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Abstract In this paper we give a simple semantic proof of the fixed-point
theorem of the modal system G (also known as GL, PRL, L, and K4W). This
proof is modeled after a syntactic proof of Sambin's found in Sambin and
Valentini [10], yet is simpler than his, due to our taking advantage of the
Kripke semantics for G. Other semantic proofs of the theorem exist, e.g. in
Gleit [6] and Goldfarb and Gleit [7]; however, the advantages of this partic-
ular version are that it is less complicated and the fixed-point so obtained has
the same general "appearance" as the original formula.

Introduction In this paper we present a simple semantic proof of the fixed-
point theorem for the modal system G (also referred to as GL, PRL, L, and K4W
in the literature). G is a version of modal logic that characterizes the notion of
provability in a formal system, whence the name "provability logic". It is the con-
nection of provability logic with formal systems that has brought modal logic
into the mainstream. For the definition of notions pertaining to G and its con-
nection with formalized theories, see Boolos [4].

Many proofs of the fixed-point theorem exist; one obvious way to classify
the previously existing proofs is according to whether the methods used are pri-
marily syntactic or primarily model-theoretic. The existing syntactic proofs tend
to be rather complicated and magical, yet they do provide reasonable algorithms
for the explicit calculation of fixed-points. Another appealing aspect of this type
of proof is that the fixed-point obtained resembles the formula from which it is
derived. For example, the fixed-point of the formula -iD/? corresponding to the
Gόdel sentence is the similar formula π D l , and that of the formula Up cor-
responding to the Henkin sentence is D T . The previously existing semantic
proofs, on the other hand, tend to dispel the mystery concerning the reasons for
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the truth of the theorem, yet provide unreasonably cumbersome algorithms for
computation. Also, the fixed-points do not tend to "look like" the formulas from
which they are derived.

The new proof to be presented here is essentially a semantic version of one
of the nicest existing syntactic proofs (see Sambin and Valentini [10]). Yet it is
simpler than that proof because it takes advantage of the Kripke semantics for
G. It provides a simple algorithm for calculation that produces a fixed-point hav-
ing the same "appearance" as the original formula, and at the same time provides
much motivation through the semantic approach.

There are a number of other methods of proving the theorem. One is a non-
constructive proof using the Beth definability theorem for G (see Smoryήski [11]
or Boolos [4]). This particular proof of the fixed-point theorem was not noticed
until a few years after the theorem was first proved by de Jongh and Sambin,
as discussed below. Another technique is that used by a group of Italian universal
algebraists under the leadership of R. Magari. Rather than working with a modal
system, they work with Boolean algebras augmented by a single extra operator
T corresponding to the box. It amounts to a modal approach when appropriately
translated. It appears that the Magari school did not realize the connection be-
tween the universal algebraic and modal programs until the early 1970's. By 1975,
when Boolos solved Friedman's thirty-fifth problem (see Boolos [3] and Fried-
man [5]), the connection was fully understood.

The fixed-point theorem was conjectured independently by several people.
First, Bernardi [1] and Smoryήski independently proved a special case of the the-
orem; Bernardi's approach was algebraic, while Smoryήski obtained an attrac-
tive computational algorithm using Kripke semantics. Smoryήski's algorithm first
appeared in [12]. De Jongh and Sambin later independently proved the full re-
sult. De Jongh's proof was semantic and apparently so complicated that he
neglected to publish it. Sambin's approach [9] was universal algebraic in char-
acter.

After these initial solutions, there have been many revisions and improve-
ments. A syntactic version that is a simplification by de Jongh of a proof of Sam-
bin's can be found in [13]. Something similar appears in [10]. In [4] a very nice
adaptation to a truth-table method of Smoryήski's computational algorithm for
the special case is presented. In the same book, Boolos gives a proof of the full
theorem that is related to the Lindenbaum algebra for G, having to do with the
concept of an "π-character". Roughly speaking, an ^-character, if consistent, is
a maximally strong formula of G that is of modal degree n. (A sentence is of mo-
dal degree n if and only if n is the maximum number of nested modal operators
that occur in it.) Gleit [6] and Goldfarb and Gleit [7] have presented proofs along
these lines that are more fully semantic. The algorithm that these proofs provide
is not really feasible for doing actual calculations of fixed-points, where the rele-
vant formulas are at all complex. It does have the advantage, though, of giving
the best possible bound on the nesting of modal operators in the fixed-points so
obtained.

