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Naive Set Theory with Extensionality
in Partial Logic and in Paradoxical Logic

ROLAND HINNION

Abstract Two distinct and apparently “dual” traditions of non-classical logic,
three-valued logic and paraconsistent logic, are considered here and a unified pre-
sentation of “easy-to-handle” versions of these logicsis given, in which full naive
set theory, i.e. Frege's comprehension principle + extensionality, is not absurd.

1 Introduction We consider here two types of nonclassical logics. The logics of
thefirst type will be called “ partial” and are inspired by the work concerning “partial
set theory” of Gilmore [5]. They are clearly “three-valued logics’ but we prefer to
give them a different name in order to distinguish them from the already existing
three-valued logics. For an analogous reason, we will call the logics of the second
type “paradoxical”, although they are clearly paraconsistent logics, at least if one
accepts the following definition of Arruda[1]: “Loosely speaking, a paraconsistent
logic is alogic in which a contradiction, A & —A, is not in general an antinomy.”
(An antinomical theory is smply a trivial theory, i.e., one in which everything is
provable).

We will only consider first-order languages, with equality as a primitive symbol
and with 3, V, v, A, =, — as primitive quantifiers and connectives.

Weintroduce, for convenience, two notionsof “implication” which areequivalent
to the primitive implication “—" in classical logic, but not necesarily in our non-
classical logics:

A =% Bisthe abbreviation of (=A) v B
A > Bisthe abbreviation of (A — B) A (=B — —A).
(the“s” means “strong”).

Naturaly, “ A <> B” will be the abbreviation of “(A — B) A (B — A)", for
each of the three notions of implication.

Starting with the language L, we define a new language L*:

L* has“=" asa primitive symbol;
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L* has “#£" as a(new) primitive symbol. Further, the relation symbols of L*
are exactly the (new) symbols“R*” and “ R™", for each n-ary symbol “R" in L. For
the equality symbol, we consider that “="" is exactly “=" and that “="" is exactly
“=£”" . Finally, the function and constant symbols of L* are exactly those of L.

Now, for any formulag in L there correspondsin anatural way apair of formulas
inL*, ¢t andg™.

Theinductive definition of ' and ¢~ is:

(1) If p isan atomic formulaof type R(X) (where R isarelation-symbol in L) then
pTisRT(X),and ¢~ is R~ (X).

@ (evi)TiseT vyTand(pvy) ise” Ay

Q) pAp)TispT AyTand (@ AY)TiseT VYT,

(4) (—p)* isg™ and (=)~ isg™.

®) (p—> ) Tiset > yTand(p — ¥) T ispT AYT.

(6) (Axp)T isTxe™ and (IXxe)~ iSVXe ™.

(7) (Vxp)TisVxe™ and (VXg)~ isIxe~.

8 If (X1, X, ...,Xn) isaformulain L and ty, 15, ..., Th @etermsin L, then
((t1, T2y ..., ) T ISt (71, T2, ..., Th).

Remark 1.1 Therulesfor theimplications —> and — are;

(p — Ptise vyt

(0 = Wtis (o™ > ¥y HAGT > ).
Notethat (¢ — )~ isequivalent to ¢t A v~ for the three versions of “—" so that
(p < Y)~ isequivaentto (o™ Ay V (o~ AYT).
Remark 1.2 When we say that “—" does not occur in aformula¢ of L, we mean
that neither the primitive “—", nor * S, oceur in ;0" —» can oceur.

Remark 1.3 It should be noted that ¢+ and ¢~ are positive formulas of L* when
“—" does not occur in g.

The axioms of Partial Logic are:
Ax Pt Log = —(ST(X) A S™ (X))

(for every relation symbol S, including the equality symbol). The axioms of Para-
doxical Logic are:
AxPdLog = (St(X) v S (X))

(for every relation symbol S, including the equality symboal).

Clearly, Partial Logic and Paradoxical Logic appear as “dual” weakenings of
classical logic. While in the classical situation the “collections’” {X|S"(X)} and
{X|S™(X)} (where St isinterpreted as Sand S— as —S) correspond to a partition of
the “universe”, they correspond to digointed collections in the partial case and to a
covering of the “universe” in the paradoxical case.

A routine induction now shows that this situation is still true for any formula
©(X1, ..., %Xy in L, i.e. that = (¢ (X) A ¢~ (X)) can be (classicaly) deduced from



NAIVE SET THEORY 17

Ax Pt Log and that ¢ (X) v ¢~ (X) can be (classically) deduced from Ax Pd Log.
The word “classically” refers to ordinary classical logic with equality. We will see
later that the “duality” between Pt Logic and Pd Logic is not as perfect as one could
expect.

We need some more definitions:

Definition 1.4 An axiomatic system (or, for short, a system) in L is any set of
sentencesin L.

Definition 1.5 If X, X/, aresystemsin L, then X Fp; ¥’ meansthat Ax Pt Log +
St Felass ()7 (Where “ciass” is the usual symbol for provability in classical
logic with equality). We adopt the obvious similar definition for “pq”.

Definition 1.6 A system X issaid Partially Inconsistent (for short, Pt-inconsi stent)
iff ¥ Fp¢ o for any sentenceo in L.

“Consistent” will mean “not inconsistent”. We adopt the obvious similar definition
for “Pd-inconsistent”.
What is the relation of Pt- and Pd-consistency to classical consistency?

Remark 1.7 (ThePt-case) ¥ isPt-consistent & 1 + Ax Pt Logis(classically)
consistent. Thisisdue to the fact that, in the Pt-case, there exists a fal se sentence of
typeo . For exampleo = VX =X = X.

Asour metatheory isclassical (for example ZF), weget X isPt-consistent < IM
(amodel for the language L*) such that M Ecjass (21 + Ax Pt Log). Naturally, we
define“M Ep; 0” asmeaning M Fcjass 07, Where “Fcjass” IS the classical symbol
for “isamodel of”.

Remark 1.8 (ThePd-case) Thiscaseis (slightly) less simple as we don't have a
“false positive sentence” (x # x isnot forbidden here). Actually we have:

¥ isPd-consistent <& X1+ AxPd Logdoesnot prove(classicaly) any o ™ (for o
asentenceinL) < 3IM (M amode for L*) and 3o (asentencein L) such that
M ':Class (E+ -+ AX Pd LOg) al’\d -M ':C|ass U+.

Thusthe implication
“Y isPd-consistent = ¥t + Ax Pd Log is (classically) consistent”

istrue, while in general the converseis not. For example take L to be {=}; M to
be ({a}, =m, #m); =wm to be the “real” equality on M (i.e.: {(a, a)}); #wm to be
{(a,a)}; and X tobe{¥Yx Vy x = y}.

Aneasy induction onthelength of theformulag in L showsthat = Fpg VX ¢(X).
So ¥ isPd-inconsistent. However, M is(classically) amodel for 1 + Ax Pd Log.

Actualy, as our main concern is set theory, we will only be interested in infinite
models. And the existence of such models will guarantee Pd-consistency, because
“Yt + AxPdLog + 3Jadb —a = b is (classicaly) consistent” implies “¥ is Pd-
consistent” (as—X Fpg Vavb a = h).

Note that the Pd-consistency does not imply the existence of a model of cardi-
nality > 2. For exampletake L = {=}; = = {VxVy X = y}; M = ({a}, =wm,
#m); =m = {(@, a)}; and #yp to be empty. This M is a Pd-model for X; as
=M Epg =X = X, X is Pd-consistent. However ¥+ + Ax Pd Log + 3a3b —a =b
is (classically) inconsistent.
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L et usnow introducethedefinition of thenotion of “ syntactical variant of asystem
¥". First we define the equivalence “ ¢’ is a syntactical variant of ¢” (we introduce
the notation ¢’ ~ ¢) inductively by the following rules (~ is an equivalence on the
set of theformulas of L):

D ¢ ~——0p.
(2 oV ~=((—) A(=¥)).
3 o=y~ (o) V.

