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Derivαbility Conditions on

Rosser's Provαbility Predicates

TOSHIYASU ARAI*

Abstract This paper is complementary to a paper by Guaspari and Solo-
vay. Let Ύh(x) denote a Σt provability predicate 3yθ(y,x) for PRA (Pri-
mitive Recursive Arithmetic). We assume that formulas are in negation
normal form, and hence -i-iφ is literally equal to φ for a formula φ. The
symmetric form of Rosser's provability predicate ThR for Th is defined by
ThR(Λr) :«=> 3y[θ(y,x) & Vz < y -*θ(z,^x)], where -H denotes a function
such that -ή rΦ~] = Γ-'Φ~I with the Gόdel number rΦ~* of φ. For a Canon-
ical* provability predicate P for PRA, we construct Σι formulas Th2 and
Th3 such that PRA proves yfx9y[F(x-^y) -* (F(x) ->F(y))], Vx[G(x) ->
G(rG(x)n)]9 and vx[P(x) <-• Th2(x) <- Th3(x)], where Γ ψ π -* Γ>~1 =
ΓΦ -> ψn, F(x) :*=> Thf (JC), and G(ΛΓ) :« ThR(x).

Let PRA (Primitive Recursive Arithmetic) denote the theory obtainable from
PA (Peano Arithmetic formulated in a language containing function symbols for
all primitive recursive functions) by restricting induction axioms to quantifier-
free formulas. All results in this paper hold for any 1-consistent r.e. extension
of PRA, but for the sake of definiteness we state results only for PRA.

We will consider derivability conditions on the symmetric form of Rosser's
provability predicates. Let P be a Σ?-formula, 3yθ(y9x), with θ quantifier-free.
P is said to be a provability predicate (for PRA) if P numerates the theorems of
PRA in PRA, i.e., P satisfies the following:

Dl Vφ *=* \-P( Γφ~]) for every formula φ9

where Vφ means that φ is derivable in PRA and rφ1 is the Godel number of φ.
Then the so-called symmetric form of Rosser's provability predicate PR for P
is defined by:

PR(x) :*=> 3y[θ(y,x) Λ\fMz<y(v = -ίxvx = ^v-> -*θ(z9v))]

*I would like to express my thanks to the referee for some valuable suggestions.
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where -H is a primitive recursive function such that -H1" φ~* — Γ~ιφ~1 for every
formula φ. P R is a provability predicate, since PRA is 1-consistent. Obviously
ConPR, which is defined by Vformula JC—• [PR(x) Λ PR(^X)], is derivable in
PRA. Thus GδdeFs Second Incompleteness Theorem does not hold with this
provability predicate P R . Therefore PR does not satisfy both of the following
two derivability conditions D2 and D3: For every formula φ and ψ,

D2 \-PR(Γφ^ψn)->(PR(rφ~])->PR(Γφn))

D3 \-PR(Γφ~1)-+PR(ΓPR(rφ~")~λ).

To state results simply we will assume that formulas in PRA are in negation
normal form, i.e., formulas are built up from atomic formulas and negated
atomic formulas by applying the propositional connectives Λ and v, and the
quantifiers V and 3. For a formula φ, the formula ~^φ is defined recursively as
follows: for atomic φ, -• (-><?) :<=> φ\ ->(<ρ Λ ψ) :<=> -*φ v -ι^; -ι(<p v ψ) :<*=>
-ιφ Λ -iφ; -\(yxφ) :«=> 3χ-κp; -ι(3xφ) :<=> Vχ-ιφ. Therefore -ι-ιφ is literally
equal to φ. For formulas φ and ψ, the formula -ιφ v ψ is denoted by φ-^ φ.

Now P R can be written simply as follows:

PR(x) :<=» P(x) < P( ^x) (in Guaspari's witness comparison notation)

: ~ 3^[ί(Λ^) Λ vz < y ^θ(z^x)}.

Kreisel [4] asked if there was a canonical Po (cf. Kreisel [3] for 'canonical')
such that PR satisfies D2 or D3. In [1], Guaspari and Solovay partly answered
a modified version of KreisePs question. Let D4 denote the following derivability
condition (demonstrable Σ^-completeness):

D4 Vφ -* P( rφ~1) for every Σ? -sentence φ.

