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Stable Groups, Mostly of Finite Exponent

FRANK O. WAGNER

Abstract We prove certain properties of stable groups of finite exponent.
In particular, an 9ΐ-group of finite exponent has normal-by-finite 2-Sylow
subgroups; if it has exponent 3 2" for some n < ω, then it is nilpotent-by-
finite. We give an easy proof of the fact that a locally finite subgroup of a
stable group of finite exponent is nilpotent-by-finite. For groups of infinite
exponent, we prove the definability of an algebraically closed field of char-
acteristic 2 under certain circumstances. Finally, we prove two general prop-
ositions about normal subgroups of stable groups.

In this paper we shall be concerned with an arbitrary subgroup of a stable
group (in short: a substable group). Recall that a subgroup H of a group G is
definable if there is some formula φ(x) with H = <p(G); a subgroup is type-
definable if it is the intersection of definable subgroups in a saturated model.
If H < G is any subgroup and K < H is such that there is a formula φ with
K = φ(H), then K is relatively definable (with respect to //); the definition
for relative type-definability is analogous. Note that if //is substable and K<H
relatively definable, then also H/K is substable: If φ(H) = K, then H/K may
be viewed as subgroup of G/φ(G); if K < H we may prefer to replace φ(x)
by φ{χ) - ΛheHΨ(xh)> then NG(ψ(G)) > //and we may view H/K as sub-
group of NG(ψ(G))/\l/(G). The connected component H° of a substable group
H is the intersection with H of all definable subgroups K such that the index
IH: H Π KI is finite; H° is normal in H and itself connected. If H is definable,
we need only consider definable subgroups K < H of finite index. So the index
\H:H°\ is at most 2 | 7Ί and a saturated model and for a type-definable Hthe
connected component has comparable size. But in the absence of saturation or
if H is just substable, H° may even be reduced to the identity! For a relatively
definable H this may be remedied in some cases by considering the locally con-
nected component //c, which is the intersection of all conjugates H8 such that
the index \H:H Π H8\ is finite. By Baldwin-Saxl, this is again a relatively
definable subgroup of finite index. Finally, a group is small if its theory has only
countably many pure types.
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One of the guiding themes behind the study of stable groups is the idea that
they should behave, at their best, somewhat like algebraic groups or like finite
groups. One might try to prove then that a substable group of finite exponent
is nilpotent-by-finite and in particular that its Sylow subgroups are normal-by-
finite. Of course this might not be true as such: it might well be possible to con-
struct a stable Tarski monster (or one of those constructed so far might turn
out to be stable). However, there is a beginning of a Sylow theory: a substable
2-group is nilpotent-by-finite, and the maximal 2-subgroups (2-Sylow sub-
groups) of a substable group of finite exponent are nilpotent and all conjugate.
Furthermore, conjugacy of the 2-Sylows also holds in a small stable group (cf.
Poizat and Wagner [8], Theoreme 11, Proposition 12, and Theoreme 14).

First we note that for substable groups the Frattini-argument is valid:

Remark 1 Let G be a substable group of finite exponent. Then any subgroup
// < G containing the normalizer of a 2-Sylow S of G is self-normalizing; if N
is normal in G and P is a 2-Sylow of N, then G = NNG(P). These results also
hold if G is small stable, provided H and TV are definable.

Proof: Suppose n E NG(H). Then Sn is another maximal 2-group of //, so
there \sheH with Snh = S, that is nheNG(S)<: H. Therefore n E H as well.

For the second part, consider arbitrary g E G. Then P8 is a 2-Sylow of
N8 = N, so there is n E N with P8 = Pn, that is gn~ι E NG(P).

Theorem 2 Let S and T be 2-Sylow subgroups of some substable group G of
finite exponent, such that their intersection I is maximal subject to Sc Φ Tc. Then
N = NG{SC) Π NG(TC) Π NG(I) acts transitively on the infinite group A =
(NS(I)/I) [2] (and also on (NT(I)/I) [2]). Furthermore, N/I has odd exponent
and any abelian subgroup ofN/CN(A) is finite.

