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Actuality and Quantification

ALLEN HAZEN

Abstract A natural deduction system of quantified modal logic (S5) with
an actuality operator and "rigid" quantifiers (ranging, at every world, over
the domain of the actual world) is described and proved to be complete. Its
motivation and relation to other systems are discussed.

/ The language Predicates. One logical predicate: E ! , "exists". Individual
constants if you want, though for simplicity I'll ignore them (constants thought
of as formalizing names or other "rigid designators" ought to behave like the free
variables). Individual "parameters" (free variables): u,υ9... . Individual bound
variables: x9y,... (I follow the conventions of Thomason [16] here). Truth func-
tional connectives: &, v, D, ~ . Modal operators: D (necessity), 0 (possibility),
O (actuality). Ordinary quantifiers: V, 3. "Actuality" quantifiers: V°, 3°. The
usual formation rules (bound variables never occurring free).

2 Semantics A model is a quadruple M = (W,@9D9I} where

Wis a set (of "worlds"),

@ E W (@ is "the actual world"),

D is a function assigning to each wEWa (not necessarily nonempty) set as
its domain, and

/is an interpretation function assigning to each Λ-adic predicate a function
assigning to each w G Wa set of ^-tuples drawn from \Jv(ΞWD(υ), with
the condition that [/(E!)] (w) = D(w).

Note that, corresponding to various intuitive readings of the predicates of the
formal language, and to various metaphysical positions, we might want to im-
pose further conditions on the interpretation function; these will often validate
extensions of the logic described below.

An assignment for m is a partial function from the individual parameters into
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\Jw(EWD(w) (partial function in order to avoid validating OE!u, which is not
derivable in the system described. If you want motivation, think of some param-
eters as formalizing names from fiction.)

We define in the first instance: Truth in a model, at a world, on an assign-
ment. Truth in a model at a world is Truth at that world in that model on ev-
ery assignment. Truth in a model is Truth at the actual world in the model.
Validity is Truth in every model; validity of an argument is validity of its asso-
ciated conditional.

Base clause of recursion: An atomic formula, F(uu... ,un), where F is an
Az-adic predicate, is True(M, w,α) if and only if

(i) a(uχ),... ,a(un) are all defined, and
(ii) <α(fii),... ,«(!*,,)>£ [I(F)](w).

Recursion clauses:
For truth functional compounds: Standard.
For modal and actuality operators:

ΏA is True(M, w,a) iff A is True(M, w\a) for every w' G W9

<)A is True(M, w,α) iff 4̂ is True(M, w',α) for at least one w' E W,
OA is True(M,w,α) iffA is True(M,@,α).

For ordinary quantifiers:

VxA (x/u) is True(M, w,a) iff A is True(M, w,β) for every assignment β
such that

(i) β(v) = a(v) for every parameter v Φ u,
(ii) β(u) is defined, and

(iii) β(u)ED(w).

3xA (x/u) is True(M, w,α) iff A is True(M, w,β) for at least one assignment
β such that

(i) β(v) = a(v) for every parameter v Φ u,
(ii) β(u) is defined, and
(iii) β(u)EΌ(w).

For actuality quantifiers:

V°xA(x/u) is True(M, w,α) iff A is True(M, w9β) for every assignment β
such that

(i) β(v) = a(υ) for every parameter v Φ u,
(ii) β(u) is defined, and

(iii) jS(iι)eD(@).

l°xA (x/u) is True(M, w,α) iff A is True(M,w,β) for at least one assign-
ment β such that
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(i) β(υ) = a(v) for every parameter υ Φ u,
(ii) β(u) is defined, and

(iii) β(u)ED(@).

(= means that either both terms are undefined or both are defined and have the
same value.)

Note that, whereas at each world the ordinary quantifiers range over the do-
main of that world, the actuality quantifiers range at each world over the domain
of the actual world. (In much of the literature on the subject, what I have called
the ordinary quantifiers are called actualist quantifiers. For obvious reasons, I
avoid this terminology; I have sometimes called them world-restricted quanti-
fiers.)