Technical background The system G is the modal logic whose axioms con-
sist of:
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(i) all tautologies (including those in which the box may occur),
(ii) all sentences of the form • (A -+ B) -• (ΏA -> ΏB), and

(iii) all sentences of the form D (ΏA -> A) -+ ΏA.

Axioms of type (ii) are called distribution axioms, and axioms of type (iii) are
called Lob axioms. G has two inference rules; they are

(i) from A and (A -> B) infer B, and
(ii) from^4 infer ΠA.

Rule (i) is called modus ponens and rule (ii) is called necessitation. As usual,
a sentence A is a theorem of G if and only if A is the last member of a finite se-
quence of sentences, each of which is either an axiom or follows from one of the
earlier sentences in the sequence by one of the inference rules. In this case we
write "\-GA". Such a finite sequence of sentences is called & proof of A in G.
The following simple lemmas are needed to obtain the results presented below.
The proofs of Lemmas 1 and 2 are the usual ones.

Lemma 1 Any substitution instance of a theorem of G is a theorem of G.

Lemma 2 For any sentences A and B, \-GΏ (A ++ B) -> (ΏA <-• ΏB).

We shall now discuss a Kripke-style model theory for G with respect to
which G is both sound and complete. A model 311 is an ordered triple (W,R,P)
where

(i) WΊs a. nonempty finite set;
(ii) R is an irreflexive transitive binary relation on W;

(iii) P is a mapping which assigns to any pair consisting of a member of
Wand a sentence letter a truth value t or/, that is, P: W x [po,P\9

R is called the accessibility relation of OH. If x and y are worlds such that
xRy, then we say "y is accessible from x" or "x sees y". For any w E W define
acc( w) = [x E W\ WRX}; acc(w) is simply the collection of worlds seen by w.

Given a model OH = (W,R,P), we define the truth of a sentence at a world
inductively in the usual manner. As usual, a sentence ΏA is true at a world w
if and only if A is true at every world x E acc( w). When A is true at w we write
3Π Kv A. When A is false at w we write ΐftl #w A. When there is no risk of am-
biguity, we suppress "3Π" and simply write ¥WA or #WA. Using this notation,
i=wΏA if and only if VyA for all y E acc( w). We shall find it convenient to use
the strong box Ώ; ΏA is an abbreviation for A Λ ΏA. Note that HwΞv4 if and
only if YyA for all y E {w] U acc( w). A sentence is valid in a model 3TI if and
only if it is true at all worlds in the universe of 9H. A sentence is valid if and only
if it is valid in all models.

As an immediate consequence of the finiteness, transitivity, and irreflex-
ivity of models, worlds lie in levels in the universe according to how many worlds
they see. Formally, we observe the following:

Lemma 3 Given any model ΐf\ί = (W,R,P),for every w E W, if w sees at
least one world, then there is a greatest positive integer n such that for some
wQ,...9wn in W,w = wnRwn_xR w{Rw0.
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In light of Lemma 3, given any model ΐfίί = (W,R,P), we define for w E
Wthe rank ofw in ΐfϊί to be the number n described in Lemma 3. (If w E Wsees
no other world, then the rank of w is defined to be zero.) Clearly, if x and y are
worlds such that xRy, then the rank of x is greater than that of y.

The following two simple lemmas will be of great use to us in the remain-
der of this paper:

Lemma 4 Given any model 3ϊl = (W9R9P), w E W, and sentence A, if
NWD>1 then hχ Q4 for every x E acc( w). Furthermore, we actually have ¥XBA

for every x E acc( w).

Proof: Suppose that h w Q4, w sees x, and x sees y. By transitivity w sees y, so
\=yA. Since y was chosen arbitrarily, I=XD 4̂. Also \=XA, so \=XBA as well.

Lemma 5 Given any model 9ft = (W,R9P), w E W, and sentence A, if
\ίwΠA then there is a world x seen by w such that \=XΠA and #XA.

Proof: Suppose that \ίwΏA. Then for some x seen by w, #XA. Choose such an
x of least rank. Suppose that xRy. y is of lesser rank than x9 so YyA by least-
ness. Since y was chosen arbitrarily, N^D^. Thus, ¥X\2A and #XA.

G is sound and complete with respect to this model theory, hence the fol-
lowing:

Theorem 1 For any sentence A, A is a theorem of G if and only if A is valid.

For a proof of this, see either Reidhaar-Olson [8] or Boolos and Jeffrey [2].