Proof: First note that both S and T are relatively definable as maximal nilpo-
tent 2-grouρs of finite exponent. Secondly, as Sc Φ Tc, clearly /must have infi-
nite index in S or in T. But Sc and Tc are also conjugate, so if / had finite index
in S, then Sc < /, whence Sc < Tc and we could conjugate Tc to a proper sub-
group, contradicting stability. Thus /has infinite index in both S and T.

As /has infinite index in Γ, there is a minimal k such that | Zk(T): /Π Zk(T)\
is infinite. Then \Zk-\(T) : / Π Zk_λ(T)\ is finite, so a subgroup Xof finite
index in Zk(T) centralizes T modulo / and in particular normalizes /. Hence
NT(I)/I is infinite, and so is NTc(I)/L We note for later use that X/I is an
infinite abelian 2-group of finite exponent, which must therefore contain infi-
nitely many involutions.

Fix an involution./ E NTc(I)/Iand consider any involution / E NS(I)/I. If
the order of ij were even, both / andy would commute with a common third invo-
lution k E NG(I)/I and there were maximal 2-subgroups 5' D IU {/,λ:} and
T DIU {kj}, with Sc = S'c = T'c = Tc due to the maximality of /, a contra-
diction. Hence the order is odd and there is an involution ki = //.../ =ji.. J E
NG(I)/I(o(ij) factors) with iki =j andjkι = / (mod /). Since /is maximal, we
must have (Sc)ki = Tc and (Tc)ki = Sc; in particular j E Tc implies / E Sc.
But then, if /' E Ns(I)/Iis another involution, k ^ 1 E NG(SC) Π NG(TC) Π
7VG(/) = N maps / to Γ.
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As above NSc{I)/Iis infinite and as a nilpotent 2-group contains a central
involution. But all other involutions in NS(I)/Iare conjugate and thus central
as well: They form a central subgroup, which must be infinite, as there are infi-
nitely many involutions in NS(I)/I.

Suppose now that there were an involution n E N/L Then there were 2-Sylow
s u b g r o u p s S' D S ° U [n] a n d Γ D T ° U {n}9 a n d S' Π T > I. H e n c e S ° =
S'° = T'° = T°, contradiction.

As for the last statement, this follows from the next Lemma.

Lemma 3 Let A and B be substable abelian groups of finite, coprime expo-
nent, such that B acts on A. Then a subgroup ofB of finite index stabilizes A.

Proof: We may suppose that A has exponent pm and B has exponent qn, for
two different primes p and q. For if B% is a subgroup of finite index of Bp sta-
bilizing Aq, then Γ\qB% is a subgroup of finite index in Bp stabilizing A, and
®pf)qBp is a subgroup of finite index in B stabilizing the whole of A.

Let C < A be a minimal nontrivial intersection of kernels of endomorphisms,
every one of which is generated by at most qn + 1 elements from B. There are
only finitely many ways in which such an endomorphism may be generated,
hence C is definable by Baldwin-Saxl. As B is abelian, C is 22-invariant, and for
any qn + 1 elements b E B any endomorphism of C generated by b is either zero
or an automorphism. Hence these b-generated endomorphisms form a commu-
tative field F. But F has at most qn elements of order qn, so two of the 5 must
have the same action on C. As b was arbitrary, there are at most qn different
actions by elements of B on C and a subgroup Bx of finite index fixes C.

Now consider C2 < A, a maximal centralizer of some subgroup B2 < B of
finite index, and suppose C2 < A. Again a subgroup B3 of finite index stabilizes
some set C3/C2 < A/C2. But then for rfE C3 and a£B3we get (B3 - 1)2C3 = 0,
whence C3B3 is 3-nilpotent. But the order of a is coprime to p, so ad = d for all
a G B3, contradicting the maximality of C 2.

Note that any two involutions in NS(I)/I and NT(I)/I are conjugate in
N(I)/Iby some involution k interchanging Sc and Γ c . Hence k normalizes TV.
If it had only finitely many fixed points, by a result of Hartley [4] k would invert
an abelian subgroup of finite index. But then a subgroup of finite index would
stabilize A, in contradiction to the transitivity of the action of N/I on the infi-
nite group A. So CN(k/I) is infinite.

Definition 4 An 9ΐ-group is a group such that for any definable transitive
group action, if a generic point x is algebraic over some point y, then y is generic
as well.

