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Near Coherence of Filters III:

A Simplified Consistency Proof

ANDREAS BLASS and SAHARON SHELAH

Abstract In the model obtained from a model of the continuum hypothe-
sis by iterating rational perfect set forcing K2 times with countable supports,
every two nonprincipal ultrafilters on ω have a common image under a finite-
to-one function.

The principle of near coherence of filters (NCF) asserts that, for any two
nonprincipal ultrafilters 'U and V on the set ω of natural numbers, there exists
a finite-to-one function f:ω -+ ω such that/ίΊl) = f(V). This principle was
introduced and studied in [1], and its consistency relative to ZFC was proved
in [2]. Because [2] also contains the consistency proof for another statement (the
existence of simple Pκ-points for two different K), the model of NCF presented
there was chosen to maximize the similarity of the two proofs. Although this
approach is quite efficient for proving the consistency of both statements, there
is a simpler consistency proof for NCF alone. The purpose of this paper is to
present this proof.

By rational perfect set forcing, we mean the forcing introduced by Miller
in [3]; a definition is given below.

Theorem NCF holds in the model obtained from a model of the continuum
hypothesis by iterating rational perfect set forcing K2 times with countable sup-
ports.

The proof to be presented here can be viewed as the result of deleting, from
the proof in [2], all references to (what is there called) depth. The observation
that the consistency proof for NCF survives this deletion was made by Shelah
shortly after he found the proof in [2]. Blass noticed that the resulting forcing
was equivalent to Miller's rational perfect set forcing.

The substitution of rational perfect set forcing for the forcing used in [2]
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considerably simplifies the analysis in Sections 2 and 3 of [2]. On the other hand,
the parts of [2] that deal not with the specific forcing at hand but with general
properties of iterated proper forcing, particularly Section 4, do not benefit at
all from this substitution. Thus, a self-contained presentation of the new proof
would include a verbatim transcription of these parts of the old proof. To avoid
such unnecessary repetition, we simply quote here the general facts about proper
forcing and its iteration that we shall need.

Lemma 1 ([5], p. 81) Let G be a V-generic subset of a proper notion of forc-
ing. IfXeV[G]isa countable (in V[G]) subset of V, then X c γfor some
countable (in V) set F E V. In particular, Kt is absolute between Vand V[G],

For the next four lemmas, let (Pa, Qa: a < λ> be a countable support iter-
ation of proper forcing with limit P λ . That is,

P o is the trivial notion of forcing (a singleton);
Pa+ι = Pa * Qa for all a < λ;
Pβ = the direct limit of (Pa)a<β f° r all β < λ of uncountable cofinality;
Pβ = the inverse limit of (Pa)a<β f° r all β < λ of countable cofinality;
Pa forces "Qa is a proper notion of forcing" for all a < λ.

Let G be a F-generic subset of P λ . For each a < λ, we write Ga for the V-
generic subset G Π Pa of Pa.

Lemma 2 ([5], p. 90) Pa is proper for all a < λ.

Lemma 3 ([2], Lemma 5.10) Let $ E V[G] be a family of reals. There is
an ^ι-closed unbounded set of ordinals a < K2 for which $ Π V[Ga] G V[Ga].

Lemma 4 ([5], p. 96) Suppose that the continuum hypothesis holds in V, that
λ = K2, and that, for each a < K2, Pa forces that | β α | < 2*°. Then, for each
a < K2, Pa has a dense set of cardinality < Kl5 PK 2 satisfies the K2-chain con-
dition, and (therefore) cardinals are absolute between Vand V[G].

(The comments after (5.4) in [2] explain how to handle some technical differ-
ences between our version of this lemma and the version in [5].)

A nonprincipal ultrafilter *U on ω is called a P-point if, whenever Xn E ΊI
for all n E ω, there is a YG "U such that Γis almost included in each Xn, i.e.,
Y — Xn is finite. A classical result of Rudin [4] is that the continuum hypoth-
esis implies the existence of P-points.