(4) If ¥ isasubformulaof ¢ and v ~ ¢/, then ¢’ ~ ¢, where ¢’ is obtained
from ¢ by replacing v by v'.

() Ifg~¢' thengp ~ (p Vv ¢).

(6) If R(Xy,...,Xn) isanaomic formula(i.e. Risaprimitive relation symbol
in L) then 3x/ (X' = Xi A R(Xy, X2, ..., X, ..., Xn)) ~ R(Xi, Xo, ..y Xiy ooy Xn)
(where“x” isany variable, distinct from “x;”, “X.”, ..., “%", ..., “Xn").

Obviously, ¢ ~ ¢’ impliesthat ¢ and ¢” are equivalent in classical logic and that
they have exactly the same free variables.

Definition 1.9 If X, ¥/, are systems X’ is a syntactical variant of X iff (Vo €
YIoc'e¥ o~c)& VI eX FO0 eX 6~0)).

Syntactical variants of a system X are obvioudly classically equivalent, i.e. they
prove the same theorems (in classical logic). However they are not necessarily Pt-
or Pd-equivalent, asis shown in this paper for naive set theory with extensionality.

2 Duality Itwill becomeclear below that the” duality” Pt—Pd worksinasatisfying
way only when the # relation is classical. So we introduce two new types of non-
classical logic:

Pt #-logic and Pd #-logic.

The axioms of Pt#-logic (i.e. Pt-logic with aclassical #) are:
Ax Pt# Log = Ax Pt Log + the axiom: (X = y <> =X # Y).

Pd 7-logic is defined in the obvious similar way. Naturally a Pt #-model (f.ex.) will
just be amodel for the language L* satisfying (classically) Ax Pt* Log, €tc. . .

Consider amodel M for L*,

Thedual of M isthestructure M, having the same universe, but wheretherelation
symbols St and S~ of L* areinterpreted by S® and S°, and where these are defined
by:

S?@ < -MES 3

S°(@) & =M E ST (@)

(withay, a,, ..., anin M).
So clearly, M is M and M isaPt #-model iff M isaPd #-model.
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Remark 2.1 The problem, when # is not classical, is that =® (defined by x =®
y <> =X #p Y) isnot even necessarily an equivalence relation!

This problem cannot be avoided, even in very natura situations. Suppose, for
example, that M isamodel for L£*, with £ = {e, =}, and that #y hasthe property:

X#EMY < HeM el xatey Yy V(teyXatelh y).

Note that this expresses exactly a syntactical variant of the axiom of extensionality:

EXT E Wttexotey) < x=y.

Itiseasy tofind (evenfinite) models M where such an #), doesnot induceatransitive
relation =®. It suffices to have a situation as follows. (=X #m Y) A (=Y #m
2) A (X #m 2), for somex, y, zin M. Thetopological models introduced below in
Section 5 will contain such situations.

So, let us assume that M isamodel (for L*) where #y is classical.
We distinguish the cases for Pt and Pd.

First case: M Ecjass AX Pt # Log.

So, if M Epy ¢(8), we have M Ecjass ¢ (2) and so (as we are in the Pt-situation)
M Eclass —¢~ (2). Now, itiseasy to verify that, for formulas ¢ (in L) inwhich“ —"
does not occur

M Eclass _‘(P_(é) & M Fclass (P+(a)

and
M Eclass _“P+(é‘) & M Fclass ‘/’_(é—)-

Soweconclude; M Epq (@) if M Ept (a) and“—" does not occur in .

The fact that we don’t have thisfor any ¢ in L suggests the following definition.
A system ¥ iscalled “Pt #-classical” iff:

VYM model of L* (M isaPt #-model for ¥ = M isaPd #-model for )
or, equivalently:

VM model of L* (M Ecjass (AXPt# Log+ =1) = M Ecjass 7).
So, clearly, any system whose axioms do not contain “—" (that is the primitive
symbol “—"; the axioms may contain “_~% ") is Pt*-classical.

Second case: Suppose M Ecjass AX Pd # Log and M Ecjass ¢ (8). Here the
first step, i.e. getting M Ecjass —¢~ (8) from M E¢jass ¢ (8) isaready problematic.
And the second step; i.e. getting M Ecjass ¢ 7(8) from M Ecjass —¢ ™~ (8), presents
the same difficulties asin our first case above. So we introduce a definition (ssmilar
to the one we gave in our first case). A system X iscalled “Pd #-classical” iff

VM model of L* (M Ecjass (AXPd 7 Log+X ) = M Ecjass Z1).

Clearly, if = isPd #-classical and Pd 7 -consistent, then ¥ is Pt #-consistent.

The general impression we get from these 2 cases is that it will generally be
harder to get a Pt # model M (for =) from a Pd# model M (for X) than the
converse. Anyhow, the“duality” Pt—Pd isfar from perfect. This has also been noted
by Crabbé in adighity different context in his[3].

Here follow some set-theoretical examples for the language £ = {e, =}.
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Example 2.2 Let us cal the following syntactical variant of EXT (the axiom of
extensionality); “EXT1":

Vttex S tey) <o X=Vy.

One can easily check that EXT1 (i.e. thesystem {EXT1}) isPd - and Pt #-classical.
Example 2.3 Let uscall thefollowing syntactical variant of EXT; “EXT2":

Vttex S tey) & x=V.

It isanatural version of EXT, both in the Pt and Pd-cases; it gives a nice character-
izationof £: X £y < H(t et xAt e y)Vv(t e xAt et y)). Furthermore,
in the Pd-case it gives an interesting senseto X # X, asX # X <> X hase€™ and e~
members, i.e. X isnot aclassical set.

But EXT2 is not adapted to set theory in the Pd 7-case. For there x # X is
excluded, so that all the sets are classical (i.e. M Ecjass VIVX(t €T X < =t €~
X)). So if one assumes comprehension, one gets the Russell-paradox. However
uninteresting it may be for set theory, EXT2 isactually Pd 7-classical. Indeed, if M
isa Pd #-model for EXT2, then the setsin M are classical and so M is exactly M
itself!

Note that EXT2 is not Pt #-classical, asis shown by the structure:

M = ({0, 1}, €]y, €Em> =M, #M)

where =y and #y are the “rea” = and # on {0, 1}, and where e,\js {(0,0)},
ey= {(0,)}. M isaPt#-model for EXT2. But M cannot be a Pd #-model for
EXT2 because otherwise (as we remarked previously) Mwould be Mitself and so
M would be M. And thisis not the case.
Definition 2.4  Wewill adopt thefollowing usefull notation: Comp(<>) istheaxiom
schema=Vy 3Ix Vt(t € x < ¢(t, y)) forp in £ = {€, =}, such that “x” isnot free
ing.
Comp(<>) istheschema=Vy 3Ix Vt(t € X <> ¢(t, ¥)) for ¢ asabove.
Comp(<3>) isthe schema= vy 3Ix Vt(t € x S @(t, y)) for ¢ asabove.

Actually, any axiom of Comp(<3>) is Pt #-and Pd 7-classical. Thisfact will be used
later.

3 Thesystem of Fregein £ = {€,=} Wetake the system of Frege simply to be
F = extensionality + the full comprehension scheme, i.e.: for any formula g in £
(where“x” is not free),

Yy 3x Vit € X < o(t, ¥)).
We will consider different syntactical variants of this basic system F:

F1 = EXT1+ Comp(<>)

F2

EXT2 + Comp(<>)
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F3 = EXT1+ Comp*,

where“Comp” is defined at the end of Section 2, and where Comp* is the schema:
VY IXVE(tex < o*(t, V),

for ¢ in £, without “—" and “x” not free in ¢. Further ¢* is obtained from ¢ by
replacing in ¢ any subformulaof type“z e t” by “3t’ (ze t' At =t')” (where“Zz”,
“t”, and “t”” aredistinct variables) and “t e t” by “3t' (t e t' At =1)".

