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Levi Contractions and AGM Contractions:
a Comparison

SVEN OVE HANSSON and ERIK J. OLSSON

Abstract A representation theorem is obtained for contraction operators that
are based on Levi's recent proposal that selection functions should be applied to
the set of saturatable contractions, rather than to maximal subsets as in the AGM
framework. Furthermore, it is shown that Levi’s proposal to base the selection
on a weakly monotonic measure of informational value guarantees the satisfac-
tion of both of Gardenfors’ supplementary postulates for contraction. These re-
sults indicate that Levi has succeeded in constructing a well-behaved operation
of contraction that does not satisfy the postulate of recovery.

1 Introduction Much of the recent development in the study of belief change is
based on ideas from Levi's early work, for example [@F [In later years, the for-

mal development has to a large part focused on a set of proposals from Aksmourr
Gardenfors, and Makinson, (see th&J)[ commonly referred to as the AGM model

of belief change. In his recent bod® [ Levi has proposed a way of performing be-
lief contraction that differs in important respects from the AGM model. In this paper,
we are going to present a formal development of Levi’s ideas that allows for precise
comparisons with the AGM model.

Both Levi and the AGM trio assume that belief states can be represented by a
logically closed set of sentences, the “corpus” (Levi) or “belief set” (AGM). Opera-
tions of change, such as belief contraction, are applied to the corpus.

The basic mechanism for contraction in the AGM model is thatenfial meet
contraction. It isdefined by the following identity:

K=+ p=ny(KLp).

K_L p is the set of all inclusion-maximal subsets Kfthat do not implyp. y is a
selection function, such that K_L p) is a nonempty subset & L p unless the latter
is empty, in which casg(K_L p) = {K}. Thus, in the principal case, the outcome of
partial meet contraction is equal to the intersection of the maximally inclusive subsets
of K that do not implyp.

A selection function, and the operator of partial meet contraction that it gener-
ates, areelational if and only if there is a relatiorg such that for all nonempt L p:
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y(KLp) ={K e KLp/K"«K" forall K" € K_Lp}.

It is transitively relational if and only if it is relational by a relation that is transitive.

AGM obtained a set of elegant representation theorems for partial meet contrac-
tion, referring to the following set of postulates, commonly called thed@nfors pos-
tulates:

(G-1) K-=pislogically closed ifK is logically closed (closure),

(G-2) K+-pcK (inclusion),
(G-3) ifpgCn(K)thenK+-p=K (vacuity),

(G-4) ifpgCn(@)thenpgK=p (success),
(G-5) ifp«<geCn@)thenK+-p=K-=+q (extensionality),
(G-6) KcCn((K+p)U{p} (recovery),
(G-7) (K=pN(K=qg) CK-=(p&q) (intersection),

(G-8) ifpg K+ (p&Qq)thenK = (p&Qq) C K= p (conjunction).

An operator= on a belief seK is a partial meet contraction if and only if it sat-
isfies the first six of these postulates, the “basicdenfors postulates.” It is a transi-
tively relational partial meet contraction if and only if it also satisfies the remaining
two postulates, the “supplementaryagienfors postulates, séd.[

The most controversial among the basi@r@enfors postulates is that of recov-
ery. According to that postulate, if we contrazfrom K and then adgb, nothing will
be lost. In the presence of the other basic postulates recovery implies that we in this
case indeed end up K. Gardenfors argues for the recovery postulate by appealing
to informational economy: “information is in general not gratuitous, and unnecessary
losses of information are therefore to be avoided,” (see page 48 &his [

In his book, Levi argues forcefully against the recovery postulate. His main
point is that “measures of informational value ought to be carefully distinguished
from measures of information” (see page 1233)f.[Not all information is of value to
the inquiring agent; hence, not every piece of information needs to be retained when
moving from one belief state to another. However, the agent should retain as much
as possible of thealuable information. Levi's recommendation is that we, instead
of trying to minimize the loss of information, should try to minimize the loss of in-
formational value. This may lead to violations of the postulate of recovery.

Several other authors have expressed doubts concerning the recovery postulate.
For example, Makinson remarked that recovery is “the only one among the six [basic
Gardenfors postulates] that is open to query from the point of view of acceptability
under its intended reading” (see page 385 of lE)[ For further criticism of the
recovery postulate, see Hanssbhdnd Niedege [L1].