Lemma 5 ([2], Theorem 4.1) If Άί is a P-point (in V), if λ is a limit ordinal,
and if, for each a < λ, Pa forces αcU generates a V-point", then Px also forces
(fC\ί generates a P-point".

This completes the list of general facts about proper forcing that we shall
need. We now turn to the specific forcing that we shall iterate to get a model
of NCF, Miller's rational perfect set forcing.

Let p be a tree of finite subsets of ω; that is, 0 E p and if a E p then every
initial segment of a is also in p. These initial segments are the predecessors of
a in p. A node a E p is said to be infinitely branching in p, if there are infinitely
many n such that a U [n] E/7, or equivalently, if a has infinitely many immedi-
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ate successors in p. The tree p is said to be superperfect if every node a G p has
an infinitely branching successor. The superperfect trees are the forcing condi-
tions in a notion of forcing Q9 ordered so that the extensions of a condition are
its superperfect subtrees. (Miller's definition in [3] involved trees of finite
sequences rather than finite sets, but there are obvious isomorphisms that replace
sequences by strictly increasing sequences and then by the sets that they enu-
merate.)

We shall need three methods of constructing extensions of a given condi-
tion p. The first is to select a node aGp and to form the subtreep/a of all nodes
comparable with a. Clearly p/a is superperfect. This method of extension
suffices to show that the set

{P € Q\p contains only one node of cardinality n]

is dense in Q. It follows that, if G is a F-generic subset of Q, then the intersec-
tion of all the trees p G G is a single path through the tree of all finite subsets
of ω, so it defines an infinite subset G of ω. We write fc(n) for the cardinal-
ity of G Π n; thus, fG: ω -> ω is constant precisely on the intervals into which
the members of G divide ω.

The second way to extend a given condition p is to select, for each infinitely
branching node a G p, an infinite subset Xa of [n G ω\aU [n] Gp and n >
max(tf)} and to throw away all the immediate successors a U [n] of a with n £
Xa. The resulting subtree of p is

q = {b Gp\ for every proper initial segment a of b, if a is
infinitely branching in /?, then min(ό - a) EXa}.

It is easy to verify that q is superperfect and is therefore an extension of p. We
refer to this construction as thinning p with the sets Xa.

The third method of building an extension q of p is called fusion and is
really a meta-method, a way of combining many extension processes into one.
It proceeds as follows. Select an infinitely branching node a Ep. Throw away
all nodes incomparable with a (so q will be a subtree of p/a), but put into q the
node a, all its predecessors, and all its immediate successors in p. For each of
these immediate successors aΌ [n}9 select an extensionpn ofp/(aU {n}) and
select an infinitely branching node an€pn. Throw away all nodes still present
that are in no pn/an (so q will be included in the union of the pn/an, a union
which includes the nodes already put into q), and put into q all the nodes an,
all their predecessors, and all their immediate successors in the corresponding
pn. For each of these immediate successors an U {m}, select an extension pnm

oϊpn/(anU {m}), select an infinitely branching node anm Epnm> and proceed
as before. Repeating this process ω times yields a tree q which is superperfect
and therefore an extension of p. The infinitely branching nodes of q are precisely
the nodes as (where s is a finite sequence of subscripts) selected at the various
stages of the construction. For each immediate successor as U {k} of such a
node in q9 the condition q/(as U {k}) is an extension of thepsk chosen during
the construction.

If q is the condition just constructed by fusion, if r is any extension of q9

and if n G ω, then r must contain one of the infinitely branching nodes as of q
with s of length n. It must also contain as U [k] for some k9 and must there-
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fore be compatible with q/(asΌ {k})9 since r/(as U [k]) is a common exten-
sion. Thus, r is also compatible with/?5A:.

