 3σ3nVτ D σφf/7Ur(A2)ΐ. In this case we choose q < p such that Eq D
F U α , Clearly tf |hφf(/i)t.
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Case 2: 3σ3«Vm < n ΦePU\n)i9 but <φΓ U σ (0). . . φfΌ\n)) £ T. In this case
we can choose q < p such that Eq D EpUσ. Clearly q | h φf is not a path
through T.

Case 3: Otherwise. We build σ0 = 0 C oχ C σ 2 . . . as follows: Given σn we
search through extensions until we find σn+ι such that φfpΌσ"+ι(n)i. Such a
sequence may be built recursively in Ep. Clearly for each n, <φf/?Uσι(O)> >
ΦePUσ"+ι(n)) E T. Thus we have found a path through Trecursive in Ep'. But
Ep E /, a contradiction.

For x ί / let D* = [p E P :p | h φξ Φ x]. Similar arguments show that Dx

is dense. Thus we can prove the following:

Lemma 2.1 Iflc(?(ω)isa countable ideal, 3 is a countable collection of
trees without paths in IandJc (P(ω) is a countable set disjoint from I, then there
is E an enumeration of I such that for all x E 7, x ΦT E> and for all 7Έ 3, T has
no path recursive in E.

Corollary 2.2 If M is a countable ω-model of RCA0 there is N D M, a
proper extension such that N is also an ω-model of RCA0 and every tree in M
with no path in M still has no path in N.

Proof: Let E be a suitably generic enumeration of M. Let N be the sets recur-
sive in E.

Thus 2.1 allows us to build models where every nontrivial instance of WKL0

fails. (In a similar way techniques from [2] allow us to build models of WKL0

where every nontrivial instance of arithmetic comprehension fails.)
Lemma 2.1 allows us to build long increasing » chains of models of

RCAQ + -i WKLQ. A trick from descriptive set theory allows us to build infinite
decreasing chains. This trick was first used by Harrison [1].

Suppose (X,<) is a linear order with a least element 0^ such that every non-
maximal element of Xhas a unique successor. We say that a function/:X-*
(P(ω) is an X-enumeration sequence if and only if:

(1) f(0x) = 0 .
(2) For all xG X, f(x) is an enumeration of the Turing ideal Ix generated

by if(y)' y<χ}.
(3) For all x, if T is a recursive tree with no recursive paths then T has no

path recursive in/(x).

Clearly if x < y then/(x) <τf(y) Also, if x is the immediate successor of
y then Ix= {z :z<r/( j ) }

If a is a countable ordinal we can build an enumeration sequence f:a ->
(P(ω) by iterating Lemma 2.1.

Definition We define O+ = {e E ω:
(1) φe is total and codes <e a linear order of ω,
(2) <e has a least element 0ei

(3) each nonmaximal element has a <e successor).

Definition O = [e E O + : <e is a well order).
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O is Kleene's O, a complete Π{ set. It is easy to see that O + is arithmetic and

oco+.
Let S = [e E O+: there is an enumeration sequence for (ω,<e)}. S is clearly

Σ\. By the above remarks O C S . Thus since O is Π{ and not Σ\, there is e E
S — O. Let/ be an enumeration sequence for <e. Since <e is not well founded
we can find n0,nx,n2,... such that /i/+1 < e «,. But then Im » /rtl » 7 Λ 2 . . . , and
each In. is an ω-model of RCA0 + -ι JVKL0. Thus we have shown:

Proposition 2.3 jΓΛere /s1 #« infinite descending » sequence of models of
RCA0 + ^WKL0.

We note two more applications of Lemma 2.1.

Proposition 2.4 If I and J are distinct countable Turing ideals there is a
degree d containing an enumeration of one but not the other.

Proposition 2.4 has consequences for degrees coding models of Peano arith-
metic. If M 1= PA and c G M , let r(a) = {n E ω: the nth prime divides a]. Let
Re(M) = {r(a): a E M). Re(M) is a Scott set. In [5] we showed that if M is
recursively saturated, the set of degrees containing copies of the atomic diagram
of M is exactly the set of degrees containing enumerations of Re(M). The next
corollary is now immediate.

Corollary 2.5 Let M and N be countable recursively saturated models of
Peano arithmetic such that Re(M) ψ Re(N); then there is a Turing degree con-
taining the atomic diagram of one model but not the other.

Note that we may have nonelementarily equivalent recursively saturated mod-
els of PA with the same Scott set. These models will have the same degrees con-
taining copies of their diagrams.

3 Avoiding enumerations In this section we show how to extend a Turing
ideal without adding enumerations of ideals for which we did not already have
enumerations. We will do this by adding minimal upper bounds by perfect set
forcing.

We say that E is a sub-enumeration of / if / c [En: n E ω}. We say that /
is a simple subideal of /if / = / or for some x E /, / c [y \y < Γ x],

A perfect tree is a function T: 2<ω -> 2 < ω such that Vσ, r (σ C τ => T(σ) C
T(τ)) and VσΓ(σO) and T(σl) are incomparable. We say 7"< T' if Vσ(Γ(σ) 2
T'(σ)). We say Γis A-pointed if T <τ A and v/E [T] A <τf (Here [T] =
(U T(f\n) :fe 2ω)}.) Note that if T < T, T < Γ Γand Γis A-pointed, then
7" is A-pointed.