The intuitive doubtfulness of the recovery postulate provides a good reason to
try to find alternative constructions satisfying the other basicd@nfors postulates
but not recovery. In his book, Levi presented such an alternative construction, which
is quite similar to partial meet contraction. It is based on a selection, not among the
maximally inclusive subsets & that fail to imply p, but among the “saturatable con-
tractions,” a larger set of subsetskfthat fail to imply p.

In order to compare AGM'’s and Levi’s contractions, they must be brought into
the same formal apparatus. In this paper we are going to achieve this mainly by ex-
pressing what we believe to be Levi’'s basic ideas in the same formal framework that
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is used by AGM. This paper is a formal investigation of Levi’s solution to the prob-
lem ofhowto contract. It should be emphasized that this is but one of many aspects of
Levi's complete theory of contraction, which also deals at length with, for example,
the problems oWvhether to contract in a given situation and, provided that contraction

is admissableywhat belief to remove.

2 Formal preliminaries In this section, some definitions and a postulate are given
that will prove to be useful in the formal study of Levi-contractions.

Definition 2.1  Let L (the language) be a set of expressions that is closed under
truth-functional operations. A consequence operatior.de a functionCn from
P(L) to P(L) such that, for all subsetd andB of L:

(i) A< Cn(A) (inclusion),
(i) if AC B,thenCn(A) C Cn(B) (monotony),
(i) Cn(A) = Cn(Cn(A)) (iteration).

A subsetA of L is consistent if and only if there is noe £ such that botlx € Cn(A)
and—x € Cn(A).

The elements of will be denoted by lowercase letters. Subsets @fill be de-
noted by uppercase letters. The relational notafiénx will be used interchangeably
with x € Cn(A). It will be assumed that the consequence operator includes classical
truth-functional logic and satisfies the properties of deduction and compactness:

Proposition 2.2 Cn satisfies the following three properties:

(iv) if x can be derived from A by classical truth-functional logic, then x € Cn(A)
(supraclassicality),

(V) ye Cn(AU({x}) ifand only if (x — y) € Cn(A) (deduction),

(vi) if x e Cn(A), then x € Cn(A") for some finite subset A* C A (compactness).

The following notation is adopted from the AGM literature (see Alchonind
Makinson BJ):

Definition 23 LetK € LandA C L. Then X € KLAf and only if:

() XK,
(i) X¥ a forallac A,
(iii) if XY CK,thenY F aforsomeac A.

Thus,K L Ais the set of inclusion-maximal subsetsothat do not imply any of
the sentences iA. Welet K Lx abbreviateK L{x}. A simple consequence of Defini-
tion2_3ls that if K is logically closed, an&k € K_L A, thenX is also logically closed.
As a special case of this notational conventigd,* is a convenient way to denote
the set of maximally consistent subsets/of

Below, selection functions will be used as choice mechanisms, see[Rgtt, [
The idea is that, given a set of possible states after contraction, the selection function
should choose the optimal elements from that set. For example, if the input to the
selection function i& L x, the inclusion-maximal subsetsifthat do not implyx, the
output should be a subsetléfl x containing only its optimal elements. We will return
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to the issue of standards of optimality in a subsequent section. The formal definition
of a selection function amounts to the following:

Definition 2.4 Let K be a subset ofL. y is aselection function on K iff y is a
function fromP?P(K) to PP(K), such thaty(Q2) is a nonempty subset 61, unless
Q is empty, in which casg(Q2) = {K}.

If @ is empty, so that there is no possible contraction option, then the agent
should remain irk. Technically, this is provided for by setting the output of the se-
lection function equal to the singletdK} if 2 is empty.

Two limiting cases of selection functions are, first, those that (fox)edlelect a
single optimal element df | x and, second, those that (for &)lpick out every ele-
ment of K L x as optimal. We can now introduce the three basic types of contraction
that have been discussed by AGM: maxichoice, full meet and partial meet contrac-
tion:

Definition 25 Let y be a selection function oK.

(i) yisopinionated iff y(K_LXx) is a singleton for alk.
(i) yisignorantiff K_Lx C y(KLx) for all x.

Furthermore:

(iif) —+ is amaxichoice AGM-contraction operator for K iff there exists an opinion-
ated selection functiop on K such that for alk € £, K — x = Ny(K_LXx).

(iv) + is afull meet AGM-contraction operator for K iff there exists an ignorant
selection functiory on K such that for alk € £, K - x = Ny(K_1LXx).

(v) —isapartial meet AGM-contraction operator for K iff there exists a selection
functiony on K such that, for alk € £, K+ x = Ny(K_LXx).