We can discuss now briefly the main results and conjectures about F1, F2, F3.

Remark 3.1 Thesystem F1, seenin Pt-logic, corresponds exactly to the “ 3-valued
Frege” aready discussed in Hinnion [7]. We conjecture that F1 is Pt-consistent. We
also conjecture that F2 is Pt-consistent. In Sections 5 and 6 we suggest paths which
will perhaps lead to solutions for these open questions.

Remark 3.2 The system F1, seen in Pd-logic, as well as the system F2, are Pd-
consistent. In Section 5 we construct topological models for it in ZF. These models
are very similar to the Scott-models for lambda-cal culus.

Remark 3.3 In Section 5we construct atopological model in ZF for F3in Pt-logic.
So F3is Pt-consistent relative to ZF. This shows that at |east one syntactical variant
of F is Pt-consistent.

Remark 3.4 Thesystem F1, seenin Pt #-logic, corresponds exactly to the system
“SF;" (“strong 3-valued Frege”) studied in Lenzi [10]. Lenzi provesthat SF; cannot
have arecursive term model. The Pt #-consistency of F1 is still an open question.

In Section 6 we construct interpretations of F1 for Pt #, Pd #, Pt, and Pd-logic in
“positive” settheories(inclassical logic). Sothe corresponding consistency problems
are reduced to the classical consistency of these theories. These are open questions.

Note that Pd 7- and Pt #-consistency are equivalent for F1 as F1 is Pt # and
Pd #-classical.

In order to show that Pt- or Pd-logic does not automatically guarantee that the
Russell-like paradoxes disappear, let us give here a small list of syntactical variants
of F which are not Pd- or Pt- consistent.

(@) Even without any form of EXT, Comp(<>) is Pt-inconsistent. To see this,
try this comprehension schemafor ¢(t) = —t e t.

(b) Take F’ = F1 where one replaces, in EXT, any “—" by “—>". F’is
Pt-inconsistent.

Indeed for this form of EXT, the corresponding EXT* implies that (for x = y):
Vi(tet x v t e x),

so that any x isaclassical set, and one gets the Russell paradox.
Actualy, itisnot really the full EXT that isresponsible, but only:

X=y—=>Vitexotey).
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(c) Even without any form of EXT, the full comprehension scheme of type:
Vy Ix Vt (t € x S @(t,y)), for ¢ in £ (so that “—" may occur in ¢) is Pd-
inconsistent. Indeed take any formula v in £ and define:

oy 2 et P)a-(—tet) > v).
The + of the corresponding comprehension axiom produces something like this:
W{tetxo (tet—=>yvyHAC.))]

Aftexos (tetay)vite t—=yT)])
and thisimplies (replacing “t” by “x”):

Xetx = xXetT x> yNHAxe x> (XetxAy)vxe x— ¢y

Asweareinthe Pd-case x et x v x €~ x istrue, so that we can conclude that
istrue. Asthishappensfor any ¢ in £, thistheory isindeed Pd-inconsistent.

(d) F2isPd #-inconsistent. Asmentioned in Section 2, EXT2 isnot adapted to
Pd #-logic. Actually one simply gets the Russell-paradox because in F2 for Pd 7-
logic all the sets are classical.

4 Extensionsof theFregesystem The" Super-Frege’ systemsintroduced hereare
directly inspired by the “partial set” theories of Gilmore [5].

These systems make no sense in classical logic. They permit to define the
elements (€ ™) and the anti-elements (¢~) of aset by two formulas ¢ and v, with yr
not necessarily equivalent to —¢.

We will consider 2 variants, adapted respectively to Pt-logic and to Pd-logic.

PtSF (“ Super-Frege for the Pt-case”) isthe system (in £ = {e€, =}), EXT + the
following “comprehension” schema:

For any pair of formulasin £, ¢(t, Z) and ¥ (t, Z), in which “x” is not free:

MVt (pt, ) Ay, 2) > -t =t)] —
X VE[(t € X < o(t,2) A (=t € X < Y(t, D) ].

PdSF is the system: EXT + the following “comprehension” schema (with ¢, ¥ as
above):

Vt(p(t,2) V ¥ (t, 2)] — IX VL[t € X < @(t, D) A (=t € X < ¥ (t, 2))].

In Section 5we construct in ZF “topologica” mode sfor suitable syntactical variants
of Super-Frege.

One can aso extend Frege or Super-Frege by adopting a language L), whose
primitive symbols are €, =, and a specific abstraction operator (| |) which defines
terms in the following manner: (t|o(t, Z)|v (t, 2)). Theideais that the elements of
thisterm should bein {t|¢(t, Z)}, while the anti-elements should bein {t|vy (t, 2)}.

Here are the inductive rules defining £ y:

(1) Any variableisatermof L.
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(2) Any formulaof £ isaformulaof £,.

(3) If (t,2) and ¥ (t, 2) areformulas of L), then (t|p(t, 2)|¥ (t, 2)) isaterm
of L:().

(4) If ry...tm areterms of £y and (X4, ..., Xm) isaformula of Ly, then
@(11, T2, ..., Tm) isaformulaof L.

If “{t|p(t, 2)}" isthe notation for “ (t|p(t, Z)|—e(t, 2))", and if we restrict rule (3) to
the pairs ¢, ¥ such that i is —¢, we get back the language £, already defined in
Hinnion [6], and in Forti and Hinnion [4].

We can definenatural versionsof Frege and Super-Frege, adapted to thelanguage
L.

Gilmore has studied two of these in the Pt #-case. His theory PST (“partia
set theory”) is exactly the following version of Super-Frege without extensionality,
seen in Pt #-Logic. (Naturally the terms should be seen as functional symbols, so
that (f.ex) (x € (t|p|¥)) T issimply x €™ (t|g|y¥)). We have the “comprehension”
schema (for ¢, ¥ in Ly, where“ —" does not occur):

vVt VU ((pt, D AP (', 9) — =t =t)] —

VZ[(z € (tlp(t, NIV (T, V) < 92 V) A (—Z € (tipt, NIV, V) < ¥z V)]

Gilmore showed that this system is Pt #-consistent (he did not use this terminology
however!) but incompatible with EXT. His theory PST™ is the following compre-
hension schema:

VZ(z € {tlp(t, )} S ¢z V)

(for any ¢ in £, where “—” does not occur), seen in Pt #-Logic. PST™ is aso
incompatible with EXT (see Hinnion [6]).

We are not strongly interested here in these systems, as they don’t admit EXT.
However, to conclude this section, let us mention that Gilmore's construction can be
adapted (in the obvious“dual” way) to provethat the natural Pd #-versions of thetwo
preceeding systems are Pd 7 -consistent. Thiswas noticed independently by Crabbé,
in[3]. Wedon't know what these systems becomein Pt- and Pd-logic (i.e. when #
is not necessarily classical), with respect to EXT.