Information on 9ί-groups may be found in Wagner [9],[10]. Important exam-
ples are super stable groups and small stable groups.

Corollary 5 Let G be an ϊft-group of finite exponent. Then there is a normal
nilpotent 2-group I such that G/I has finite 2-Sylow subgroups.

Proof: Consider a 2-Sylow subgroup S and suppose that Sc is not normal.
Then there is a conjugate Γof 5 with Sc Φ Tc and maximal intersection /, and
TV = NG(SC) Π NG(TC) Π NG(I) acts transitively on A = (NS(I)/I) [2]. But
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since G is 9ΐ, N/CN(A) contains an infinite abelian subgroup, contradicting
Theorem 2.

We can also say something similar in the case of small stable groups of pos-
sibly infinite exponent. First a general Lemma and Proposition:

Lemma 6 Let N be a definable transitive group of automorphisms of the
definable abelian group A of infinite exponent. If A x\N is stable, then a divi-
sion ring is definable.

Proof: We choose a minimal type-definable subgroup Ao < A. As the intersec-
tion of Ao with any conjugate is either trivial or the whole of Ao, NN(A0) acts
transitively on Ao — {0}. Note that by minimality any definable endomorphism
of Ao is either zero or an automorphism. We are going to interpret the division
ring R of definable endomorphisms of AoinM = NN(A0)/C(A0). Fix 0 Φ a E
Ao. For 0 Φ r E R there is nr E NN(A0) such that ra = nra, that is ker(r — nr)
is nontrivial and thus equals Ao. So r •-> nr is the required isomorphism between
Rx and M. Of course addition is now definable on M, by putting g + h = n iff
gaΛ-ha — na.

If the theory is 9ί, then by [9], Theorem 2.7, the division ring is an algebra-
ically closed field.

Proposition 7 Let Nbea definable group of automorphisms of the definable
abelian group A of exponent p such that A is N-analyzable. If A >4Nis9t and
definable abelian subgroups of N have an exp(A)-divisible connected compo-
nent, then an algebraically closed field is definable.

Proof: By [9], Theorem 3.1, there are finitely many definable abelian subgroups
Nt, i< k, of N such that N is {A^:i<k] -analyzable, and so is A. By taking k
minimal and replacing successively TV, by the intersection of all definable N' < fy
with Nj/N' analyzable in {Njij > /}, we may assume that the generic types
of the Ni are pairwise foreign. Note that the new Nj are possibly only type-
definable; in any case they are connected.

Let M be the intersection of all N' < No such that the quotient No/N' is
analyzable in a formula φ with the following property (*): whenever No is ana-
lyzable in a set Σ of formulas, it is also analyzable in Σ - [φ]. (This is a kind
of strongly connected component, and called the Frattini-free component in [10].)
We note that gen(M) is foreign to all φ with property (*).

Let Z = CA(M), a proper subgroup of A. Then if a E A is centralized by
some n E Mmodulo Z, we have (n -l)2a = 0, whence (np -\)a={n- \)pa = 0
and a is centralized by np. However, Mp — M, so no point in A/Z is stabilized
by the whole of M. Now choose an Λf-minimal subgroup B of A/Z.

We claim that gen(i?) is not foreign to A^. Indeed, as A is analyzable in
{Ni: i < n}, so is B. So if gen(i?) were foreign to Nθ9 by minimality it were
almost Ni?-internal for some 0 Φ i. On the other hand No/CNo(B) is an infinite
B-internal quotient, as already M/CM(B) is infinite; together this implies that
gen(AΓ0) cannot be foreign to Ni9 contradiction.

Next we claim that gen(l?) is not foreign to M. For otherwise, as it is not
foreign to No, there is a formula φ with property (*), such that gen(B) is not
foreign to φ. By minimality B is almost ^-internal; as M/CM(B) is infinite
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and ^-internal, gen(M) cannot be foreign to φ9 contradiction. Hence B is
M-analyzable.