If the selection function picks out more than one elemenKafx as optimal,
then the agent is presented with a new decision problem: how should one choose be-
tween the different optimal elements? The solution which AGM offer to this problem
is to take what is common to the all the optimal elements, i.e., the meet of these ele-
ments.

3 Levi-contractions It was noted already by Alchourmn and Makinson irig] that

if x € K, then all elementX of K_Lx have the property th&n(X U {—x}) € L1+,

(For a proof, see Lemnfla5below of which this result is an immediate consequence.)
In other words, ifx is deleted using maxichoice contraction andis then added,
then the logical closure of the resulting set is a maximally consistent set. However,
the elements oK _L x are not all the sets that have this property. Levi’s basic proposal
is that we, instead of restricting ourselvedta x, should focus on a supersetifl x
consisting of all the logically closed subsetsthat have this property, i.e., aXl C

K such thaX = Cn(X) andCn(XU {—x}) € LL'. These are, in Levi's terminology,
the set of saturatable contractionskoby removingx. This set will, following Levi,

be denoted bys(K, x).

Definition 3.1 Let K be a logically closed subset @ andx € L. Then X €
S(K, x) if and only if:

(i) X=Cn(X),
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(i) XK,
(i) Cn(X U {—x}) is maximally consistent irL.

The following lemma shows th&(K, x) is indeed a superset &f_Lx.

Lemma3.2 Let K bealogically closed subset of £, and let x € K. Then K1.x C
S(K, ).

Proof: The proofis based on Observation 3.44h [If xis a tautology, thei Lx =
@ C S(K, x) and we are finished. LeX € KL x for a nontautologicak € K. We
will show that X € S(K, x). It follows from the definition oK Lx that X is a log-
ically closed subset oK so that (i) and (ii) are satisfied. For (iii), suppose to the
contrary that there is somesuch thaty ¢ Cn(X U {—=x}) and—y & Cn(X U {—=x}).
Then—-x — y ¢ Cn(X) and—x — —y ¢ Cn(X), and thus—x — y ¢ X and
—X — =y ¢ X. Since both—x — yand—-x — =y follow logically from x, and
x € K, they are both elements &. It follows from—-x — ye K\XandX € KLx
that XU {—=x — y} F x, and similarly from—x — —y e K\ X andX € K_Lxthat
XU{=x — =y} x Itfollows from XU {=x — y} - xandXU{—=x — =y} X
that X - x, contrary toX € K_Lx.

Note that it follows from DefinitiofETthat if X € S(K, x), thenx ¢ Cn(X).
Note also that ik is a tautology, then there exists no saturatable contractighlnf
removingx. Thus,S(K, x) is empty if and only ifK_Lx is empty.

The following example, adopted from page 121 of LE}ighould serve to give
an intuitive idea of what saturatable contractions are./A.be the language contain-
ing only the truth-functional compounds pfandg. Let K = Cn({p, q}). The ele-
ments ofS(K, p) are the following:

(1) Cn({p<a}),
(2) Cn({a}),
(3) Cn({g — p}),and

4) Cn({—q — p}).

Itis easily seenthat, for instanden({q — p}) € S(K, p). Foritisthe case that
Cn(Cn({g — p}H) U{—=p}H = Cn({—p, —q}), which is maximally consistent id.

It can also be verified th&n({q — p}) is not maxichoice, sincEn({q — p}) C
Cn({p < q}) € KandCn({p < q}) ¥ p. Thus, not all saturatable contractions are
maxichoice contractions. The definition of saturatable contractions is not empty; in
this example there are two nonsaturatable logically closed subsé&tglatt do not
containp: Cn({p — q}) andCn(@). However, the latter two sets are both meets
of saturatable contractions. FGn({p — q}) is the meet of options (1) and (2), and
Cn(@) is the meet of options (3) and (4).

Recall that a selection function is opinionated if it selects exactly one element
from K_Lx for all x, and ignorant if it selects all elements KfL x for all x such that
K_Lxis nonempty. In a parallel fashion, we may call a selection function saturatably
opionionated if it selects exactly one element fr&K, x) for all x, and saturatably
ignorant if it selects all elements &K, x) for all x such thatS(K, x) is nonempty.
Once these concepts have been introduced, we can define the counterparts in Levi's
theory to maxichoice, full meet and partial meet contraction.
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Definition 3.3 Let y be a selection function oK.

(i) y issaturatably opinionated iff y(S(K, X)) is a singleton for alk.
(i) y issaturatably ignorant iff S(K, x) € y(S(K, x)) for all x.