5 Topological models  We will prove below our:
Theorem 5.1 In ZF there exist models for:
(1) SF inthe Pt and the Pd-case,
(2) F2 in the Pd-case,
(3) F3inthe Pt-case.
51  Topological models for set theories can be found in Forti and Hinnion [4],
Hinnion [11], Hinnion [8], and Boffa[2]. The difficulties here arise because one has

todea withe™, €7, =, # instead of simply €, =. The principle we employ however
isthe one already used by Hinnionin [8].
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52 The Pd-caseisthe easiest one, so let us start with it. Take afinite, non-empty
set X, and define:
XO - X
Xn & (A B)JAUB = X5} (forn e o).
Let s be any surjection X; — X,. One easily extends s to the higher levels, by the
rule
Sl =S

S]+1 : Xn+1 — Xn : (A, B) = (l mSnA, |ms,] B)

(WhereimgY def {s(y)|ly € Y}). Any s, isagain asurjection. For simplicity we
write“s” instead of “s,.".
The universe of our model M is:

def .
Xo = (xe[[XiI¥i€w skj) =x}
icw
(thisisthe “projective limit” of the X;).
Therelationse}f, €., =, #., (0n X,,) are defined by:

w
XelyoViewn e Vi)

X €, y(—)V| € w (X Ei_ Vit1)
X=p Y X=Y
X#o, Y < IteX,(te xnte, yyvite, xately)

where“x;” isthe component “i” of x; X; efr (A, B)ymeansx; € A;andx €; (A, B)
means x; € B, (for (A, B) € Xji1).

Our model is: M %" (X, €F, €5, =, #0).

If we put the discrete (compact) topology on X; and the natural topology on X,,
(induced by the product topology), we get acompact X,,. The notion of convergence
for X,, isobvioudly:

lim xX™ =x (in X,)

n—oo
iff
. . (n)
Vi e w nILTo(X )i

Asthetopology on each X; is discrete, this reduces to:

=X (inXi).

View dnew Vn> N (x(”))i =X.

Herefollowsalist of properties of M:
Lemma5.2 The Extension Lemma

Yoe X VXe X, V& X — 3ze X, (Z =vAazel x)

(Thereisasimilar result for “€").

Proof: The proof istrivial.
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Lemma5.3 sisamorphismfor ¢t ande,i.e:

YU € Xiyy Yv € Xipo UE, v — s(U) & s(v)
(Thereisasimilar result for “e=").
Proof: Trivial.
Lemmab54 VXx,ye X, (X€lyvXxe,y).
Proof: Assume —x € y. Thenby 53 —x; € yii; istrue for infinitely many
i €w. SO X € Yiy forinfinitely many i € o (by the definition of Xi,). Then,
by Lemmab5.3; x € V.

Lemmab5 VX,ye X, (X=, YV X#,Y).
Proof: Assume —x =, y. Then —xj.; = Vi for infinitely many i € w. By the
definition of X, thisimpliesthat, for infinitely many i € w:
Ja € Xi (& € Xit1 Ad € Vi) V(@ € Xig1 A € Vi)
Then, by Lemma5.3 thisistrue Vi € w. So one of the formulas:

Jai € Xi (& € Xit1 NG € Vit
or

Jai € Xi (& € Xit1 NG € Vit
istrueforinfinitely many i € w, andsoalsoVi € w. Supposeitisthefirst one(f.ex.).
By the Extension Lemma we get:

Vi e w 329 € X, (2V), € %ip1 A (2V), € Yisa

Take a convergent subsequence (z(¥), _ , with limit 22 € X,,. Fixalevel | € w.
For k large enough (z(‘k))j = (). Takeix > j and use Lemma5.3. Clearly
(2 € Xj+1 A (2] € Yj+1- Asthisistrueforany j € »

j
* + * —
e, XN €, Y,
and so X #, VY.

Lemmab.6 Lemmas5.4and 5.5 showthat M isa Pd-model. Furthermore M Epg
EXT2.

Proof: We have to prove two things:
@VMteX,((tef xotel yalte, xote, V)< X=,Y
(b) Gt e Xp(t el xAte, Y)V(te, XAtelY)) < X#,Y.

The proof of (b) followstrivially from our definition of #,,. So let us prove the non-
trivial directionin (a). Suppose x and y in X,, have the same €/ - and €, -elements.
Fix any level | € w. Suppose (A, B) = Xj;1 € Xj4; andtakea € A. By the
ExtensionLemma 3t € X,, (i = aAt €} x). So, by our initial assumptiont € .
If yj+1is (A, B’), wegeta € A'. Thesituation is symmetricin X, y; so we see that
A=A.

One provesthat B = B’ in the same way, so that in fact:

Vieo X1 =Y+

Andthisisequivalentto x =, .
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Lemmab.7 The CodingLemma Suppose AU B = X,,; then (A, B) iscoded in
M (thatis3x € X, Vt € X,[(t €f x <> te A)A(te, x < teB))iff Aand B
are closed subsetsin X,,.

Proof: Thedirection || iseasy toprove, as€; and €, areclosedin (X,,)?. Soletus
check the direction 1. Take for x (supposed to code (A, B)) the sequence such that:

Xit1 = ({yily € A}, {zi[z€ B)).

Obviously s(xj+1) = Xj forany j € w, s0x € X,. Andclearlyt € A - t €}
X & te B—te, x. Letusshow now that (f.ex.):

tef x—>teA

By the Extension Lemma, t € x impliesthat Vn € w 3y € At, = yn. Take
such an y for each n € w, and call it y™. The sequence (y™) _ hasaconvergent

subsequence (y™), . withalimit y*. Asany y™ isin Aand Aisclosed, y* isin
A. Further t, = (y(”>)n, ot = (y("))i fori < n. So, for any fixedi € w:

= (y™), forne>i.

Take the limit for kK — oo:
i = (Y)i.
Asthisistruefor any i € w:
t=y €A
Definition 5.8 Let us call “pseudo-positive formulas in £*” the formulas in the
class C defined inductively by the rules:
(i) Theatomic formulasof £* arein C,
(ii) Cisclosed under A, Vv, V, 3

(i) If @isinC,8(X) = 6(xX4, . .., Xm) isany formulain £* (with the usual con-
vention that the notation 6 (x;, Xs, . .., Xm) indicates that the set of the free variables
of 6 isasubset of {X;, Xz, ..., Xm}) and “x”, “y” are distinct variables, then:

VX (O(X) — @), VX ety o, VX e~y ¢, VX(Yyet X — @)

and
VX(Yye X— @)
arein C.

TheclassC playsheretherole of theclass GPF (“ generalized positiveformulas”)
in Forti and Hinnion [4], Hinnion [8], and Weydert [11].

Lemmab5.9 Theformulasin C define closed subsetsin X, i.e, if o(X,Yy,2,...)
isinCandb,c,...arein X, then {a € X,|M Eclass (@, b, c,...)} isaclosed
subset of X,,.
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Proof: We will prove this by induction on the length of ¢. If (x™) _ . (y™)__ .

(z(”))new,. .. are convergent sequences of elements of X,,, with respective limits x*,
y*, z*, ... then:

AN € w Vn>=N ME@x™ y® 2V )= ME@X, Yy, 2", ...).

Let us consider only the non-trivia inductive steps, namely the “3” case and the
“Yx et y”, etc. .. cases.

(1) The“3” case. Supposethat Vn € o M E 3x o(x,y™,z™, .. ) and
y™W — vy z™W . 7% etc... For any n € o, take such an x € X, and call it
“xM”. Further, take a convergent subsequence (x™), _ - with limit x* € X,,. So

Yk € w, M E @(x™ yM 7z 3y Now by the inductive hypothesis:
ME oX*, Yy, Z", ...).

Andso M E 3x ¢(X, y*, Z+,...). Notethat the compacity of X, isessential here.
(2) The“vx €™ y”, etc. . . cases. These cases depend on the following “ approx-

imation Lemmas” (and their similar variantsfor “€~"):

Lemmab5.10 Ifx €} yandyisthelimit of thesequence (y™), _ thenthereexists

a sequence (x™) _ suchthat x isthelimit of (x™)__ and, for large enough n:

x(M GI y(n)
(i.e,IN e w ¥Yn > N x™ f y™),
Proof: Trivid.