If we were given a countable sequence Wo, Wu... of maximal antichains
(or predense sets) in Q, then, at the stage of the fusion construction where the
conditions ps are being chosen for s of length n > 1, we could choose each of
these conditions to be an extension of a condition ws E Wn_\. Then, by the pre-
ceding paragraph, every extension of q is compatible with ws for some s of
length n; in other words, the countable subset

WΛ-I = {ws\s of length n]

of Wn is predense beyond q.
If all the arbitrary choices in this construction of q, with a prescribed con-

dition p and prescribed Wn

9s, are made in some fixed manner, say in accor-
dance with a specific well-ordering of (a sufficiently large piece of) the universe,
then W'n depends only on Wo, W\9..., Wn. List the countable set W'n in an co-
sequence and write F(p, WQ, . . . , Wn9k) for its kth member.

Lemma 6 The notion of forcing Q is proper.

Proof: We verify the criterion for properness called Con2(λ) in [5], p. 77,
except that we dispense with the ordinal indexing used there. Suppose that s is
a countable set containing all the natural numbers and closed under the func-
tion F defined above. Let Wθ9 W\,... be all the predense subsets of Q that are
members of s, and let p be any element of Q Π s. The fusion construction above
yields an extension q of p beyond which the sets W'n are predense. The assump-
tions on s imply that W'n^, Wn Π s, so each Wn Π s is predense beyond q. Since
the collection of all s that satisfy these assumptions is closed and unbounded,
Con2(λ) holds.

Notice that our definition of fusion is such that, in the resulting tree q, the
only nodes with more than one immediate successor are the aS9 which have infi-
nitely many immediate successors. Thus, trees in which every branching node
is infinitely branching are dense in Q and we may, whenever convenient, con-
fine our attention to such trees. It will, in fact, be convenient to perform some
additional normalizations on our trees, as follows.

We say that a superperfect tree p has interval structure if ω can be parti-
tioned into (finite) intervals [0,/o),[/o>*i)>[*i>*2)> . so that, if a node a Gp
has more than one immediate successor oU [n] Gp, then

(i) each interval [ikJk+ι) after the one containing max(α) contains
exactly one n such that a U [n] Gp

(ii) every immediate successor a U [n] E p of a is as in (i); i.e., n is not
in the same interval as max(#)

(iii) each αU [n] as above has an infinitely branching successor b E p with
max(£) in the same interval [ikJk+i) as n.

(The trivial problem that max(0) is undefined can be avoided by requiring 0
to be a nonbranching node or by agreeing that every interval is "after the one
containing max(0)".) Notice that, in a tree with interval structure, every branch-
ing node is infinitely branching.
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Lemma 7 The set of superperfect trees with interval structure is dense in Q.

Proof: Let p be any superperfect tree; we wish to extend it to one with inter-
val structure. By a preliminary fusion, we can assume that every branching node
of p is infinitely branching and that 0 is not branching. We inductively define
a sequence (ik)kGω9 which will provide the interval structure of an extension of
p. Choose /0 arbitrarily. After ik is defined, choose ik+ί so large that, for each
(infinitely) branching node a with max(tf) < ik, there exist n = n(a9k) E ω and
b = b(a,k) E p such that

b is a branching node of /?,
b is a successor of a U {n} (so a U [n] Ep),
ik < n, and
max(Z>) < ik+ι.

Since only finitely many a have max(α) < ik9 and since p is superperfect, it is
clear that such an ik+ί can be found. Finally, the desired extension of/?, hav-
ing interval structure given by these ik's, is obtained by thinning p with Xa =
[n(a,k)\max(a) < ik}\ i.e.,

q = [b Ep\ for every proper initial segment a of b, if a is
branching in p then min(Z? — a) = n(a,k)
for some /: (with max(α) < ik)}.