3 Motivation The language of quantified modal logic with only the ordinary
quantifiers lacks expressive power; the addition of either the actuality operator
or the actuality quantifiers allows the formulation of sentences that have no
equivalents in the unenriched language. Furthermore—this is what makes the
purely formal semantic fact interesting —some such sentences seem to be appro-
priate formalizations of apparently meaningful natural language sentences whose
meanings and logical relations would seem, pre-analytically, to form part of the
proper subject matter of modal logic. So that, if modal logic is regarded as a tool
for semantics and/or conceptual analysis, rather than as a purely mathematical
study, it ought to consider languages with this added expressive power. The oper-
ator and new quantifiers are both motivated, for there are sentences such as

0(Q& Vx(FxDθFx))

(where Q is a O-adic predicate, i.e., a sentence letter) formulable using the ac-
tuality operator, for which there are no equivalents using only the actuality quan-
tifiers, and also sentences such as

0 ( P & V°ΛΓE!X)

of which the opposite is true. The first might be used in formalizing something
like "The truth of Q wouldn't entail that anything was F other than the things
which are actually F"; the second something like "The truth of P wouldn't en-
tail the nonexistence of any actual object".

4 Previous partial completeness results In this section I will cite mainly my
own work, not because I claim great originality, but because I know it better than
I do the rest of the literature.

(A) Propositional modal logic (S5) with actuality My 1978 note [8] defines
and proves complete a Fitch-style natural deduction (cf. Fitch [4] and Thoma-
son [16]) system for Propositional S5 with an actuality operator. With a few later
simplifications, we may state its rules as follows.

Define a formula to be strict iff it is a truth-functional compound of formulas
beginning with modal or actuality operators. (NB: in extending the system to lan-
guages with quantifiers, it is important to keep to this definition of strictness.
Compounding of strict formulas with truth-functional propositional connectives
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makes strict formulas; quantification of strict formulas doesn't. Thus the notion
of a strict formula is not the same as the usual notion of a modally closed for-
mula.) In addition to the familiar subproofs for the v-, D-, and —rules, we have
strict subproofs; nonstrict formulas may not be reiterated into strict subproofs.
A strict subproof used in an application of the DI or OE rules is called a mo-
dal subproof one used in an application of O sub is an actuality subproof.

We define, inductively, two kinds of (sub)proof, the A-proof and the F-
proof (mnemonic: Foreign). Intuitively, the formulas occurring as items of an
A-proof are thought of as being supposed true at the actual world, those in
an F-proof as being supposed true in foreign worlds. Base: (i) the main proof
is an A-proof, (ii) modal proofs are F-proofs, and (iii) actuality proofs are A-
proofs. Recursion: a nonstrict subproof is of the same kind as the proof of which
it is an item.

We assume rules for the truth-functional connectives; the (two-valued) rules
of Fitch's textbook or the rules of Thomason's will do.

DI: ΏΛ is a direct consequence of a categorical (hypothesisless) strict sub-
proof with A as an item.

DE: A is a direct consequence of UA.
01: OA is a direct consequence of A.

OE: Where B is a strict formula, B is a direct consequence of 0A together
with a strict subproof having A as its only hypothesis and containing B
as an item.

Osub: OA is a direct consequence of a categorical strict subproof having A as
an item.

OI: (NB: this rule may only be used in A-proofs) OA is a direct consequence
of A.

OE: (NB: this rule may only be used in A-proofs) A is a direct consequence
ofOA.

The system is a formulation of what might be called the A-logic of the ac-
tuality operator. It is sound and complete with regard to validity as defined
above: truth (or, for arguments, truth-preservation) at the actual world. One may
also define an auxiliary logic, the F-logic of the actuality operator: the logic cor-
responding to a deviant definition of validity as truth (truth-preservation) at every
world of every model. A natural deduction formulation of the F-logic is obtained
basically by changing the inductive definition of A-proofs and F-proofs so as to
make the main proof an F-proof (for another technical change needed, see be-
low). The F-logic has an important role in Henkin-style completeness proofs for
this logic and its quantified extensions. In such a proof we define a model, taking
certain maximal consistent sets of formulas as starting points. The maximal con-
sistent set destined to give rise to the @ of the model is maximal consistent with
respect to the A-logic, but those sets of formulas giving us the other possible
worlds are only maximal consistent with respect to the F-system.