Lemmab5.11 Ifx €} yand x isthelimit of (x™)__ then there exists a sequence
(Y™), e, Suchthat y isthelimit of (y™)__ and, for large enough n:

XM gty
Proof: Trivia.

Let usconsider (f.ex.) thecase: “Vx €t y”.

SupposeVn e w M EVx et y™ o(x, y™, zM Hyandy™ — vy, zM - z,
etc... Take x €} y. By Lemma5.10 there exists a sequence x™ st. x™ — x and
x™ et y™ for large enough n. So M E o(x™, y™ z™_ )y for large enough n.
And so, by our induction hypothesis:

MEeXY,2...)

Soweget: MEVX ety o(X,Y,2,...).

Lemmab5.12 M isaPd-model for PASF (the Pd-version of Super Frege defined in
Section 4), with the EXT2 variant for EXT.

Actually we have an even stronger result, as our “Coding Lemma’ guarantees that
any (A, B), with A, Bclosedand AUB = X, will becodedin M and Lemma5.12
shows that formulasin C define closed setsin X,,.

One can easily verify that we can allow some occurences of “—" intheformulas
@, Y appearing in the comprehension schema of PASF. More precisely, we can admit
formulas ¢, v inthe class C’ defined inductively by:
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(i) Any formula (of £) which does not contain“—" isin C'.
(ii) C’ isclosed under v, A, 3, V.

@iii) f 6(X) = 0(X;...%m) isany formulain £ (with (at most) X; ...Xn as
free variables), “x” “y” are distinct variables and ¢ isin C’, then VX(6(X) — ¢);
VX €Y @; ¥YX(—=X €Y — ¢); VX(Yy € X = ¢); andVX(—y € X — ¢) aredsoinC’.

It is easy to verify that, when ¢ isin C’, then ¢ and ¢~ arein C (i.e. they are
pseudo-positive).

Lemmab.13 M isa Pd-model for F2.

Here also, we have a stronger result. Actually, the comprehension schema can be
extended (for the same reasons asin Lemma 5.12) to the formulas ¢ of theclass C”,
defined inductively by:

(i) Any formula (of £), where“—" does not occur, isin C”.

(ii) C” isclosed under v, A, 3, V.

@iii) If 0(X) = 6(xq,...,Xm) isaformulain C” (with at most x,, ..., Xm as
free variables), “x”, “y” are distinct variables, and ¢ isin C”, then YX(6(X) — ¢);
VX(X € Y = @); VX(=X € Y — ¢); ¥X(Y € X — ¢); and ¥X(—y € X — @) arein
C”.

Notethat C” isasubclass of C’. The reason for therestriction <« 6 isinC” >
isthat, for ¢ = Vz(0(2) — v) (f.ex.), ¢~ is 3z(01(2) A ™), so that we need to be
surethat 0+ itself isalso in the class we use.

Remark 5.14 Themodel M indeed proves Pd-consistency, as M Fcjass (VX X €
X)T. Take for example x = the element coding (¢, X,,).

Remark 5.15 Topological models like M will never present aclassical . Thisis
due to the possibility of bounded quantification (see the definition of the classes C’
and C” in Lemmas 5.12 and 5.13). Consider for example:

A={te X,Vzelt z#,t}
B={t'e X,3ze}t' z#,t).
Thispairiscodedin M. But, when #,, isclassical, (A, B) isexactly

(ft e Xol=t €l t}, {t' e X,|t' € t'D.

If x € X, isthe element which codes (A, B) we get the Russell-paradox, x € x <>
—X €} X.

5.3 Topological modelsfor the Pt-case  If wewant to adapt the construction of 5.2

to the Pt-case, some modifications will be necessary. Clearly we should start with

X4 def {(A, B)JAUB c Xy A AN B = o}, where X, issomefinite, non-empty set

X. Again s will simply be asurjection X; — X,. The problem which arises hereis
that, evenif AUB ¢ Xand AN B = &, wedon't get necessarily imsANimgB = &
and so (imgA, imgB) is not necessarily an element of X, (in 5.2 we used the fact that
AUB = X; impliesimsAUimgB = X;). So our inductive definition of the X; will
be:

Xiy1 € {(A, B)JAUB C X A (imsA, imsB) € Xi}
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(for i > 1). We extend s to the higher levels as in 5.2. For (A, B) € X4,

s(A, B) %f (imsA, imsB).

The definitions of X,,, €, €., =, and of the topology are those of 5.2.

Again X, iscompact and versions of Lemmas 5.2 and 5.3 can be proved asin 5.2.
The next problem is the definition of #,. To discuss this, let us introduce the

notion of “distinction onlevel i + 1”. Fora, b € Xj,4,

aDigb € SteX (tefante byvite ant et b).

Note that this can also be expressed as follows:. for (A, B) and (A’, B’) elements of
Xi+1,

(A, B)Di 4 (A, B) & (ANB)YUANNB) £,

The “distinction on level »” is exactly #, as defined in Section 5.2 (we use the
notation “D,,").
Now it is easy to prove that for X, y € X,,

XDyy < View XiiDit1Yisi.

(Again we use the compactness of X, and the Extension Lemma).
But then, if one considers the comprehension case {x|a = X}, one expects
({X € Xpla =, X}, {y € Xpla #, y}) tobecoded in X,,. If £, isD, (asin5.2),
then
({au}, {x1 € Xy1[x: D1y })

should be an element of X;. And this supposes at least that
{s(@a)} N {s(x))[x;D,1a,} = 2.

But thisis never realised, for all the elementsa;, € X;, when X, isfinite. For there
aretoo many pairs{u, v} ¢ X; suchthat uD, v, consider for example; X = {1, 2, 3}.
So we have to adopt another definition for #,,. A natural oneisthis:

def
X #o Y < —Xo = Yo.

One can easily check that, with this definition, M (X,,, €, €, =, ) isaPt-
model for EXT1.

Further we get properties of M, corresponding to those obtained in 5.2. We
obtain a*“Coding Lemma;”

Lemma5.16 Suppose AUB C X, and AN B = @. Then (A, B) iscoded in M
iff Aand B areclosed subsetsof X, andvVa € Avb € Ba #, b.

Note that thislast additional condition has no counterpart in the Coding Lemma
in Section 5.2. A version of Lemma 5.11 can again be proved here, as well as the
obvious adaptation of Lemma 5.12, namely: M is a Pt-model for PtSF (the Super
Frege version for Pt-logic defined in Section 4), but with EXT1 thistime.

What does Lemma 5.13 become here, i.e. which version of Frege is modeled by
M? By Lemma5.9, any ¢+ and ¢~ (even for ¢ in C”) will define closed subsets of
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Xo. Further {t € X,IM E @™ (t,y)}N{ze X,IME ¢ (z,y)} = @ (for yin X,).
But there is a problem for the additional condition in the Coding Lemma, namely:

VacA YbeB a,b.

Theproblemisthis. DoesM E ¢ (t, ¥) Ag~(z, y) imply t #, z? When onetriesto
prove this by induction on the length of ¢, al the v, A, =, 3, V cases and the atomic
cases work, except for:

(p(t’ yl) = yl S t

and
p(t) =t et.

Thisisdueto the fact (already mentioned in our discussion concerning the definition
of #,,) that one does not have, for all theelementsain X, and b, b’, in X;:

ael braeg; b — —s(b) = s(b)

or (equivaently):
b D; b’ — =s(b) = s(b).

So we will proceed as follows. We will replace in the formula ¢(t, yi, ..., ¥n) (in
L, where “—" does not occur); (i) any occurence of aformula of type“z € t” by
“Idt" (zet' At =t')" where“z”, “t” are distinct variables; and (ii) any occurence
of aformulaof type“t e t” by “3t’ (t et’ At =1t')” (where“t”” isanew variable,
distinct from any variablein ¢).