Up has interval structure given by intervals Ik = {ik-\Jk) (where z'_i is 0)
and if we choose any subsequence of this sequence of intervals, say Jk = Ink,
then we can thin/7 with Xa = {n\a U {«} Ep and « E /*: for some k] to obtain
an extension q of pin which every node is a subset of the union of the Jk's and
the first branching node a0. The Jk's fail to provide an interval structure for q
only because they are not in general adjacent in ω; if we expand them to adja-
cent intervals, for example by adding to each Jk the intervals Im between Jk and
Jk+U then we obtain an interval structure for q.

For the next lemma, recall that if G is a generic subset of Q, then G is the
infinite subset of ω determined by G (namely, the union of the nodes that are
in every p EG), and/ G : ω -> ω is constant with value n on the Λth of the inter-
vals into which G divides ω.

Lemma 8 Let X be an infinite subset of ω and let ̂  be a nonprincipal
ultrafilter on ω, both in V. Let G be a V-generic subset of Q. Then there exists
a YE^withfG(Y)^fG(X).

Proof: Let ^,"11, and a condition/? E Q be given. We shall find a YE "U and
an extension q of p forcing that/ G (F) £ / G W , i.e., that if m < n are mem-
bers of G and the interval (m,n] meets F, then it also meets X. This will clearly
suffice to prove the lemma. By Lemma 7, we may assume that p has interval
structure, and by the construction following that lemma we may assume that
each of these intervals Ik meets X. Ίi must contain either the union of the even-
numbered intervals or the union of the odd-numbered ones; let Yo be whichever
of these two unions belongs to CU. Applying once more the thinning construc-
tion given after Lemma 7, extend p to a condition q such that every node in
q is a subset of a0 U (ω - Yo), where a0 is the first branching node of q. Let
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Y G IL be obtained by removing from Yo all (finitely many) intervals Ik up to
and including the one containing max(αo) Since q forces "G £Ξ α0 U (ω — Yo)">
it also forces that, if m < n are in G and (m,#] meets Y then (#2,77] contains
a whole interval Ik Q 7, and therefore meets X.

If <U is an ultrafilter in V, then we write H for the filter generated by °U
in some generic extension of V. The context will always make it clear which
extension is meant. In general, cϋ may or may not be an ultrafilter in the
extension.

Corollary 1 IfU and CU/ are nonprincipal ultrajliters on ω in V and if G is
a V-generic subset of Q, then fG(^) = fG(<\i').

Proof: fG{W) is generated by the setsfG(X) for Xe CIΓ. By Lemma 8, every
such set has a subset infG(

c\ί). So foiW) ^ Ξ / G ^ ) *
 a n d the reverse inclusion

follows by symmetry.

Lemma 9 ([3], Claim 2.4) If the set of infinitely branching nodes of a tree
pEQis partitioned into two pieces, then p has an extension q all of whose infi-
nitely branching nodes are in the same piece.

Proof: We attempt a fusion construction in which the nodes aSi chosen to
become the infinitely branching nodes of q, are all in the first piece. If we suc-
ceed, the fusion produces the desired q. If we fail, it is because at some stage
of the construction the treeps/(as U [n})9 from which an asn had to be chosen,
had no infinitely branching node in the first piece. Then this ps/(as U [n]) is
the desired q.

The following two lemmas are due to Miller ([3], Propositions 4.1 and
4.2]); we give a different proof, parallel to ([2], Theorem 3.3]).

Lemma 10 If Ti is a P-point in V and G is a V-generic subset of Q, then the
filter <\l generated in V[G] by "M is an ultrafilter in V[G].

Proof: Let A be a name in the forcing language associated with Q, and let p G
Q force that A <Ξz ω. We shall find a ^ E ^ and an extension q of p such that
either q forces B to be a subset of A or q forces B to be disjoint from A this
will clearly suffice to prove the lemma. We shall extend p in several steps to
obtain the desired q. (The argument takes place in F.)