Furthermore:

(iii) - is amaxichoice Levi-contraction operator for K iff there exists a saturatably
opinionated selection functionon K such that for alk € £ : eitherx € K and
K=x=nNy(S(K, x)) orx¢ KandK - x= K.

(iv) — is afull meet Levi-contraction operator for K iff there exists a saturatably
ignorant selection functiopr on K such that for allx € £ : eitherx € K and
K=x=ny(S(K, x),orx¢ KandK - x =K.

(v) —+ is apartial meet Levi-contraction operator for K iff there exists a selec-
tion functiony on K such that, for allx € £ : eitherx € K andK — x =
Ny(S(K, x)), orx ¢ K andK - x = K.

Note that contrary to AGM contraction, Levi-contraction is not defined for belief
bases, i.e., for sets of sentences that are not logically closed.

As Definition B:3]reveals, defining the Levi-contraction operators is slightly
more complicated than defining the corresponding AGM operators. At first, one
might wish to define Levi-contraction so thidt— x = Ny S(K, x) for all x, not just
for x € K. This is the way the corresponding definition for AGM-contraction is for-
mulated, and Levi’s text gives the impression that this is how he wants the definition.
It turns out however that for ¢ K this mode of defining saturatable contraction does
not work. The reason for this is that farg K the postulate of vacuity (G—3) may
not be satisfied, as can be seen from the following example LI& the language
containing all truth-functional combinations afandb. Let K = Cn({a, b}) and let
K" = Cn({a}). Of course,—b ¢ K. Since{K, K’} € S(K, —=b), it may well be the
case thaiS(K, —b) = {K, K’}, and thusnyS(K, —b) = N{K, K’} = K'.

Levi, as well as the originators of the AGM-theory, considers vacuity to be a
desirable property of contraction, and he explicitly intends ¥tk should imply
thatK — x = K. To quote from Levi: “.. if we are instructed to give ug from
K when A is not in K, there is nothing we are instructed to give up So... we
should take the value of the contraction to Ketself,” (See BJ, p. 133; Levi uses
underlined capitals to denote sentences as well as corpora). We concur with Levi that
vacuity should be satisfied. In the definition of Levi-contractions, contrary to that of
AGM-contractions, the case of vacuous contraction must be separately provided for.

Note thatx being a tautology implies theB(K, x) is empty, and hence that
y(S(K, x)) = {K}. Inthis caseK +— x = K. This fully accords with Levi's intention:

“In contraction, A is removed fromK. This can happen consistently with (K-1) if
and only if Ais not a logical truth,” (page 133 d8}, our emphasis).

4 Anaxiomatic characterization Levidoes not give an axiomatic characterization

of his contractions. However, he notes that the postulates of closure, inclusion, vacu-
ity, success and extensionality are satisfied by any partial meet Levi-contraction, (see
page 134 ofg]). An operator that satisfies these five postulatesiitiadrawal in the

sense of Makinson, (page 388 BJ). As we have seen, the withdrawal postulates
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together with the recovery postulate characterize partial meet AGM-contraction. As
it turns out, just dropping the recovery postulate is not sufficient to characterize par-
tial meet Levi-contraction. The following representation theorem is the main result
of this section:

Theorem 4.1 Let K=Cn(K) C L. —isapartial meet Levi-contraction operator
on K if and only if:

(i) K=p=Cn(K-=p) (closure),

(i) K+=pcK (inclusion),

(iii) if¥ p,thenK =pF p (success),

(iv) ifFp<qgthenK+-p=K-=+=q (extensonality),
(v) ifK¥F pthenK+-p=K (vacuity),

(vi) ifEp,thenK+-p=K (failure).

In the proof, the following postulate will be referred to:

Proposition 4.2 (uniformity) IfVB[BC K = BF piff B+ q], then K+~ p =
K-=+aq.

The following lemmas will be used in the proof:

Lemma4.3 Let K bealogically closed subset of L. If + satisfies extensionality
and vacuity, then - satisfies uniformity.

Proof: Let K be alogically closed set and an operator foK that satisfies exten-
sionality and vacuity. In order to prove that uniformity is satisfiedplandq be two
sentences such that for all subsBtef K, B+ pif and only if B+ g. We ae going
to show thatk - p= K +q.

First, let us treat the case wh&n p. It follows by vacuity thatk — p = K.
SinceK is a subset of itself, it follows frorK # pthatK ¥ g. By vacuity,K - q= K,
so thatk — p= K +q.