Then for any given provability predicate P satisfying D2 and D4, there exist Σ?
P2 and P3 such that P£ (P3

R) does not satisfy D2 (D3), respectively, and both P2

and P 3 are demonstrably extensionally equal to P, i.e., there exist (Σ?) <p, i/s and
σ so that,

\tP£(Γφ-+φ'1)-+(P£(rφ-])-*Pl(Γφn))

^P3R(Γσπ)->P3

R(ΓP3

R(Γσ" 1)"Ί)

^formula x[P(x) <* P2(Λ:) ̂  P3(x)].

In this paper, we will give the following complements to Guaspari-Solovay's
result: Let D2', D3', and D4r denote the uniform version of D2, D3, and D4, re-
spectively:

D2' Yvformulas x,y[P(x-±y) ->P(x) -+P(y)]

where -• is a function such that

Γφ~ι -^ Γφ~] = Γφ-+ψ~] for formulas φ and ψ.

Ό3' hv'formula x[P(x) -* P( Γ P(x) π ) ]



ROSSER'S PROVABILITY PREDICATES 489

where ΓP(x)n denotes a term t(x) such that if the nth numeral n ( s S . . . S 0
with n applications of the successor function S) is substituted for the variable x
in t(x), then the value of the result t(n) is equal to ΓP(n)~1.

D4' \-φ(x) -> P( Γφ(x)π) for every Σ? φ.

Definition 1 Let Fml denote the set of formulas. A function V: Fml -* {0,1}
is said to be a truth valuation if V satisfies the following conditions (1 for truth,
0 for falsehood):

(1) V(-ιφ) = 1 — V(φ) for an atomic or existential formula φ, i.e., a formula
of the form 3xψ.

(2) V(<pΛφ) = mm(V(φ),V(ψ))9

V(φvψ) = max(V(φ),V(φ)).

Definition 2 A formula φ is said to be a tautology if V(φ) = 1 for any truth
valuation V.

Definition 3 A formula φ is said to be a tautological consequence of a set Γ
of formulas if V(φ) = 1 for any truth valuation Fsuch that V(φ) = 1 for any

Definition 4 A set Γ of formulas is said to be satisfiable if there exists a truth

valuation Ksuch that V(φ) — 1 for any <ρ e Γ.

Moreover, let Taut denote the following derivability condition:

Taut Yx is a tautology -* P(x).

Note that if P satisfies D2' and Taut, then P satisfies the following two condi-
tions:

(*) Vvfinite set of formulas Γ, ^formula x [x is a tautological consequence of
Γ^VγeT(P(γ)-+P(x))]

(**) blformulay[P(y) /\P(-^y)] -+VformulaxP(x).

Then our result runs as follows: For any given provability predicate P satisfy-
ing D2; D4; and Taut, there exist Σ{ Th2 and Th3 such that Th£ (Thjf) satisfies
D2' [D3'], respectively, and both Th2 and Th3 are demonstrably extensionally
equal to P:

\-vformulasx9y[Thf(x-±y) -+ Thf (x) -> Thf(y))]

hvformula x[Thf(x) -+Thf(ΓThf(xΓ)]

hvformula x[P(x) <+ Th2(;t) <* Th3(x)].

Therefore, to answer KreisePs original question some properties about the or-
der of theorems of PRA under a canonical proof predicate must be used.

Remarks.
(1) Clearly Ύhf (Th£) does not satisfy D3 (D2).
(2) Jeroslow [2] showed that if a provability predicate P satisfies D3":

D3" \-P(t)-+P(ΓP(t)~])



490 TOSHIYASU ARAI

for every closed term t whose value is the Gόdel number of a formula, then
GδdeFs Second Incompleteness Theorem holds with P:

(/Conp(Ξ V'formulax^[P(x) ΛP(^υt)]).

Th* shows that to have GodePs Second Incompleteness Theorem with a prov-
ability predicate it is not sufficient that the predicate satisfies D3 (and the stronger
D3'); D3 is weaker than D3" since in D3 a closed term t is restricted to a numeral.

Next we will set forth the constructions of Th2 and Th3. We consider a prov-
ability predicate as an enumeration of theorems of PRA with infinite repetitions.
Without loss of generally we can assume that a provability predicate P is of the
form 3y(x = f(y)), for some primitive recursive function/, such that

hvy3z >y[f(y) is a formula Λ / ( Z ) =/(y)].

To construct a provability predicate, i.e., an enumeration of theorems, we need
to arrange the order of theorems.