Let Mo be a definable abelian supergroup of M with CΛ (Mo) = CΛ (M), and
let Bo be an Mo -minimal subgroup of B. We finally show that gen(50) is not
foreign to φ(x) = "x E M0/CMo(B0)". So suppose otherwise. We claim that
φ has property (*). Indeed, if Σ is a set of formulas such that No is Σ U {φ}-
analyzable, then, as B is M-analyzable, also Bo is Σ U {^}-analyzable. So
gen(i?o) cannot be foreign to Σ; by minimality Bo is almost Σ-internal. Clearly
φ is 2?0-internal, whence almost Σ-internal, and 7V0 must be Σ-analyzable. So
φ has property (*). But this implies CM(B0) > M, contradiction.

Therefore gen(2?0) is not foreign to φ, so by [9], Theorem 4.2, there is a
definable algebraically closed field K with Bo = K+ and Mo/CMo(Bo) ^Kx.

Note that the divisibility condition is in particular satisfied if TV has only
finitely many elements of order exp(A). Furthermore, if Nacts transitively on
A, then gen(A) is even TV-internal. So Lemma 6 and Proposition 7 together
prove the definability of an algebraically closed field for definable transitive
group actions under 9ί plus the divisibility condition.

Theorem 8 Let G be a small stable group, and S and T be two infinite
2-Sylows such that 1= SΠTis maximal subject to having infinite index in both.
Then there are relatively definable subgroups Sc < S and Tc < T of finite index
such that N = NG(I) Π NG(SC) Π NG(TC) acts transitively on the group A =
(NS(I)/I) [2]. N/I does not contain involutions. If A is infinite, then an alge-
braically closed field of characteristic 2 is definable.

Proof: First we have some problems about definability, as the 2-Sylows need
not be relatively definable any longer. But for any 2-Sylow 5 there is a finite
2-extension of a definable nilpotent group S with S as 2-Sylow, and replacing
S by ΠgGNG(S) S8> we may assume NG(S) < NG(S). As the 2-Sylows are all
conjugate, we get a conjugate family of such supergroups, and a maximal inter-
section /must still exist (see [8], Section 1). There also is some kind of locally
connected component: The intersection with S of all S' such that | S: S Π S' \ is
finite forms a subgroup Sc of finite index contained in all intersections S Π Sf

of finite index in S, and the normalizer of Sc is maximal for a subgroup of finite
index. Also these locally connected components are all conjugate, and it follows
again from stability that if S Π S' has finite index in S, it also has finite index
in S'. Furthermore, if we put / = Πg<=NG(i) (S Π T)8

9 then we may work in
NG(ϊ)/f instead of 7VG(/)//, as 7VG(/) < iVG(7) and S Π / = /. S/Iis substable,
so local nilpotency implies NS(I) > I. Finally there is an increasing sequence Ik

of definable 2-groups with Uλ:eω h = I'I has a nilpotent normal subgroup / of
finite index, and for big k the sets J[2k] form characteristic definable subgroups
of J ([8], Lemme 16). So if i is a system of representatives of ///, then Ik :=
<l)J[2k] will do.

Again we fix an involution j G NT(I)/I and consider any involution i E
NS(I)/I. There is k < ω with i2j2 G Ik. Consider a definable abelian group con-
taining ij (modulo Ik)9 which is inverted by i and byy and normalizes /. By [8],
Lemme 13 it is divisible-plus-bounded, and so it remains modulo /. So modulo
/ it either contains an involution k (which is impossible, since k would commute
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both with / andy), or there is r (inverted by / and byy) with r2 = ij. Then ir =
r~ιir = irr = /(//) = j and jr = r~ιjr = jr2 = jij = iJ. So there is nt = rj E
NG(I)/I with ini = y andyΛ ί = /, whence by maximality of /we have (Sn')c =
Tc and (Tni)c = Sc. If V is another involution, then n = ntnfl takes i to /' and
normalizes Sc and Γ c. As there is a central involution in S/I, all involutions are
central and (NS(I)/I) [2] forms a group ^4. Note that A\— A -///is isomorphic
to A and definable as the orbit of any of its (nonzero) elements under NU {0}
if it is infinite, it is connected, as all involutions are conjugate to one in the con-
nected component. The fact that N/I contains no involutions follows as in The-
orem 2. Finally, if A is infinite, we can apply Proposition 7 to A xi N/CN(A).
We need to check that any definable abelian subgroup H/CN(A) is 2-divisible.
So let h E H. Then Z = Z(CH{h)) is an abelian subgroup of H. By [8], Lemme
13 Z is the sum of a divisible group and one of bounded exponent, and so is
Z/Z Π /. But this quotient has no involutions and thus is 2-divisible. As / <
CN(A)9 also Z/CZ(A) is 2-divisible, whence hCN(A) has a square root. Obvi-
ously, the resulting field will have characteristic 2.