Note that the formulation of the Osub rule given is formally parallel to the
DI rule. Since, however, formulas starting with O are strict, and OE can be used
in an A-proof, a form parallel to OE is a derivable rule of the system. The only
touchy point is in connection with the use of reductio in F-proofs where an "ac-
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tual contradiction" such as O(P & ~P) has to count as a contradiction, and it
is not possible to refute it without use of the rules only allowed in A-proofs. The
trick is to derive its negation in the main proof (an A-proof by definition) and
reiterate through to where needed. A formulation of the F-logic would have to
have a second actuality subproof rule, or take ~O(P & ~P) as an axiom, or
something similar.

Discussion The part of this system without the actuality operator and its rules
is equivalent to Fitch's formulation of S5 in [5]. One of the advantages of defin-
ing a class of strict formulas and allowing all but only strict formulas to be reiter-
ated into strict subproofs is that the analogies between the modal rules and
quantifier rules are enhanced. In particular, this formulation of S5, unlike many
other natural deduction formulations of modal logics, allows the derivation of
the necessity rules from the possibility rules when necessity is taken as defined,
and the derivation of the interdefinitions of necessity and possibility when both
are taken as primitive. Fitch's version of natural deduction is, for nonmodal
logic, hardly more than a notational variant of Gentzen's N-systems: derivations
in one sort of natural deduction system can be transformed into derivations in
the other in a purely routine, scissors-and-paste, way. (Fitch's notation does, un-
like Gentzen's, make explicit which assumptions are discharged at any potentially
assumption-discharging inference.) When we move from quantification theory
to modal logic, however, and let the restrictions on nonstrict formulas take a
form parallel to the restrictions on formulas containing the Eigenvariable of a
quantifier inference, Fitch's version is a bit more flexible. Reiteration can be used
to avoid some Cuts; compare, for example, the proof of P D DOP in our Fitch-
style version with that in a Gentzen-style "NS5", or with the proof in the system
of Corcoran and Weaver [1]: by reiterating OP into the strict subproof, a Fitch-
style proof can be given in five lines, whereas it is necessary in the other systems
to derive OP D DOP (which will be a maximum formula of the proofs in
Prawitz's sense), and to infer the desired thesis from it. (S5 has a simple and in-
tuitive possible world semantics and pleasant syntactic properties such as the
equivalence of every formula to one in a simple normal form, so it comes as a
surprise that its proof theory is as convoluted as it is. As Sylvan, and doubtless
many others, have pointed out, cut elimination/normalization fails for the most
natural formulations; to obtain it Sato [14] was forced to consider a quite ba-
roque sequent calculus. For an indication of what can be done with Fitch-style
rules, see Fitting [6].)

Crossley and Humberstone [2] present an axiomatic formulation of what I
have dubbed the F-logic. Their paper and mine [8] were written two or three years
before their publication; our work was carried on in complete independence.
Their paper is conceptually weak (for reasons discussed by Zalta [18]) in giving
priority to the F-logic, but is technically richer than mine.

(B) Non-modal quantifier logic (universally free logic) In my dissertation [7]
I show that, by adding existence premisses to the rules VE and 01, and existence
hypotheses to the subproofs of the VI and 3E rules of, say, the version of stan-
dard predicate logic in Thomason [16], one obtains a complete natural deduc-
tion for universally free logic (which, after all, is what one wants for the logic
of world-restricted quantification in a system of quantified modal logic coun-
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tenancing contingent existence). Depending on the application—on, e.g., whether
one is construing variables as ranging over a broader or narrower category of en-
tities, and on what sorts of conditions one wishes to allow atomic predicates to
formalize—one may or may not wish to impose what Kit Fine calls the "false-
hood convention". If one does, the appropriate move is to make E!« a direct
consequence of any atomic formula containing u. One may not, however, wish
to: universally free logic is the obvious logic for sortal quantification, with E!
interpreted as merely meaning "is of the appropriate sort".

Kathleen Johnson Wu's recently published natural deduction system for uni-
versally free logic [17] is very similar to, and in some ways more elegant than,
mine. She avoids the use of an existence predicate; both for incorporation into
a system of quantified modal logic and from the point of view that sees univer-
sally free logic as a dry run for a system of sortal quantification, however, the
existence predicate seems desirable.