Theresult of thisoperationiscalled ¢*. Notethat (¢*) ™ is(classically) equivalent
to o™, but that (¢*)~ isnot, in general, equivalent to ¢ .

However, ¢* and ¢ are (classically) equivalent. This gives us the syntactical
variant F3 of Frege, modeled by M. Again, we have adlightly stronger result, for we
can admit some specific occurences of “—" in ¢ (aswe could in 5.2). In particular,
we can show that £, can never be classical in this kind of model.

5.4 Topological models with an infinite X,  One can hope that a more general
construction then the one of Section 5.3 will perhaps furnish a Pt-model for F2
(defined in Section 3). Theideaisto start with X, = acompact metric space X, and
X; = acompact set of pairs (A, B), where A, B are digjoint, closed subsets of X,.
Further one needs a continuous surjection s : X; — X,.

However thistime the situation is slightly more complicated. Most of the argu-
ments used in 5.3 can be used here. So we will essentially focus on the differences
from the preceeding situation.

Itiswell-known (see[9]) that, if X isacompact metric space, then P.(X) \ {&}
(where P.(X) isthe set of the closed subsets of X) is again a compact metric space,
when the distance of Hausdorff is used:

du(A, B) € max{supd(A, b), supd(a, B)}
beB acA

where A B e P(X)\ {2}

and  dx,Y) € infdx,y).
yeY
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The corresponding notion of limit is:

lim A, = A iff lim d(An, A) =0
n—oo n— oo

Further, one can introduce a “set-theoretical” notion of convergence. For A, a se-

guence of non-empty closed subsets of X:

l[imA, = {L'j)nooank | (NKkew iSastrictly increasing sequencein o and Vk € w

an, € An, and (ank)kew is a convergent sequence}

Ii_mAndif {liman | NewandVi >N a € A and (g )i>n isaconvergent

n—o0
n>N
sequence}

Actually, both notions of limit (“lim” and “limg”) coincide (see [9]).
Now it is easy to extend thisto P.(X). Wejust define:
def

d¢, &) =0

and dot
dE, AZ E+1

(where A# gand € = sup d(x, y)).
X,yeX
Then & isanisolated point in P.(X) and one can easily check that the two notions
of limit (for Pc(X)) still coincide. Further P.(X) is also compact.

So let us start with X, a non-empty metric compact space. Then (P¢(Xo))? is
again ametric compact space. Take X; = aclosed subset F of (P:(Xy))?. So F is
itself is ametric compact space. Now, if s isa continuous surjection: F — X,, we
can reproduce the construction of 5.3: Xn41 97 {(A, B)| A and B are closed subsets
of Xnp & (imgA,imgB) € Xy}

Note that this time we have to add a condition, namely “ A, B are closed”. This
condition wastrivially satisfied when X, was finite.

One can extend s to the higher levels and define X,,, €f, €, =, asin 5.3.
Naturally, in order to get the desired result, we have to put conditions on s and
JF. These conditions will permit us to define # w asin 5.2. and to get the strong
extensionality EXT2 (for Pt-logic).

The conditions are:

Q) (AB)eF > (ANB=¢ & (B,A) € F)
(2 (AAB)e F& AN,B e Pe(Xo)& A CA& B CB] > (A,B)eF
B AcPc(X)— (A, o)eF

@) [(viel (A,B)eF)& (Ui A € PeX)] — (Uit A, Nt B) € F
(for any set | and arbitrary families (A)ier, (Bi)ier)-

(5) (s)xef tAte F},{s@|xe; zAze FY) e F
(for any x € X,; let usrecall that x €/ (A, B) meansx € A, €tc. . .)

(6) ({s()|s(t) el t At e F},{s(D)|s(2) €, zAZ € F)) € F.
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Theorem 5.17  If acompact metric space X, (# @), aclosed subset F of (P (X;))?
and a continuous surjection s : F — X, realize the conditions (1) — (6), then
M = (X, €}, €., =0, #0) ISa Pt-model for F2, (with X #,, Y iffger) X Doy, See
5.3).

Remark 5.18 We conjecture that such X,, F, and s, exist. At present we do not
know any examples of them. However the conditions (1), (2), (3), and (4), are easy
to satisfy. Here, for example, is a uniform construction permitting to realize these
conditions; X, isany metric, compact, non-empty space. We define

F ={(A, §)|A € Pc(Xo)}

U {(&, B)IB € Pc(Xo)} U{(A, B)|A, B € Pe(Xo)} & 8(A, B) > £},

where €= sup d(x,y) and 3(A, B) def in/]id(x, y).

X, yeX yeB

Remark 5.19 In any case, no finite X, can admit such F and s. One can easily
check that condition (5) impliesthat tD,z — —s(t) = s(z) (fort,z € F = X,),
and that there are always too many pairs {t, z} witht D,z when X, isfinite, and X,,
F, s, satisfy the conditions (1) — (6).

Proof. (Sketch) Asany X; iscompact, ig) X is compact and so will be X,, (X,
isclosed). Further one can easily verify that M isindeed a Pt-model for EXT2. The
problem we met in 5.3 disappears here becauseinthiscase X #, Y — =Xy = VYo, by
condition (5). The“Coding Lemma’ becomes, in this context:

If A, B aresubsetsof X, and AN B = @ then (A, B) iscoded in M iff
(i) A, Bareclosed
(i) ({agla e A}, {lhlb € B}) € F.

One further proves that, for ¢ in £, where “—" does not occur, the sets A =
{t e XpIME@T(t,b)}and B = {z € X,|M E ¢~ (z, b)} satisfy the conditions (i)
and (ii) of this Coding Lemma. For condition (i) the proof isthe same asin 5.2. So
let usjust briefly discuss the proof for condition (ii). This proof isby induction on ¢:

(1) Thecasesp =y, € Yo andp =y, € y, aretrivial.

(2) Thecasep =y, et. HaeA={t € X,y €} t}and B = {z € X, |y €, t}
(with y fixed in X,,). We should just verify that ({ty|t € A}, {zy|]z € B}) € F.
Obvioudyt e A—>yela—>ywelttandze B> ye, b— vy € z.
SO {tolt € A} = {S(t1)|t € A} C {S(t1)|y0 E(J)r ti At € f} and {Zo|z S B} C
{s(z1)|Yo €, z1 Az, € F}. Combining conditions (2) and (5) we get the desired
result:

({t0|t € A}, {20|Z € B}) e F.

Note that in 5.3. condition (2) was automatically satisfied as we took for X, the
set of al the digoint pairs of (closed) subsets of X,,. Here we have to verify that the
pair which interests us has indeed been selected.

() Thecase¢ =t et follows from condition (6). Thisisvery similar to the
preceeding case.

(4) Thecasep =t =t follows from condition (3).
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(5) ¢ =y, =tisnotredly atomic. It corresponds to:
A=yl

B = {zzD, 2z} = {z3te X, (t €l yAte, Vv (te, yatel 2}

(for afixed y € X,). So this case follows once the 3, v, and A-cases have been
established. Thesameistrueforthecasesp =y, = Vo, 0 =y, = V;.

(6) The A, v-cases aretrivial. One has mainly to use condition (4).

(7) The V-case is the dual of the 3-case and this last one also follows from
condition (4).

(8) The —-case follows trivially from condition (1).

Remark 5.20 Again one can admit specific occurencesof “—" in ¢, i.e. ¢ can be
taken in the class C” (see Section 5.2). To prove this the “ set-theoretical” notion of
limit is very helpfull (inter aliafor the cases“Vvx € y”, etc. . .).

Remark 5.21 This construction never produces a classical #, so that we can’t get
from it Pt #-consistency (see Sections 5.2 and 5.3).