The fixed-point theorem We now turn our attention to the new proof of the
fixed-point theorem to be presented here. Integral to the proof is the following:

Semantic Substitution Lemma For any sentences A, B, and C, E\(B<^C)-^
(A(B)++A(C)) is valid.

Here "A(B)" is intended to denote the result of replacing all occurrences of p
in A with B; the meaning of M ( C ) " is similar.

Proof: Fix B and C We show by induction on the complexity of A that EJ (B ++
C) -> (A(B) <r+A(C)) is valid. The only case in the induction that makes any ap-
peal to modal logic is the D-case, so that is the only case that will be discussed
here.

Hence suppose that A is ΠD where Ξ (B <-> C) -> (D(B) ++D(C)) is valid.
Let 311 be any model and w any world in its universe. Suppose that \=WB (B++C).
Let x be any world seen by w. Then \=XB (B++C) by Lemma 4. Since Ξ (B++ C) ->
(D(B)^D(C)) is valid, we have \=XD(B)++D(C). Thus, sincex was chosen ar-
bitrarily, \=WΠ(D(B) ++ D(C)). Therefore by Lemma 2 and completeness,
twΠD(B)+>ΠD(C).

Before proving the fixed-point theorem, we need to make the following defi-
nitions:

Definition 1 A sentence A is modalized in p if and only if every occurrence
of the sentence letter pin A occurs within the scope of D.
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Definition 2 A sentence A is n-decomposable if and only if for some (pos-
sibly empty) sequence qx,... ,qn of distinct sentence letters not occurring in A,
some sentence B(qu.. .,qn) not containing p but containing all qx,..., qn (and
possibly other sentence letters as well), and some sequence of distinct sentences
C Ί ( p ) , . . . ,Cn(p), each containing A A = B(ΠCx(p)9... ,ΠCn{p)).

If A is modalized in p, then it is ^-decomposable for some n. For exam-
ple, let A be the sentence D {Up -» q) v DD/λ Then 4̂ is 2-decomposable; let
Cι(p) = D/7 -> q, C2(p) = Up, and B(ql9q2) = q\ v # 2 . -4 is also 1-decom-
posable; let CΊ(/?) =/? and B{qx) = D ^ ->#) v Π ^ .

Fixed-point Theorem J/y4 /s modalized in p, then there exists a sentence D
in which the only sentence letters that occur are those other than p that occur
in A, and such that \-GB (p++A)^>{p++D). The sentence D is called a fixed-
point of A. (Since \-GD++A(D), as we shall see below, the appellation "fixed-
point" is appropriate.)

Proof: We prove by induction on n that if A is ^-decomposable then it has a
fixed-point.

Suppose that A is O-decomposable. Then/7 does not occur in A, so A itself
is a suitable D.

Suppose that every sentence that is ^-decomposable has a fixed-point. We
shall show that every sentence that is (n + 1)-decomposable has a fixed-point
as well. To that end, suppose that

A(p) = B(ΠCι(p),... ,DC Λ + 1 (p)). For each / let
Ai(p)=B(Πd(/>),...,DCM(p),T,DQ+1(p) DC f l + 1 (p» . For

each /, Aj(p) is /i-decomposable, so it has a fixed-point Dh Put
D = B{ΏCι (Dι),... ,DCΛ + 1 (Ai+i)) We shall show that D is a fixed-

point of A.

Lemma For each /, \-GB(p++A) -+ B(ΠQ(p) <+ DQ(A)).

Proof: By completeness it suffices to show that for any model 3Π and any
world w in its universe ΐfϊl tw U(p++A)-^ Ξ (DCZ(/?) «•> D Q φ , - ) ) . So fix /,
911, and w. Suppose that KμΞ(/? ^ ^4). We must show that \=wB(ΠCi(p) ++
ΠCi(Dj)), or equivalent^ that HyΠC/(/7) >̂ DC, ( A ) for al l^ G {w} U acc( w).
Let y E {w} U acc(w). Suppose that ^DC/(/?). Then N>DC, (/7) >̂ T. For
any x E acc(^), l=xΠC/(p) too, by Lemma 4; hence NxDC/(p) «-> T. Thus
N_yEI(DC/(/7) ^ T ) . By the semantic substitution lemma, VyAi±+ A. Since ^
was chosen arbitrarily, NWD (Aj +*A)9 hence h^Ξ (>!/ <̂  ̂ 4) by Lemma 4. Also
by Lemma 4, since t=wQ (j? <-• >1), we have N^Ξ (p ++ A) too. Thus \=y\B (p *->
v4/). By the induction hypothesis and completeness \=y(p ++ A)> a n d hence,
since y was chosen arbitrarily, I=WD (/? ̂  A ) Thus \=yEΪ (p <-> Dj) by Lemma 4.
Therefore by the semantic substitution lemma

¥yCi{p) ~ C^Di) (1)

and

¥yUCi{p)^UCi(Di). (2)
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By (2), YyUCi(p) -• DC/(A ). (We shall use (1) later.) Notice that we have
shown that (1) and (2) hold for any y G {w] U acc(w) such that hj,DCf (p).