We begin by performing a fusion construction on/?, choosing the conditions
psn at each stage so that, for eachy < n, psn decides whether or noty G A. The
resulting conditionp' has the property that, for each of its (infinitely) branching
nodes a, each immediate successor a U [n] Ep', and eachy < n, p'/(a U {n})
decides whether or noty G A. Notice that every extension of p' has the same
property. By thinningp\ we obtain/?" such that the decision byp"/(a U {n})
about whether or noty G A depends only on a andy, not on n, once n is large
enough. (Here "large enough" depends also on a andy.) For each branching
node a of /?", set

A'(a) = {j\ for all sufficiently large n such that aU [n] G/?",
/?"/(# U {n}) forces jeA}.
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Partition the branching nodes a of p" into two classes according as whether or
not A'(a) G "U, and apply Lemma 9 to extend p" to p"' with all its infinitely
branching nodes in the same class. We may assume that A' (a) E "U for all infi-
nitely branching nodes a of /?'", for the other case reduces to this one if we
replace A with its complement. Notice that A'(a) is unchanged when p" is
replaced by//" (or any other extension of/?") in its definition, provided that
a is an infinitely branching node of /?'" (or of the other extension in question).

As "U is a P-point, there is a B G "U such that B - A1 (a) is finite for every
infinitely branching node a oΐp'". By Lemma 7, we can extend /?'" to a condi-
tion /?(4) with interval structure, and by the discussion following that lemma,
we can extend this condition further to a/? ( 5 ) with interval structure [0,/0),
Uojii)... and with the further property that, whenever a is a branching node
of p(5) and a e \k (i.e., all members of a are < /*), then

(i)*-Λ'(α)cfc+1

(ii) if a U {n} G/? ( 5 ), n > ik+1, andy G A'{a) Π ik, thenp(5)/(a U {n})
forces y G>4.

To see this, it suffices to choose inductively the ik from among the endpoints
of intervals involved in the interval structure of /?(4), so that each interval for
/?(5) is a union of intervals for p ( 4 ) . Once ik is chosen, ik+\ can be chosen large
enough to satisfy (i) and (ii) because only finitely many a's andy's are involved,
each B - Af (a) is finite (by definition of B), and all sufficiently large n are as
desired in (ii) (by definition of A'(a)).

It will be convenient to assume that the first branching node a0 of /?<5) has
max(tfo) < hi this can be achieved by combining into a single interval all the
intervals up to and including the one that contains max(α0).

Partition ω into four pieces, each containing every fourth interval
[ik,ik+ι); that is, the mth piece (0 < m < 4) is the union of the [/*,/* 4- 1) for
k = m (mod 4). Being an ultrafilter, % must contain one of these pieces. Replac-
ing B by its intersection with this piece, we can ensure that B meets only (at
most) every fourth interval, while all our previous statements about B remain
true. Similarly, we can ensure that B has no members smaller than i2.

Thin/?(5) to obtain an extension q (still with a0 as its first branching node)
all of whose nodes a have a - a0 disjoint from the intervals UkJk+i) that meet
B, as well as from the immediately preceding and following intervals Uk-iJk)
and Uk+iJk+i)- Since B meets only every fourth interval, there are infinitely
many intervals that a — #o is permitted to meet, so the construction after
Lemma 7 yields such a q. (We continue to use the notation [ι*,/*+i) for the
intervals associated with/?(5), not the larger ones associated with q.) We com-
plete the proof by showing that q forces B QA.

Suppose the contrary. Then there exist ay G B and an extension r of q such
that r forcesy $r A. Let [/*,/*+i) he the interval containingy. By our normal-
ization of B two paragraphs ago, k > 2 and, for every node a of q, a — a0 is
disjoint from [/χΓ_1,/Ar+2). Furthermore, by our earlier normalization of the ik

ys,
the first branching node a0 of q (and of p{5)) has max(α0) < /'o ̂  ik-i<> so in
fact every node a of q is disjoint from Uk-iJk+i)-

Extending r to some r/b if necessary, we can arrange that the first branch-
ing node b0 of r has max(&0) ^ 4+2- Let a be the last branching node of q that
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is a predecessor of b0 and has max(α) < /#+2. (a0 is a predecessor of ό 0 and
max(α0) < 4+2* SO a exists.) Since a is disjoint from Uk-iJk+i)* it follows that
max(α) < /*_!. In view of the interval structure of /?(5), Z>0 is a successor of
a U [n] for some n > /£+ 2, for if n were smaller there would be a branching
node #', between aΌ [n] and 60> with max(α') in the same interval as n, hence
smaller than ik+2, contrary to the choice of a.