Example (Rosser sentences) Let us first give some definitions.

(1) A provability predicate is said to be standard if it satisfies D2 and D4.
(2) A sentence φ is said to be a Rosser sentence if for a standard P

h p + » P ( Γ - V ) < P ( Γ ^ Π ) .

(3) Let σ+ and σ_ be Σ? sentences. The pair <σ+,σ_> is said to be a Rosser pair
if for a standard P

bP( Γ σ ±

π )~P( Γ -.σ ±

π ),

I—ι(σ+Λσ^), and

hσ+ v α _ ^ F ( Γ l Ί ) (_L is a false formula, e.g., 0 = 1).

Then we have the following theorem (cf. the construction of nonequivalent
Rosser sentences in Guaspari-Solovay [1]):

Theorem. For a sentence φ, φ is a Rosser sentence iff there exists a Rosser
pair < σ+, σ_ > such that Vφ ++ σ+.

Corollary For sentences φ and ψ, if φ is a Rosser sentence and φ++ψ is deriv-
able, then φ is also a Rosser sentence.

Proof of theorem: (=») Assume that φ is a Rosser sentence with a standard P.
Define Σ?-sentences σ+ and σ_ as

σ+:«P(ΓV)<^(V)

:*=*3y[θ(y,Γ-Mp'1)ΛVz<:y i0(z, rV)] withP^ iyβ(y,x);

σ_:~P(V)<^(Γ-V)

:~iz[θ(z,r<p~1)ΛVy<z^θ(y,r-^φ~])].

Claim < σ+, σ_ > is a Rosser pair with P.

Proof of Claim: For readability we write D^ for P( Γ ^ π ) . Then Dl, D2, and
D4 can be written as;
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Dl \-φ^\-Bφ

D2 \-Π (φ-+ψ)-+ Πφ-* Dφ

D4 \-φ -• Πφ for Σ? φ,

and we have

Yφ ++ (Ώ—ιφ < Πφ)

Yσ+ <-• ̂

hσ_<-> (D<ρ < Π-*φ).

We now prove that hDσ ± <-> D~iσ±.

(1) h D - ι σ + - > D σ +

σ+ -• D σ + by D4.

On the other hand

D-ισ+ Λ - iσ + -> D~i^ Λ ~iσ+ by >̂ <-> σ+

-+Πφ by the definition of σ+

-* Dσ+.
From these we get the assertion

(2) hD-iσ_->Dσ_
-ισ_ Λ D<̂> -> σ+

-^ <̂  b y < ^ ^ - > σ + .

Hence by Dl and D2, D-iσ_-» DίDv?-^^)-
So by the formalized Lob's Theorem we have:

(+) D->σ_-> Πφ.

From (+) and D4 we have

(a) D-ισ_->DDv?

-ισ_ΛD<ρ-*D-κρ by the definition of σ_

-• D-«σ+ by φ++ σ+.

From this and (+) we have:

(b) D~iσ_ Λ ->σ_ -> D~ισ+

-I0Γ+ Λ D ^ -• σ_ by the definition of σ_.

Hence we get the following by D l , D2, (a), and (b): D->σ_ Λ -ισ_ -> Πσ_. On
the other hand, we have by D4 that σ_ -• Dσ_. From these we get the assertion:

(3) hDσ+ -> D i σ + and hDσ_ -> D-ισ__.

From (1), (2), and h-π(σ+ Λ σ_) we have

Dσ + -^D-iσ_ and Dσ_->D-iσ+

-* Dσ_ -> Dσ+
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(<*=) Let <σ+,σ_> be a Rosser pair with a standard P so that Vφ ++ σ+. σ+
and σ_ are of the forms 3XT+(JC) and lxτ_(x) with quantifier-free τ+ and τ_,
respectively. Let P be of the form ly(x =f(y)) with a primitive recursive/. We
will define a primitive recursive function g and a Σ?-formula Th so that:

• Th(x):<* ly(x = g(y));
• Th is demonstrably extensionally equal to P and hence Th is a standard

provability predicate;
• φ is a Rosser sentence with Th, i.e., Vφ ++ (Th( r - i^ n ) < T h ( Γ ^ π ) ) .

Let * denote a number that is not the Gόdel number of any formula. Then de-
fine g by recursion, as follows:

(a) g(m) =f(m) Ίif(m) Ψ Γ - . ^ π and rφn.
(b) If f(m) = Γ->^π, then we put

ί
r-iφ~1, if 3x< ra τ+(x) v in < m(g(n) = Γφ~Λ)

*, otherwise.