Now suppose that \tyΠCi(p). Then by Lemma 5, there is some world x
seen by y such that ΨxCi(p) and ^ D C , (p). Since xG {H>} U acc(w), (1) holds
for JC, hence (=*<?;(/?) +> C/(A) Thus ^ C , (A ). K follows that ^DC/(A*).
Thus h>DCf (A) -> ΠC/ίp). Therefore t=yDC/(/?) <-• D Q ( A ) This completes
the proof of the lemma.

Now to finish the proof of the theorem, suppose that 3TC is a model and
w a world in its universe such that h^H (p ++ A). By the Lemma and com-
pleteness, l=wΞ(DC/(/?) <-> DC/(fl, )). So, applying the semantic substitution
lemma « 4- 1 times, we obtain t=w5(DC, ( p ) , . . . ,DC n + 1 (p)) <-» 5(DCΊ (A)>
. . . ,ΠCn+χ(Dn+λ)); that is, \=WA <-> D. Since \=wp <-> v4, we have (=„/? <->Zλ Thus
h^H (p ++ A) -> (p ++ D), and since 911 and w were chosen arbitrarily, Ξ (p <->
y4) -> (/7 ̂  Z>) is valid. So by completeness, \-GH] (p++A)-+(p<->D).

To illustrate the use of the above algorithm, we present several examples
of fixed-point calculations. The algorithm is relatively easy to use, especially
when one simplifies along the way by substituting simpler equivalent formulas
whenever possible.

Example 1 Let A(p) = D->/λ We shall calculate the fixed-point of A. Let
Cx(p) = -ipandBiqi) = qx. Then^(/?) = BiΠd(P)) andAxip)=BiT) =
T. The fixed-point Dγ of A \ is simply T, since p does not occur in A ι. Thus the
fixed-point D of A is B (D d ( τ ) ) = B (D -i T) = D -i T. The equivalent formula
D_L is also a suitable fixed-point.

Example 2 Let Aip) = Up -• Π-yp. To calculate this fixed-point, let
Clip) = A C2(/?) = -ip, a n d B ί β ! , ^ ) = Qι^Qi- Then Aip) = B(DCi(/?),
• C2(/?)), V4H/?) = ί ( τ , D C 2 ( p » = T-* D-i/7, and^2(/?) =^(DC 1(/?),T) =
D/7 -> T. ̂ ! is clearly equivalent to D-i/7, and ^42 to T, hence they have fixed-
points A = D_L and£)2 = T. Thus D = fi(DCi(D±),DC2(T)) = D D l -•
D-iT. The equivalent formula D D l -• D± is also a suitable fixed-point.

Example 3 Let A(/?) = -ιD->/?-+ iq Λ-ιΠip->q)). The reader may enjoy
showing that -iD-ιT->(tfΛ-iD(D±-*<7))isa fixed-point for A.

The theorem we have referred to as "the fixed-point theorem" admittedly
looks more like a uniqueness theorem than an existence theorem. However the
following result, which looks more like an existence theorem, actually follows
from the fixed-point theorem:

Theorem 2 Let Aip) be modalized in p, and let D be a fixed-point of A.
Then \-GRip++D)^> \p+*A).

A semantic proof from the fixed-point theorem of this result can be found in
Goldfarb and Gleit [7]. The following theorem, which justifies the use of the term
"fixed-point", now follows easily:

Theorem 3 Let Aip) be modalized in p, and let D be a fixed-point of A.
Then VGD^AiD).
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Proof: By Lemma 1 and Theorem 2, the result of substituting D for p in Ξ (p <->
D)-+ (p++ A) is a theorem of G. Thus hGΞ(£> *> £>) -* Φ *•> ΛCD)). Since
Ξ (D <-> D) is obviously a theorem of G, we have \-GD<^A (D).
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