The next proposition may be useful in a variety of circumstances:

Proposition 9 Let 9Ϊ = {Njii E /} be a family of pairwise normalizing
k-nilpotent substable groups. Then 9Ϊ generates a nilpotent subgroup. The result
also holds with soluble instead of nilpotent.

Proof: As any A:-nilpotent subgroup is contained in a uniformly (in k) defin-
able A:-nilpotent subgroup, whose normalizers are in turn uniformly definable,
we may assume that the TV, are actually uniformly definable and normal in some
G. (This is also true for soluble instead of nilpotent.)

We first treat the nilpotent case. We put N{ = Zk_J+ι(Ni)9 and N? = G.
Then TV/ is (k - y)-nilpotent, normal and uniformly definable. Let n be a
bound for the length of a descending chain of intersections of the Nj, and con-
sider a sequence as E Ni(s) E 9ϊ. Let b0 = a0 and bs+i = [bs,as+i].

If t is such that bs E Nf{s+Ϊ) - Nφl

+l), then bs+ι E N fs

ι

+l), and because of
normality bs+ί lies in all ΛΓ/'s which contain bs: Γ)bseN/N{ > Π^+1eτv/N/' But
the sequence can descend at most n times, whence bn E Z(J/V/(Λ+1)) and bn+\
must be trivial. It follows that <9Ϊ> is nilpotent of class n + 1.

In the soluble case, we use induction on the solubility class, the case of
abelian groups having just been dealt with. So we may assume that the derived
subgroups [Ni: i E /} generate a soluble normal subgroup N, which we may
assume to be definable. But [NjN/N: i E /} is a family of normal abelian sub-
groups of G/TVand generates a nilpotent group; the result follows.

In particular, a substable group G contains a normal relatively definable
soluble subgroup R/c(G) containing all normal ^-soluble subgroups. So the
existence of the soluble radical of G means that the increasing sequence of Rk's
becomes stationary. Similarly there is a relatively definable normal nilpotent
subgroup Fk(G) containing all normal ^-nilpotent subgroups, and the Fitting
subgroup of G exists iff the Fk's become stationary.

The following Proposition has a similar flavor and generalizes a result of
Borovik and Thomas [1] from the finite Morley rank to the general stable case:
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Proposition 10 Let H(a) be an a-definable normal substable group and
suppose that for any independent family [at N tp(a) :i < ω] the intersection
Γ\i<ω H(ai) is empty. Then H(a) is nilpotent (and so is (H(aj): / < ω> by Prop-
osition 9).

Proof: Suppose otherwise. We clearly may assume that tp(α) is stationary, as
the hypothesis holds for any stationarization of it (and the nilpotency class of
H(a) then forms part of tp(#)). Furthermore, we work in a saturated model.

By Baldwin-Saxl there is a minimal intersection TV of conjugates of H(a)
not contained in the hypercenter Z of H = (H(af) \a' N tp(α)>. (Here the
parameters of the different H(a)'s in the definition of N are not necessarily
independent. Note that His in general not at all definable, but its iterated cen-
ters are relatively definable as in any substable group.) If 7V< H(a') for some
a', then a' must fork with the parameters needed for the definition of Λf (oth-
erwise /V-conjugates of H{a') independent over N would be independent over
0 , with nontrivial intersection). Hence [N,H(a)] < Z for generic a by minimal-
ity, and so it is already contained in some iterated center Zj(H). But the cen-
tralizer modulo Z/(if) of some H(a'), a' 1= tp(#), contains the centralizer
modulo Zj(H) of some infinite independent set {H(a )}i<ω, as two independent
series have the same centralizer modulo Zf (//"). Hence the centralizer modulo
Zi(H) of [H(a'): a' V tp(α)} equals the centralizer modulo Z/(//) of a generic
subfamily, and must thus contain N, contradicting the choice of N.