Let /be a countable Turing ideal. Let P be the set of perfect trees which are
A-pointed for some A E P. Forcing with P produces a minimal upper bound for
/. Below we give a listing of dense sets which we could meet in the construction
of a generic. The first four are standard (see [4]).

(1) L e t Z > ° = { Γ E P : | Γ « » |>/*}.
If G C P is filter meeting each £>£, then we build a generic real/ =

U(Π< »:TGG}.
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(2) ForA<ΞlletDχe= {T eP :T \\-φ{ Φ A}.
(3) For A E /let D\ = {Te P: for some BelB >TA and Γis ^-pointed}.

Meeting D\ and all D\ e for each A E / forces the generic real/ to be
strictly above /.

(4) Let A? = {Te P : Γ |h </>{is not total or Γ | h φ{ < Γ Γor Γ | h / < Γ

<4>{,Γ>}.
This is the usual main step of a minimal degree construction. As the

ideas in the density argument for D\ will be useful below we outline
them here. Let ΓG P. If there are n and σ such that for all r D σ φl{τ)

(fl)ΐ, we can find T < Γsuch that T \ V φ{is not total. Otherwise we
can find 7" < Γsuch that for each n and each σ of length n9 φl {σ)(n)
converges by stage \T(σ)\. Clearly T' | h φ{is total.

Assume that T \\r φ{ is total. We say that σ is an e-splitting node
if there are τo,τι D σ and n such that φΓ(τo)(«H> Φ ί ( τ i ) ( « H , but
^ ( T O ) ( Λ ) * ^ ( T 1 ) ( / I ) .

If there is σ which is not an e-splitting node, we can find 7" < Γand
g <τ T such that T' \ V φ{ = g. If every node is e-splitting we can find
7" < Γsuch that for all σ,σθ and σl demonstrate that σ is e-splitting. In
this case for any path h through 7", h can be recursively reconstructed
from T and φ£.

(5) Let 5 C 2 < ω be a tree with no paths in /. Let D^e = {T: T \ h φ{& [S]}.
Let ΓE P. As in case (4) we may assume that Γ | h φf is total. Since

5 has no paths in /there is an n such that (φlm(0)y... φlm(n)) £ 5.
Let T < Γ with Γ'« » = Γ(0"). Clearly r | h φζf [S].

(6) Let / be a simple subideal of / with no subenumeration in /. Let Dje =
{Γ E P : t I h φ{ is not a subenumeration of J j .

Let Te P. As in case (4) we may assume that Γ | h φ{is total. If / C
{£>:/) <r^4) for some A E /, then, by case (3), we may assume that Γ
is A -pointed. We form a set E as follows. Let eo,eu . . . be such that
\fXvmVnφ?n(m) = φ?((n)m)). Let «σ,A2>,m> E £<=» 3τ D σ35[|r| >
mΛφnτ)(m) = 1 by stage 5 Λ Vr' ((|r' j < | r | Λ r r D σΛ Φen

iτ)(m) con-
verges by stage 5) =• Φ%τΊ(m) = 1)].

Since for all large enough TD σφ^τ)(m)i, Eis recursive in Γ. Thus
E E /, so E is not a subenumeration of J. We can find D E / such that
for allnDΦ En and £> < Γ Γ. [If Jd {C: C <TΛ], we use the fact that
Γis ^-pointed where A <τ B. If / = /, we let D = {n : n <£ En].]

We build T < Γ. Let Γ'« » = Γ« ». Let T'(σi) = Γ(τί), where r
is the first node found such that T(τ) D T'(σ) and 3m φl^Hm)ϊ Φ D.
Clearly Γ' | h D ί {φ/w:πEω}.

(7) Let / be a simple subideal of / with no enumeration in /. Let Dje =
{Γ E P : Γ I h φ{ is not an enumeration of /}.

We build E as in case (6). If E is not a subenumeration of /, then we
proceed as above. If not, then since E is not an enumeration, there are
σ and n such that £< σ > r t > <£ /. We define Γ' < Γby: T (r) = T(στ). Since
is<σfΛ> is infinite, there are no £„-splittings below σ. Thus Γ' \\- φ{n =

We give two applications of this method.
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Proposition 3.1 For any countable ideal I there is a minimal upperbound d
which does not contain a subenumeration of I.

This was proved in [3] in case /is the ideal of arithmetic sets. [In fact their
proof works for countable jump ideals.]

Proposition 3.2 There is an ω-model M of RCA0 of power £{ such that
M (= "there is no ω-model ofRCAQ" and ifSc2<ωeM is a tree with no path
recursive in S, then S has no path in M.

Proof: We build a chain of countable ideals (Ja: a < ωx). Let Jo be the recur-
sive sets. Given Ja force to build fa a minimal upperbound for Ja such that if
E <τfa> then E is not an enumeration of any Jβ,β<a and every tree in Ja with
no path in Ja has no path recursive in/ α . Let / α + 1 = [A :A <r/«} If « is a
limit, then Ja = (Jβ<a Jβ- Let / = U«4, and let M = (ω,/). The proposition fol-
lows since the Ja are the only subideals of /.
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