(C) Quantified modal logic with ordinary quantifiers If you simply combine
in a single system all the rules from propositional logic together with all the rules
for nonmodal quantifier logic, one of four things will happen:

(i) You'll get an incomplete system, and have to postulate some additional
principles relating quantifiers and modality. (Example: if you want to
use free logic for reasons unconnected with modality but wish to inter-
pret the quantifiers as ranging over necessary existents, you'll have to
jigger something to get the Bar can Principle and its converse.)

(ii) You'll get an unsound system, and have to place restrictions on one or
more of the rules that aren't needed, or perhaps even formulable, with
respect to the fragment of the language to which the rule is native. (Stan-
dard example: with unfree predicate logic, avoiding the Converse Bar-
can Principle if your semantics doesn't call for it.)

(iii) Some combination of (i) and (ii).
(iv) You'll get a sound and complete (relative to the desired semantics) sys-

tem of quantified modal logic.

In [7] I prove that combining universally free logic (for ordinary quantifiers)
with S5 and an actuality operator is one of the lucky type (iv) cases. The proof
is a standard Henkin-style argument, stupefyingly complicated in its details but
without conceptual novelty. (I also prove that adding rules for identity doesn't
cause any problems, either.)

5 Rules for actuality quantifiers Ordinary, world-restricted, quantifiers are
interpreted as ranging over existents; their logic is formalized by putting existence
premisses/hypotheses into the familiar rules. Actuality quantifiers are interpreted
as ranging over things that actually exist (actual existents); the obvious way to
formalize their logic is to give a formally identical set of rules, but with actual
existence premisses/hypotheses. Thus:

V°I: V°x(A(x/u)) is a direct consequence of a subproof, general with respect
to «, having OE! u as its only hypothesis and having A as an item:
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OE!w

A

V°x(A(x/u))

v° E: A (υ/u) is a direct consequence of two premisses, V°χ(A (x/u)) and OE! υ.
3°I: 3°x(A(x/u)) is a direct consequence of two premisses, A {υ/u) and OE! υ.

3°E: Where 5 contains no occurrence of u, B is a. direct consequence of two
items, 3°x(A(x/u)) and a subproof, general with respect to u, having A
and OElu as its only hypotheses and having B as an item:

l°x(A(x/u))

u A
OElu

B

B

6 The completeness proof The completeness proof in [7] for the system
without the actuality quantifiers is along the lines of the proofs in Hughes and
Cresswell [9], defining certain saturated sets of formulas which become the pos-
sible worlds of a model. The building up of these sets is a bit complex: in order
to ensure that, e.g., the new constants introduced in "saturating" one set occur
in the right modalized formulas in other sets, I allowed alternating phases of

(i) Expansion to saturation,
(ii) Insertion of formulas (starting with D, 0, or O) that have appeared in

one set into the others.

In extending the completeness proof to a system with the actuality quantifiers,
it is sufficient (and necessary) to verify that formulas starting with actuality quan-
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tifiers imply enough formulas starting with modal or actuality operators to keep
the books balanced. Considering cases, the only unobvious are the derivability
of the Barcan Principle and its converse for the actuality quantifiers. (Since what-
ever world an actuality quantification is evaluated at, it always ranges over the
same domain—D{@) —it is obvious that BP and CnvBP are valid for actuality
quantifiers.) The needed derivations follow.

CnvBP: 1 DV°JC(^(^/M))

2 u OE!« hyp

3 ΠV°x(A(x/u)) 1, reit

4 D OElu 2, reit

5 ΠV°x(A(x/u)) 3, reit

6 V°x(A(x/u)) 5, ΠE

1 A 6, 4, V°E

8 ΏA 4-7, DI

9 V°x(ΠA{x/u)) 2-8, V°I

As experience with quantified modal logic would lead one to suspect, the deri-
vation of the Barcan Principle is a bit trickier than that of its converse.