Since max(α) < ik_ι, requirement (i) (with k changed to k — 1) in the def-
inition of p{5) says that B - A'(a) c ik. Buty G B andy > ik9 soy G ̂ 4'(tf).
Then, since y < /Ar+1 and « > ίV+2, requirement (ii) (with k changed to k + 1) in
the definition of p(5) says that p ( 5 ) /(α U {π}) forces y G A. This is absurd,
because r is an extension of pi5)/(a U {n}) and yet it forces j $. A. This con-
tradiction completes the proof of Lemma 10.

Lemma 11 Under the hypotheses of Lemma 10, <\l is a P'-point in V[G].

Proof: Let countably many sets Xn G cΰ be given (in F[G]); we seek a y G H
almost included in every A^. As each Xn has a subset in "U, we may as well sup-
pose that Xn G IL for all Λ. By Lemmas 1 and 6, there is a countable (in V)
family J G Fthat contains all the Xn's. As "U is a P-point in F, it contains a
y that is almost included in every member of "U Π ?, hence in particular in every

Armed with all these lemmas, we are ready to prove the theorem. Assume
the continuum hypothesis in the ground model V. Let (Pa,Qa:a < K2> be a
countable support iteration in which, for each α, Pa forces " g α is the set of
superperfect trees ordered by inclusion". Let G be a F-generic subset of P =
Pκ2 = the direct limit of the Pa

ys. For each a < K2, let Gα be the F-generic
subset G Π P α o f P α , and let Ha be the F[GJ-generic subset of Qa (the value
in F [ G J of β α ) such that Ga * # α = G α + 1 .

Since the continuum hypothesis holds in F, there is a P-point in F. By
Lemmas 5 and 11, it generates a P-point in each V[Ga] and in V[G]. We write
aio for the one in V[G], so, for each α, "UQ Π F [ G J is the ultrafilter in
F [ G J generated by OLQ Π F.

Let 'U be an arbitrary nonprincipal ultrafilter on ω in V[G]. By Lemma 3,
there is an Ki-closed unbounded set of ordinals a such that ^ Π V[Ga] G
V[Ga]. For each such α, "U Π V[Ga] is clearly a nonprincipal ultrafilter on ω
in F[G α ] . Applying Corollary 1, with V[Ga] as the ground model, Ha as the
generic set, and 01 Γ) F [ G J and Olp Π F [ G J as the two ultrafilters, we find
t h a t / α ( Ί Π T F Ϊ G J ) = / α ( ί U 0 Π F [ G J ), where fa abbreviates/^ and where
the bars mean "filter generated in V[Ga+ι] by". Thus,

ΛίTl) S/αίOLΠ K [ G J ) = / α ( c U 0 Π F [ G J ) SΛίTlo Π F).

But Oto Π F generates OIQ, so/^ί^l) ^/^(aio). Since ̂ (Olo) is an ultrafilter,
it follows that fa (01) =/α(clL0).

If 01' is another nonprincipal ultrafilter on ω in V[G], then it too satisfies
/α(clΓ) =/ α ( c U 0 ) for an Kx-closed unbounded class of α's. Since any two in-
closed unbounded subsets of K2 intersect (here we use that K2 is preserved, by
Lemma 4), there is an a that works for both 01 and 01'. So/α(0l) =/«(cUo) =
/^OΓ). Since fa is finite-to-one, this completes the verification of NCF in
V[G],
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