If G were superstable and φ a formula such that for any subformula ψ c φ
of the same (Shelah) rank the intersection Γ\{H(a) :a N ψ] were trivial, then
any completion of φ to a type of the same rank would satisfy the hypotheses of
the proposition, so groups H(a') with a' of maximal rank are nilpotent. But now
by compactness there is a bound n on the nilpotency class (the set of a 1= φ of
maximal rank is closed, and the set of a with H(a) nilpotent is open), and
there exists a formula ψ of lower rank such that for any a' V φ Λ -H/S H(a') is
n -nilpotent.

A result of Kegel [5] states that a locally finite group of finite exponent with
the chain condition on centralizers is nilpotent-by-finite; we are now aiming for
an easy proof of this result in the more restricted case of a locally finite substable
group of finite exponent.

Fact 11 [3] A periodic soluble group with chain condition on centralizers
is nilpotent-by-abelian-by-finite. If the exponent is finite, then the group is
nilpotent-by-finite.

Fact 12 [2] A locally nilpotent group with chain condition on centralizers is
soluble; if its chains of centralizers have their length bounded by k, it is
k-sohxbh.

Fact 13 [2] A periodic locally nilpotent group is nilpotent-by-finite; if it has
finite exponent, it is nilpotent.

Remark 14 A periodic substable group G has a Fitting subgroup F(G) and
a soluble radical R(G); if the exponent is finite, then the index \R{G) :F(G)\
is finite.
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Proof: The maximal normal locally nilpotent subgroup of G is nilpotent-by-
finite and hence has a maximal normal nilpotent subgroup F. As Fis character-
istic, it must be the Fitting subgroup.

Let A: be a bound for the length of a chain of centralizers. Then by Facts 11
and 12 the soluble subgroups of G are (k + 1)-soluble-by-finite. So we may
divide out by Rk+Ϊ(G) and assume that all normal soluble subgroups of G are
finite. But then they must be centralized by the centralizer-connected component
of G (i.e., the minimal centralizer of finite index in G). But this subgroup must
have finite center, whence the group generated by all normal soluble subgroups
of G must be finite as well.

Finally, the last part follows from Fact 11.

Theorem 15 A locally finite substable group G of finite exponent is nil-
potent-by-finite.

Proof: We may divide out by the radical and thus assume that G is semisimple.
By the chain condition on centralizers, we may assume that any proper centralizer
has infinite index. We aim to prove that G is trivial, so we may replace G by a
countable elementary restriction. Therefore there is a sequence {Gz: / < ω) of
finite subgroups with (J;<ω Gf = G. The classification of finite simple groups
tells us that there are only finitely many simple groups of given exponent, so we
may assume that the G, have nontrivial normal subgroups At.

Case 1: The Aj may be chosen abelian. We replace ^4; by some abelian nontriv-
ial intersection of centralizers normalized by G7, which intersects G nontrivially.
But now Γ)i>jN(Aj) is increasing and uniformly definable and hence eventually
stationary from somey0 onwards: AJo Π G is a normal abelian subgroup of G,
contradiction.

Case 2: Almost all G, are semisimple. If we choose the At to be minimal nor-
mal subgroups of the G;, then they must be the direct product of simple
nonabelian subgroups. However, their number is bounded by the chain condi-
tion on centralizers, so that the At and thus also the N(Aj) are uniformly defin-
able, and there must be an /0 such that Γ\j>ioN(Aj) is maximal (and hence the
whole of G): Aio is a nontrivial normal subgroup. However, as G has no proper
centralizer of finite index, any finite normal subgroup must be central and hence
abelian, contradiction.

This finishes the proof.

Proposition 16 A periodic locally soluble substable group G is soluble.

Proof: It is sufficient to show that G is soluble-by-finite; proceed as in Case 1
of the last Theorem.

In Poizat [7] it was proven that a group of finite Morley rank and exponent
3 2n is nilpotent-by-finite. We now generalize this to 9ΐ-groups. The case of an
arbitrary stable group of exponent 3 Ίn is still open.

Theorem 17 Let G be an W-group of exponent 3 2n. Then G is nilpotent-
by-finite.