Next, let us treat the principal case, in whiple K. SinceK is logically closed
we haveCn({p}) € K. SinceCn({p}) € K andCn({p}) + p, Cn({p}) I g. Hence,
F p — q. Inasimilar fashion we prov€n(q) - p and consequently g — p. It
follows that+ p <> g. We may conclude by extensionality thigt+ p = K +@.

Lemma4.4 Let K bealogicallyclosed subset of £ and x asentence. If K’ € K_Lx,
then K’ € KLyforanyy e K suchthaty ¢ K.

Proof: Suppose thaK’ € K1 xandy € K\K’. Toshow thatk’ € K_Ly, it suffices
to show that, whenevdt’ ¢ K” C K, y € Cn(K”). Let K” be such thaK’ ¢ K” C
K. BecauseK’ € K1 x, we havex € K”. Now suppose that — y ¢ K’. It then
follows from K’ ¢ KLxthat(x — y) — X e K/, and thusx € K/, yielding a
contradiction. We may conclude that— y e K’. Sincex e K” andx — ye K/,
we can conclude fronK’ U {x} € K” thaty € Cn(K").

Lemma4b5 Letpe KandX e K.Lp. Thenfor all sentencesr, either r € Cn(XU
{=p}) or =r € Cn(XU {—=p}).

Proof: Letpe KandX e KL p. Itisclearly sufficient to show that for every sen-
tencer, etherpvr € Xorpv —r € X. Itfollows from X € KL pthat# p. Suppose



110 SVEN OVE HANSSON and ERIK J. OLSSON

for contradictionthap v r ¢ Xandp v —r ¢ X. BecauseX € K_L p, it follows that
XU{pvVvr}t pandlikewiseXU{pVv —r}+ p. HenceXU{r}  pandXU{-r}+ p,
and thusX = p. But this contradicts our assumption that K L p.

Proof: (Theorenfd.I] Let = be a partial meet Levi-contraction operator. We first
show that=- satisfies the properties given in the theorem.

e Closure: By definitionK +— p = Ny(S(K, p)). Since, by definition, saturat-
able contractions are logically closed, so are intersections of saturatable con-
tractions.

e Inclusion: Trivial.

e Success. It follows directly from the definition ofS(K, p) that if# p, thenp &
Xforall X e S(K, p).

e Extensionality: Assume that- p <> g. It suffices to show thaty (S(K, p)) =
Ny(S(K, ). We prove thatS(K, p) = S(K, q). Then the desired result fol-
lows, sincey is a function. To prove tha®(K, p) € S(K, ), assume thaX e
S(K, p). Itfollows fromk p <> qthatCn(X U {—p}) = Cn(XU{—q}). Thus,
Cn(X U {—=q}) is maximally consistent irL. By definition, X is a logically
closed subset oK. Thus, X € S(K, g). Similarily, we prove thatS(K, q) €
S(K, p).

e Vacuity: Directly from the definition.

e Failure: If - p,thenS(K, p) = @ and thusyS(K, p) = {K}.

For the other direction of the theorem, letbe an operation that satisfies (i) —
(vi). To show that- is a partial meet Levi-contraction operator we need to find a
selection functiory on K such thatk +~ p =Ny (S(K, p)) if p € K. (The case when
p € K follows trivially since vacuity holds.) Lef be such that:

) y(S(K, p)) ={K}, if S(K, p) =2,
(2) y(S(K, p)) ={XeSK, p|K=pC X}, otherwise.

We have to prove: (ay is a well-defined function; (by is a selection function; and,
(c)forall pe K:Ny(S(K, p)) =K = p.

(a) To prove thaty is well-defined, we have to show that¥K, p) = S(K, q),
theny(S(K, p)) = y(S(K, q)). Let S(K, p) = S(K, ). We ae going to show
thatif B C KthenBF piff B g. Suppose for contradiction thBt- g but B ¥
p. Then there exists 8 such thatB € B’ andB’ € KL p. Thus, by Lemma
B2l B € S(K, p). But B' ¢ S(K, q) sinceB’' - q. We have a contradiction.
Since= satisfies extensionality and vacuity, it follows from Lemlgh&lthat
K — p= K =+ g. By the definition ofy, y(S(K, p)) = y(S(K, Q)).

(b) Nextwe show thay is a selection function. By definition, 8(K, p) = @, then
y(S(K, p)) = {K}. Wehave to show that iS(K, p) # @, theny(S(K, p)) #
@. SupposeS(K, p) # @. Thenk p. Success implies thd& — p ¥ p. By
inclusionK = p € K. Thus there exists aK such thatk — p< X € K_Lp.
Hence, by LemmB.2] X € S(K, p). It follows from the definition ofy that
X e yS(K, p), and thusyS(K, p) # @.