(c) lϊf(m) = Γφ~ι, then we put

( Γφ~], if 3x< m r_(x) v 3 « < m(g(n) = r^φ~1)

*, otherwise.

Now note that the following hold by assumption:

I—i (σ+ Λ σ_)

hP( Γφ~Λ) ~ P( Γ ^ φ n ) « P( Γ-L π ) « σ+ v σ_.

Using these we can see what g looks like:

• If - « P ( r J . n ) , then clearly Vm(/(m) =g(m)).
• Suppose P( Γ ± π ) . Then g outputs formulas except <̂> and -*φ a s / does.

Let m denote the smallest number such that τ+(m) v τ_(m). This m
exists because σ+ v σ_. Put φ+ :<=» <̂>, <̂?_ :<=̂  -\φ. Let Λ denote the num-
ber defined as follows:

n = min(n\lx(m < x < n and (f(x),f(n))

= ( Γ ^_V^ +

Π ),(V, Γ ^_ Π ))).
This n exists because P( Γ _L Π ) and because every theorem occurs cofi-
nally for/ Iff(χ) G { Γ ^ +

π , Γ ^ _ π }, then

(1) g(x) = *9 ϊϊx<m.
(2) If m < Λ: < n and σ+ [σ_] holds, then

]7(JC), if/(jc) = Γ ^_ π , [ > +

π ]
^U) = 1 u .

(̂  *, otherwise
respectively.

(3) g(x)=f(x),\ΐn*x.
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Thus we see that the following hold:

Hv'formula x[P(x) ++ (Th(x))]

h p ~ ( T h ( Γ - V ) < T h ( ' V ) ) .

Let P be a provability predicate satisfying D2', D4', and Taut of the form
ly(x=f(y)) with a primitive recursive/. We will define primitive recursive func-
tions g and h, and put

Ίh2(x):~ly(x = g(y))

Ύh3(x):~3y(x = h(y))

so that Ύhf (Th^) satisfies D2' (D3'), respectively, and both Th2 and Th3 are
demonstrably extensionally equal to P.

A construction of g Let Sai(n) denote a formula such that

t-Sat(τi) *+ { Γφn : 3k < n( Γφ1 =f(k))} is satisfiable.

Then g is defined as follows:

g(m) = /(m), ifSat(m).

Suppose that there exists an m such that -ιSat(m), i.e., ^formula y[P(y) Λ
P( ^y)] Choose the minimal such m; so -ιSat(m) Λ [Sat(m -l)v/w = 0]. Let
Γ be the finite set of formulas [φ: in < m(rφ~] =/(«))}, and let Fbe a truth
valuation such that:

V(φ) = 1 for all φGT.

Let {0, }/<ω be an enumeration of all formulas. Then put

f Γ 0 Λ ifK(ff/) = l
g(m + 2ι) = \

I *, if V(θi) = 0

(where * is a number that is not the Gόdel number of any formula, i.e., * Φ
Γθi~

] for V/<ω).

{ *, if V(θi) = 0.

Then clearly Th2 is demonstrably extensionally equal to P.

Assertion Thf satisfies D2' and Taut.

Proof: (i) Suppose that -ilformulay[P(y) ΛP(+y)]. Then for some formulax

ΎhR(x)^Ύh(x)~P(x).

Hence the assertion is trivial by our assumption.

(ii) Suppose now that ^formula y [P(y) Λ P( -^y)]. Let Kbe the truth valu-
ation mentioned above. Then we see easily the following: for any /

Tϊ$(ΓθΓ)++V(θi) = l.

From this we get the assertion.
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A construction ofh. Here we assume that the coding of (formal) expressions
(i.e., finite sequences of alphabets) satisfies the following condition (Assump-
tion on coding):

\-e\ is a proper subexpression of e2 -• ( Γ ^i π < re2~
ι).

Then we have that hvx(x < rx~Ί), where Γ x π is a term t(x) such that the value
of t(n) is equal to ""/i"1 for every n. Therefore for every formula \p{v) in which
a variable i; occurs we have that |-VΛ:(Λ: < r ^ ( x ) n ) ; in particular, h Γ ^ π <
Γ ^ ( Γ φ~ ι ) π for every formula φ.