Remark 5.22 Conditions (5) and (6) do not seem to be easy to realize. But at |east
we have a path here which will (perhaps) lead to the proof of the Pt-consistency of
F2.

5.5 Other Topological models One of theinitial problems in the construction in
Section 5.4 isthat the images of digjoint sets are not necessarily disjoint, at least for
surjections. However they are digoint for injections. So one might imagine that a
similar construction, using aninitial injectioni : X; — X, (instead of asurjection s)
could work. Thisisindeed the case, modulo suitable conditionson X;, X, andi. We
give here adlightly different (but equivalent) presentation, which is easier to handle
and which is possible because (by theinjectioni) X, can be seen asa*“subset” of X,.

Take X, as atopological compact space where any finite subset is closed. Fur-
ther, suppose that €/, €, are closed subsets of X2, which have the “approximation
property” (see Lemma 5.10), i.e.: if y(™ is a sequence with limit y, and x €1 y
(respectively: x e ), then there exists a sequence x ™, with limit x, such that, for
large enough n, x™ e y™ (respectively: x™ e; y™).

Definition 5.23 U = theclassof the“urelemente’ (atoms) of (X,, eﬁ{,eo‘)
def

= {Xx € Xo|xTUXx™ =g},

where x+ % {t € Xolt €f x} and x—dg{t € Xolt €5 x} (for x € Xo).

Further, suppose U is open and (X,, €7, €;) is extensiona for the “sets” (i.e. the

non-urelemente) (X ¢ U & Yy ¢ U& XT = y" & X =Yy ) > Xx=Yy. S0

X, %X, \ U isclosad in X,. Finally suppose that the following conditions

(corresponding to the conditions (1) — (6) already met in Section 5.4) hold:
DMxeXi>xXTNx" =2 A FyeX;XT=y AX" =yH))

(2) If A, B are closed subsetsof X,, A C x*, B C x~ andx € X, then (A, B)
is“coded” in (X, €f,€5),ie:3ye X, (yr=A A y =B).
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(3) If Aisaclosed subset of Xy, thendx € X; (xt = A A X =@).

(4) For any set | and any family (x;)ic| of elementsof X,: if xiJr isclosed
in Xo, then (Ui, %, Nicy %) iscoded in (Xo, €7, €5)-

(B)Vx € Xy ({ze Xy|x €f 2}, {t € Xy|x €, t}) iscodedin (X, €, €;).
(6) {ze Xy|zed 2, {t € Xyt g, t}) iscodedin (Xo, €, €;5).
Our construction is this:

Xnt1 C (X € Xnlxt UX™ C Xn} (forn > 1).

Obviously (Xn)neo isadecreasing chain. Take X, def Mhee Xn and define:

M = (X,, €5, €™ 0, =4, #0)

wheree?, €7, =,, #, aretheredtrictions of (respectively) €, €;, =, # to X,,, and
where

X #Yy bl xTnyHux nyhH) #o (forx,ye Xo).

Obviously, X,, ised and ; -trangitive, i.e. X € X, — XT UX™ C X,.
Sox # yisasoequivalenttodt € X, ((t €f x At e, y) vt e, xatel y).

Theorem 5.24 M isa Pt-model for F2.

Proof: The proof isin the manner of that in Section 5.2. One easily checks that any
Xnisclosedin X, and so X, isclosed in X,. Note that the inductive proof for “ X,
is closed” uses the “ approximation property” of €., ;. Further one gets a (trivial)
“CodingLemma” If (A, B)iscodedin (X, €, €;) and AUB C X,,then (A, B)is
codedin M. Thiscanbeformulated asfollows; (x € XoAXTUX™ C X,) — X € X,.

Again one can easily prove (asin 5.2) that, for any ¢ in £, where*—" does not
occur, ¢ and ¢~ define closed subsetsin M.

Remark 5.25 This construction allows non-metric compact spaces X,. In5.2. we
took metric onesto besurethat X,, X, ... will again be compact. The situation here
issimpler with regard to that problem. The X, X,, ... areclosed in X,, and so are
compact because X, is compact.

6 Interpretations of non-classical Fregein (classical) “ positive” theories

6.1 Thelanguage £, wasdefined in Section 4.3. Thetheorieswewant to consider
here have asaxioms; extensionality + specific comprehension axioms. The* positive”
set theory in £, studied in [6] and [4] isincompatible with extensionality. We hope
that the comprehension principles presented here are not. Naturally these theories
are considered in classical logic.

Let us first define inductively the “admissible” terms. Naturally, we adopt the

usua conventions about termsin £, namely: t(z, z,, ..., Zy) indicates that the set
of the free variables of 7 is a subset of {z;, z,, ..., zn}, i.e. that t is of the form
{tlp(t, z1, ..., zy)} for someformula ¢ in £.. Further, aterm is said “closed” if it

does not contain any free variable.
Inductive rulesfor A.T. (= admissible terms):
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(R1) Anyvariableisan A.T.

(R2) ¢ & (x|x #£x}isanAT.

(R3) If“x",“x;", “x¢” are (not necessarily distinct) variables, then {x;[X; = Xk}
isan A.T. In particular V def {X|]x = x}isan A.T.

(R4) If risaclosed A.T.and“x”,"y", " 2" aredistinct variables, then {x|y € z},
{X|t € X}, {X|y € Z}, {X|y € t} are A.T.

(R5) If 7,7/ are A.T., then so are:
01 xix=1)

def
tUT = X|xertvxert'}

ne XIxetAXxeT'}.
In particular
(. t) € ({7} (o o)
(Kuratowski’s ordered pair) isan A.T.
(R6) If risaclosed A.T. and ’ isany A.T., then the following terms are A.T.:

Pt aef {x|x C 7}

2 zExer yer z=(xy)

def
U~ = (t3x et ter)

Xet

N7 < tivxer ter).

XeT

In particular, for r aclosed A.T. and any variable “x”, the following terms are A.T..

Utdif UX

XET

ﬂtdéf mx

XeT
uxE Jdtizexino
zeV
def

nx'= [dtizex}n2).

zeV

(R7) If z(y)isan A.T. (withat most 1 freevariable“y”, distinct fromthevariable
“X”), then {x|Vy € x t(y) € x}isanA.T.

(R8) Thefollowing are A.T.:

() Eit|3adbx = @, b) At € @)}
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700 (t3adbx = (@, b) At € b))
In our theories, these terms are the obvious projections (i.e. m;((a, b)) = a;
my((@, b)) =b; x ¢ V? — 11 (X) = m2(X) = 2).

(R9) If “xi”, “x;”, “x,” are (not necessarily distinct) variables, then {x;|x; e
ak(Xe)}isan A.T. (fork =1, 2).

(R10) If *x”, “y" are distinct variables, then {X|X € y A (X)) C y}isan A.T.
(fork =1, 2).

(R11) {X|m1(X) N m2(X) = @} isan A.T. Our theory T has as axioms the usual
extensionality:
Mitexotey)ox=y,

plus the obvious comprehension for the A.T., i.e.. if T = {X|¢(X, ¥)} isan A.T., then
VYVX(X € T < (X, )).

Remark 6.1 Notethat any sub-term of an admissible term isitself admissible.

Remark 6.2 Thesituation hereisdightly unusual, in the sensethat the replacement
of variables in an admissible term by admissible terms does not necessarily produce
an admissibleterm (i.e. the class of the A.T. isnot closed under replacements); f.ex.:
{X|]y € z} isan A.T. but {x|]y € y}isnotan A.T.

Note that (in T) a non-admissible term can be a set (but it cannot be used to
build up more complex A.T.); f.ex.. {x|y € y} isaset (for any y), because our
comprehension schema guarantees (for the A.T. {x|y € z}):

VyVzVt(t e X|]y e 2z} «» y € 2)

and so: VYVttt € Xy e Y} < Yy € Y).