Proof: We note first that a stable group with a generic element of order 3 is
nilpotent-by-finite by [7] and Wagner [11], We suppose, by way of contradiction,



STABLE GROUPS 191

that G is not nilpotent-by-finite, and work in a saturated model. By Corollary
5 we may assume that the 2-Sylows are finite.

By Facts 11 and 12 and by compactness there is a bound k on the nilpotency
class of the connected component of a locally finite subgroup of G. Now let S
be a maximal locally connected /:-nilpotent subgroup of G. If there is such S with
NG(S)/S infinite, we replace G by NG(S)/S and obtain a group where all
locally finite subgroups are finite. By the chain condition on centralizers we may
assume that every proper centralizer is nilpotent-by-finite, whence finite. How-
ever since G is not abelian-by-finite, by [11], Theorem 11, an involution must
have an infinite centralizer, so it must be central. Hence G/Zn(G) is a group of
exponent 3, whence nilpotent-by-finite, contradiction.

Therefore NG(S)/S must be finite and NG(S) is a maximal locally finite
subgroup of G. As the different maximal locally connected &-nilρotent S' are
uniformly definable, so are the maximal locally finite subgroups and their sub-
groups containing S\ and we choose two of them, Si and 52, with maximal
intersection / subject to NG(I)/I being infinite (e.g., S' and a true conjugate
will satisfy this last requirement). We can replace G by NG(I)/I; then G is not
nilpotent-by-finite, but any two distinct maximal locally connected nilpotent sub-
groups S and Γof G are disjoint: If /' = S Π Γ, then /' has infinite index in both;
as /' has infinite index in NS(Γ) and Nτ(Γ)y NG(Γ)/Γ is infinite. By the max-
imality of /, /' must be trivial.

By the chain condition on centralizers we may further assume that ev-
ery proper centralizer is locally finite and therefore nilpotent-by-finite. Note
that maximal locally finite subgroups remain uniformly definable and are self-
normalizing. Furthermore G is center less.

Again by [11], Theorem 11, an involution / in G has infinite centralizer.
Hence there is a unique maximal locally connected nilpotent 3-subgrouρ B(i)>
CG(i)°. If j φ. N(B(i)) is an involution, then B(i)j contains exactly one invo-
lution (namely y): if k were a second one, theny'A: E B(i), so there is some b E
B(i) withy* = b, that is bj = b~ι. Hence b E B(i) Π B(iJ)9 so B(i) = B(ij)9

contradicting j £ N(B(i)).
We claim that (CG(i) ί)B(i)) -iG is generic over /". Indeed, if g E G is prin-

cipal generic, then i8 φ. N(B(i)) (otherwise iG C C\g<EGoN(B(i))g, so this gen-
erates an infinite normal subgroup whose locally connected component lies in
all conjugates of /?(/)). So B(i)ig contains a unique involution i8 and (CG(i) Π
B(i))gis algebraic over B(i)i8. Hence (CG(i)ΠB(i))gis algebraic over (CG(i) Π
B(i))i8, and as the former is a generic element of (CG(i) Π B(i))\G, so is the
latter by 9ί.

Hence for principal generic g over / the set B(i)g contains a unique involu-
tion k, which in addition is conjugate to /. Thus there are unique k — ih E iG

and b E B(i) with g = bk, and b E CG(i). But if there were c E B(i)° - CG(i)
(independent from g), then also c~ιg were principal generic and hence g E
cCG(i) - iG

9 contradicting the uniqueness of k and b. Hence B(i)° < CG(i). But
now / is algebraic over B(i) (that is, the canonical parameter needed for its def-
inition): If C is the intersection with B(i) of all centralizers of involutions con-
taining B(i)° and ij centralize C with Ci — Cj, then / inverts and fixes ij E
C < B(i): / =y. Furthermore / andy normalize B(i), as C has finite index in
NG(B(i)), there are only finitely many possibilities for /.
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So if g is a generic over / with g = bk as above, it follows from 9ί that ft*
is generic: First ik is algebraic over bk as one of the finitely many involutions
j G iG with Z>* G B(j) . Then £ ( / ) £ is algebraic over C(i)k, the set of elements
conjugating / to ik. Now k is the unique involution in B(i)k. Hence b is alge-
braic over bk, and so is the generic g = bk.

Thus there is a generic element of order 3, and G is nilpotent-by-finite.
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