We will define h by using the primitive recursion theorem. For readability,
we write Th for Th3, i.e.,

Th(x):~ iy(xeh(y))9

where xέy means that y is (the code of) a finite set Γ of numbers and xbelongs
toΓ.

Definition 5
(1) x ef(m) : ~ in < m(x =f(n)).
(2) contradictory at m :<=> iformula y(y = f(m) Λ+y G f(m)).
(3) For each formulax, we define a number Nx<x + 1 and a finite sequence

{Xi)i<Nx of formulas, as follows.

(3.1) x o : = * .
(3.2) Assume JC, is defined. If for a formula .y, xt is of the form Γ T h R ( ^ ) π ,

then xi+1 is defined to be the formula y.Xi= Γ Th R (xi+ x)
π > x/ + x. Other-

wise put Nx := / + 1.

In what follows, we argue in PRA.

Proposition 1 Vformula x Vi < Nx[Nx = i + Nxt Λ V^ < Nxiiίxfij = xi+J)].

Definition 6
(1) We say that bell 1 rings at m if m is the minimal m such that VA2 <

m -^contradictory at n and

lformulax[Γ^ThR(x)~1 =f(m)Λ^li<N^x(^x)i<Ξf(m)].

(2) We say that bell 2 rings at m if m is the minimal m such that bell 1 has not
rung before m (i.e., VΛ < m -ι (6e// 7 π/igj <tf /*)) Λ contradictory at m.

(3) 6e// π/igj at m:<^ either bell 1 or 2 rings at m
(4) 6e// rings :*=* 3m (bell rings at m).

Then we define h as follows: if W? < m (bell does not ring at n), then put
h(m) := {/(m)}. In the following we assume that bell rings at m.

Case 1: Bell 1 rings at m. Let x be the formula such that

r ^ T h R ( x ) n = / ( m ) .

Then put

h(m) = [ + (+x)i: i<N^x}.

Case 2: Bell 2 rings at m. Then put

h(m) = 0(empty set).
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For m' > m the definition of h(m') is independent of which bell rings:

h(m + 1) = [+y : y is a formula Λ Γ-!ThR(j>)~F ef(m) ΛN^y> 1).

Let { rθn~
] }n<ω denote the enumeration of all the formulas in increasing order:

V\tn,n'(n < n' -+ rθn

n < rθn>~]).

Then for each n9 put

h(m + 2 + n) = {rθn-
]}U{rΊhR(rθn-

])-]}.

This completes the definition of Λ.

Lemma 1
(1) bell rings ++ ^formula y[P(y) Λ P( +y)]
(2) Vformula x [Th(x) <* P(x)].

Proof: (1) Suppose bell 1 rings at m and x is the formula such that
r - i T h R ( x ) n = / ( m ) . Then by definition we have -I(-HJC E/(m)) and x =
Π Π J C G A W Therefore ThR(x) is true. By D4' we have P( r T h R ( x ) π ) . Thus
P{y) Λ P(+y), withy = rThR(Ar)n. The other case is easy.

(2) If bell does not ring, then vm(h(m) = ίf(m)}). If bell rings, then by (1)
and (**), Vformula x P(x). By the definition of h we have Vformula x Th(x).

Lemma 2 Assume that bell rings at m, y is a formula, and Γ-ιThR( j>)π E
f(m). Then
(1) N*y=l-++yef(m).
(2) V/<Λ^-l[^G/(w)], i .e . , Vi<Ny[Γ-iThR(yi)n ef(m)].Infact, if

n<misa number such that Γ-iThR( j)"1 =/(/i), then there exist n = no>
nx >...> nNy^ι such that ^y^ = Γ-iThR(Λ)π =/(«/) for all i < Ny,
(y^:=ΓThR(y)n).

(3) Γ-iThR(jc)π =f(m) A bell 1 rings at m-+ vι < N^x(y Φ -H (-HJC),-).
(4) ^(yef(m)).

Proof: Let AZ < m be a number such that Γ-iThR(>')~1 = / ( « ) .
(1) Since bell has not rung until n, we have

3ϊ<N^((-H7)iέ/(Λ)).

By the assumption that N^y = 1 we have that -ήy έ / ( « ) .
(2) By induction on / using (1). Note that if / + 1 < Ny then j / f =

Γ Th R (Λ + 1 )" 1 , and s o N ^ f - = l.
(3) Assume that

Γ-iThR(Ar)π =/(m) Λ bell 1 rings at m.