Remark 6.3 We could find no “trick” to get the “Russell set” back into T. The
shape of this Russeall set (f.ex. in [6]) could be:

{ylo = {Xly € y}},
but it does not seem possible to show that thisisaset in T (see Remark 6.2)). We
hope that further investigations will bring a proof of the (relative) consistency of T.
Theorem 6.4 There exists an interpretation of F2 for Pt-Logicin T.

Proof: Let us first give the intuition behind the construction. Define the relations
et,e",DonV by:

x et y(g X € mi(y)
_ def
X €™ Y < Xem(y)

nydg((Elt etx te y)yv@ze x zety)).

Further, start with
H Y (@blanb=ag},
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and define the operation *:

" (xehi(vyetx yeh Aa(Wze x zeh)).
Teke H = N{H, H*, H™,...}. The desired interpretation M will take H as its
universe, with the restrictionsof e, e=, =and D to H.
Aswework in T, we have to show that we can reproduce this construction in a
satisfying way.
The definitionsof €™, €=, D on V can stay asthey are. For H, takethe A.T.:
V2Nt () Na () = 2)
(by rules 3, 5, 11). Further, h* isthe A.T. :
V2N {x|x ehAm(X) ChyN{X]x € h Ay (X) C h}
(by rules 3, 5, 10). Usingrules 4, 5, 6, 7, we get the A.T. :

X APHNXH ex}n{xlvhex h* ex}).

Intuitively X isthe set {H, H*, H*, ...}. Notethat thisis adescending chain:
HoH*D>H™...

Finally takethe A.T. (by rule 6):

A% A%

=

Intuitively, HisH N H* N H* N ...
We can prove now the following “ Transitivity Lemma”.

Lemma65 (aetbeH v ae"beH)—>aeH

Proof: Supposef.ex.. ae™ be H;be HmeansthatVh e H beh. AsXis
obviously closed under the operationh — h*, wegetVh € H b € h*. Butthen, by
thedgfinition of x; ac™ be h*impliesa e h. Sovh € X a € h, and we conclude
aeH.

Modulo this Transitivity Lemma, itiseasy to check that M = (H, €}, €y, =m,
#w) is actualy a Pt-model of EXT2 (with €, the restriction of €™ to H, ey the

restriction of €~ to H, =y the restriction of = to H, and #y therestriction of D to
H). Notethat, for x,y € H,

xDyodteH(tetxate y)yv(te xAatety)

(by the “ Transitivity Lemma”).
The next step isthe following “ Coding Lemma.”

Lemma6.6 Vavh(@c HAbc HAaanb=g2)— (ab) e H).
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Proof: Onecaneasily check that,fora c H,b ¢ H andanb = @, wehaveVh € X
(a,b) e h,andso (a, b) € H.

The last step in our proof of Theorem 6.4 consists in proving that, for any
formula¢(t, y) in £, where “—" does not occur, the terms {x|x € H A <p$(x, )}
and {x|x € H A em (X, ¥)} areequivalent (i.e. equal modulo T) to admissible terms
(naturally, the notations ¢y, ¢y, refer to the obvious interpretations of ™, ¢~ in
M).

Modulo our rules for A.T., the proof of thisis just a routine verification. The
atomic cases follow from rules 3, and 9, except for the case “x; # x¢”. However

{xi € H|(X; Dx)m} =

X eHFte H(tem (X) Atem(x) V (tema(X) Atem (X)) =

HN |:U(({Xi tem ()} N Xt € m(0h U (Xt € m()} [ )ixilt € ﬂl(xk)})):|

teH

whichisalsoan A.T. by rules 5, 6, and 9 (note that H isaclosed A.T.).
The connective and quantifier cases are completely obvious by rules 5, and 6.
So we conclude that M is a Pt-model for the comprehension scheme:

AZYX(X € Z S (X, ¥))
(for ¢ in £, without “—"). Indeed, by the last step,
a = {x € Hgjx. M)
and b = {xe Hlpy(x, V)
aresetsin T, and so, by the Coding Lemma, (a, b) € H.
Thisz € (a, b) exactly realizes
(VX(X €Z S 9(X, V).

6.2  Onecan get variants of Theorem 6.4 by modifying therulesfor the admissible
terms (and so the corresponding theory T) and some details in the construction.
Let us give some examples here.

Definition 6.7 We can get an interpretation of F1 for Pt #-Logic in the theory T’,

obtained by strenghening rule 2: “{x;|X; # X} isan A.T. for “x”, “X;, “X¢” (not

necessarily distinct) variables’. Naturally, the interpretation of =£ in M should be:
“X#£E Y iff = x=y”

(instead of “x #y\ yiff x D y”).

Definition 6.8 We aready have topological models for F1 in Pd-Logic (see Sec-

tion 5.2). However, let us mention that one gets an interpretation of F1 for Pd-Logic

by the construction in 6.2, modulo the following modifications. Take H def vz n
{tim (V) Uma(t) = V}; replace rule 11 by the “dua” rule: “{X|m,(X) U m(X) = V}
isan A.T..
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Definition 6.9 Call T” the theory obtained by strengthening rule 2 as in Defini-
tion 6.7 and replacing rule 11 as in Definition 6.8. Further, define H asin 6.8 and
#m asin6.7.

This produces an interpretation of F1 for Pd #-logic, in T”. Note that, as F1
is Pd 7- and Pt #-classical, the consistency of T’ or T” suffices to get the Pt #-
consistency and the Pd 7-consistency of F1.

We have here discussed the Frege versions, but one can easily check that our
theories T, T/, T” aso interpret suitable versions of Super Frege.

6.3  We called our theories T, T', T” “positive’. Actually they are not really
“positive theories’ but rather “generalized positive”. As a“generalized positive set
theory” aready existsintheliterature (see[4], [11], and [8]), wewill briefly compare
itwith T and itsvariants. Let usrecall here that the “ generalized positive formulas’
(inthe language £) are defined inductively by:

(1) Atomic formulas are G.PF. (= “generalized positive formulas’),

2 If o, v areG.PF. and"“x”, " y” aredistinct variables, thenp A ¥, ¢ vV ¥, AXg,
VXxg, VX € yp are G.PF,

(3) If 6(x) isan arbitrary formulain £, with at most 1 free variable “x”, and ¢
isaG.PF, then Vx(0(x) — ¢) isaG.PF.

The “generalized positive set theory” (GPST) has as axioms; extensionality + com-
prehension for the G.PF. This theory has topological modelsin ZF (once more see
[4], [11], and [8]). Unhappily we were unable to find a suitable adaptation of our
construction of 6.2 in GPST, so we had to “create” T and its variants. T also uses
comprehension for “generalized positive” formulas, but these are not GPF, even when
tranglated in the obviousway asformulasin £. We can even show that T isincompat-
iblewith GPST (i.e. T + GPST isinconsistent), so that neither of these two theories
isafragment of the other one, if (aswe conjecture) T isconsistent. Notethat T could
be translated in £; it isonly for clarity that we prefered to expressitin £-.
To prove thisinconsistency of T+ GPST take the admissible term

AL {X|X € V2 A m1(X) N m2(X) = o).

Then the formula“—t € t” isequivalentto aGPF (in T + GPST):
—“tetvw3dze Ady(teyAarz=(t,Yy)).

Indeed if —t e t,takey = {t} and z = (t, y) € A. Theother directionistrivial.

So {t|—t € t} isasetin T+ GPST and we get Russell’s paradox. As T’ is
a strengthening of T, T’ + GPST is aso inconsistent. We don’t know whether
T”+ GPST isinconsistent or not. We conclude by conjecturingthat T, T',andT” are
consistent.
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