BP: 1 V°x{ΏA(x/u))

2 Ov°x{nA(x/u)) 1, 01

3 D 0v°x(ΠA(x/u)) 2, reit

4 u OElu hyp

5 0v°x(ΠA(x/u)) 3, reit

6 D V°x(ΠA(x/u)) hyp

7 OElu 4, reit

8 ΏA 6, 7, V°E

9 ΠA 5, 6-8, 0E

10 A 9, DE

11 V°x(A(x/u)) 4-10, V°I

12 ΠV°x(A(x/u)) 3-11, DI

There is an unpleasant roundaboutness to this derivation. At line (2), a formula
is inferred by 01, while at (9) something is inferred from this formula by 0E.
But then, we have long known that S5 was proof-theoretically recalcitrant. This
little detour through the 0 is needed because (1) isn't suitably "wrapped" for
reiteration into the strict subproof (3)-(l 1) where it is needed. This is an exam-
ple of how S5 systems resist Prawitz-normalization.
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7 Why it doesn H matter Using formulas of the form DE! u as "existential"
premisses/hypotheses, we could in the same manner formulate rules for a sort
of quantifier ranging over necessary existents. Since, however, the necessary ex-
istents of a model are a common subset of all the D( w), definable by the for-
mula DE!w, such quantifiers would not increase the expressive power of the
language.

Using formulas of the form 0E!w as premisses/hypotheses, we can formu-
late rules for quantifiers ranging over all possible existents. These would be the
familiar "possibilist" quantifiers, sometimes adopted as primitives, sometimes
condemned as conceptually/metaphysically suspect. I find it rather pleasing that
they can be seen, in their formal rules, as instances of a common pattern. (The
quantified modal logic of counterfactual conditionals has not, to my knowledge,
been much studied. Were it to be, the logic of quantifiers over "things that would
have existed if . . ." might prove an interesting, and hairy, subject; I have no
conjecture as to whether rules analogous to those considered above would
suffice.)

Natural languages, however, seem a good deal richer than quantified modal
logics. The operator O "exempts" the subformula it governs from the semantic
effects of all the modal operators in whose scope it lies. Natural language actu-
ality locutions are more flexible:

"Smith thought that if Jones had been at top form, the winning score would have
been higher than it actually was"

seems ambiguous to me. On one reading actually exempts the stuff it governs
only from the inner intensional operator, if Jones had been at top form , so
the contrast is with the score Smith thought the winner made. On the other read-
ing, actually exempts from Smith thought that as well, so the contrast is with
Jones's real life score. In formalizing the modal notions expressible in natural
language, then, a modal logic should have a variety of actuality operators of dif-
fering strengths. It should be possible to prefix a subformula occurring within
the scope of n modal operators with any of n actuality operators, O i , . . . ,On,
with O, exempting the stuff it governs from the innermost / of the nested mo-
dal operators governing it. A language with such operators, however, is equiv-
alent, in its expressive power, to one with explicit, variable-binding quantification
over possible worlds. (Hint: show that sentences of such a language have a nor-
mal form in which the O, occur only before atomic formulas. Sentences in nor-
mal form can be reanalyzed, treating

OiFuu...,un

as an (n + l)-adic predication, modal operators as quantifiers, and the subscripts
on the actuality operators as a notational variant of variables.) In an environ-
ment like that, however, the ordinary world-restricted quantifiers can be made
to do the work of the actuality quantifiers and of the possibilist ones. At which
point the question of the formalization of the logic of actuality quantifiers takes
on the aspect of an "axiomatizability within a fragment" problem, and not one
whose solution promises much conceptual insight.

There is a bit of philosophical bite to the result on the expressive power of
modal languages with multiple actuality operators. Hilary Putnam in [13] speaks
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of the necessity operator as the only non-nominalistic notion needed for the
modal-logical construal of mathematics, but the actual construction he sketches
seems to presuppose a modal language of at least this expressive power. Given
the power of this language, therefore, one might ask in what sense Putnam has
provided an alternative to the "mathematical objects" view: possible worlds are
surely no more innocent, ontologically, than sets. (Charles Parsons, whose work
on modal set theory and modal number theory is a good deal more detailed than
anything Putnam has published, and who does not claim to be avoiding ontol-
ogy, has also found such languages necessary for the expression of some intui-
tive arguments for set-theoretic axioms, and studies them explicitly.)

NOTE

Readers interested in extensions of the ordinary language of quantified S5 will also
want to consult the three papers by Harold Hodes in the Journal of Philosophical
Logic, v. 13 (1984).
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