Suppose that y = -ή (πχ) / ? for some / < ΛΓ-̂ Λ:. From the hypothesis of the lemma
we have that (-\y)/ έ /(m), for some y < ΛPij>. But then by Proposition 1
(py)j = ("ll^)ι+</ έ / ( m ) . This contradicts our assumption, v/ < N^χ-ι ((^x)7 E

/(/w)).
(4) By induction on j>. Suppose y Ef(m). Then by (2)

(a) vi < 7V^ - 1 [ ̂  (*y), E/(m)] .
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(If N ̂ y = 1, then (a) is trivial. Otherwise let z denote (-\y)i Then
Γ -ιTh R (z) π G/(m) and apply (2).) Since bell has not rung before m

Vformula χ-y (x,^x έf(m))9

and so

(b) vi<N+y-l^[(+y)iGf(m)].

Moreover, since 7 E/(w), 1 [-Vy έ/(ra)] ; hence by (1)

(c) Λf-Vy > 1.

Let z be the formula (+y)N+y-ι τ h e n by (a) and (c)
r i T h R ( z ) n = π ( π ^ r 2 έ / ( m )

and

z = (+y)N+y-ι*u< Γ iTh R (w) π = - ^ ^ = j ,

where u = ("\y)i Hence by the induction hypothesis we get

(d) i[(^)^-iG/(/n)].

From (b) and (d) we have

v/<ΛPvri[(Λy)/έ/(m)].

But then bell 1 would ring at n, which is a contradiction.

Finally, we have:

Proposition 2 ThR( y) -* Th R ( Γ Th R ( j )" 1 ), /or any formula y.

Proof: Assume that ThR(j>). Then by D4' and Lemma 1.2, Th(ΓThR( j )" 1 ) .

Case 1: Bell does not ring. Then by Lemma 1, -iTh(Γ-ιThR( j )" 1 ) . Hence the
assertion T h R ( Γ T h R ( » π ) holds.

Case 2: Bell rings at m. Then there exists a k such that Γ-ιThR(j>)~1 έh(k).
Let k be the minimal such.

Case 2.L: k > m + 1. Suppose that y is the «th formula rθn~
] in the enumer-

ation { Γ0/π }/<ω, and let n0 denote the number k — m — 2. Then

and

ΓThR(7)" 1 Gλ(/M + 2 + «) ( J = r ( 9 « n )

Γ C = 3 ' < Γ - T h R ( j > ) - | = Γ V >

therefore n < n0 and ThR(ΓThR(j>)π).

Case 2.2: k = m + 1.

Γ - i T h R ( ^ ) π (Eh(m + 1)

= {-Hx : Λ: is a formula Λ Γ-iThR(x)"1 <=f(m)ΛN^x> 1).

Let x be the formula ΓThR(j>)~\ Then N^x = 1. Hence this is not the case.



ROSSER'S PROVABILITY PREDICATES 497

Case 2.3: k = m. Then bell 1 rings at m. Let x be the formula such that
Γ -iTh R (x) π = f{m). Then

Γ-iThR(j)π eh(m) = [ + (+x)i : i < N-^x}

and so
rThR(j>)n = (^x)i for some / < N^x,

y = (^x)/+i.

Hence i [ j G / W J .
On the other hand, ^y = -π(-Hχ)/+1 G /ι(m). Therefore -<ThR(.y). Hence

this is not the case.

Case 2.4: k < m. Then Γ-πThR(j)" 1 G/(m). By Lemma 2.4, -*[yef(m)].
Next we show that -i [y G Λ(m)]. If bell 2 rings, then the assertion is trivial.

Assume that bell 1 rings and let x be the formula such that r - i T h R ( x ) n =
f(m). Then by Lemma 2.3, v/ < N^x(y Φ -^(^x)/). But h(m) = {^(^x)i'.
i < N^x}. Therefore we get the assertion, -ι[jy G Λ(m)]. Hence we have
-i3# <m[y EL h(n)]. On the other hand, by our assumption that ThR(j>) and
Lemma 2.1 we have N ^y > 1. And so

^yeh(m + 1) = {-Hy : y is a formula Λ Γ-«ThR(>')"1 Gf(m) AN^y> 1).

Therefore we have -iThR(.y). Hence this is not the case.
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