(c) Finally, we must prove that, for app € K, Ny S(K, p) = K+ p.
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Casel: S(K, p) = @. It follows from S(K, p) = @ and Lemmd3.2that
KL p= g, hence- p. It follows from failure thatK + p = K. Furthermore
NyS(K, p) = K by clause (1) in the definition of. Thus the desired result
holds in this case.

Case2: S(K, p)# 2. K+ p<nyS(K, p) holds sinceK = p C X, for ev-
ery X € y(S(K, p)). For the other direction we show thatgfZ K — p, then

q ¢ NyS(K, p). This holds ifg & K, sincen yS(K, p) = K.

Assumeg € K\ (K + p). It suffices to show that there exists an X such that:

(1) g¢ X,
(2) K-p<S XcK,
(3) X=Cn(X),

(4) Cn(XU{=p}) e LLp.

Subcasel: K= p¥ pva. LetXbeanysetsuchth#tt—~p< Xe KLpva.

It follows directly that (1), (2) and (3) are satisfied. It remains to show that
(4) is satisfied. It follows from Lemm@Zlthat X € K_Lp. By Lemma4.5]
Cn(XU{—p}) is a maximal consistent subset of the language, and since it does
not containp we haveCn(XU {—p}) € LLp.

Qubcase2: K+ phk pvg. Let X be any set such thd ~ p C X €
KL{p, g}. It follows that (1), (2) and (3) are satisfied. It remains to be shown
that (4) is satisfied. Lat ¢ Cn(X U {—p}). We are going to show thatr
Cn(X U {=p}). Itfollows fromr ¢ Cn(X U {—p}), by the deduction prop-
erty of Cn, thatp v r ¢ Cn(X) and consequently, sinceis logically closed,
pvr ¢ X. Since p € K, andK is logically closed, we have vr € K. It
follows from pvr e K\X andX € K_L{p, g} that eitherXU {pvr}+ por
XU{pvr}ta.

Suppose thaX U {pVvr} g. Itthenfollows thatX = p — @. This, however,
is incompatible withX - p v g and X ¥ g, that follow immediately from our
definition of X. We can conclude thaX U {p Vv r} ¥ g, and consequentl)X U
{pvr}E p. Itfollows fromXU{pvr}F pthatX+r — p,andthusX +
—p — -r, from which we can conclude that € Cn(XU {—p}), asdesired.
Just as inthe first subcase it follows tizat( X U {—p}) is a maximal consistent
subset of the language, and since it does not coipteie haveCn(X U {—p}) €
L1p.

It follows from this theorem that all partial meet AGM contractions are partial
meet Levi-contractions, as Levi indeed indicates, see pages 125-126[@ Hisg
postulate of failure, that was introduced in Fuhrmann and HanE§pserves to en-
sure that contraction by a tautology leads to no change of the corpus (belief set). The
motivation for this is that logical truths are elements of all corpora. The postulate of
failure is a formal means of saying that when instructed to do the impossible, you do
nothing.

Partial meet contraction satisfies failure. As was pointed out to us by an anony-
mous referee, to see that failure is not implied by the postulates (i) — (v) mentioned
in the theorem, we can let be such thak — p = K whenevep ¢ K andK + p=
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Cn(@) wheneverm € K. (This example can also be used to show that the further ad-
dition of the postulates (G—7) and (G—8) to (i) — (v) does not guarantee the satisfaction
of the failure postulate.)

For an example showing that saturatable contraction does not in general satisfy
recovery, letL be the language containing only the truth-functional compounds of
p andq, and letKk = Cn({p,q}). ThenCn({g — p}) € S(K, p), and we can
let y be such thayS(K, p) = {Cn({g — p})}. We seethatK is not a subset of
Cn(Cn({g — phH U{ph) =Cn{p}), which means that recovery fails.

The following postulate of core-retainment was introducefja§ aweaker al-
ternative to recovery. The intuition is thatjis excluded fronK whenpis removed,
theng plays some role for the fact thit implies p.

Proposition 4.6 (Core-retainment) Ifge Kandqg ¢ K - p, thenthereissome sub-
set Aof K suchthat AU {g} F pand A¥ p.

However, as was shown iﬁ[ the seemingly much weaker notion of core-
retainment implies recovery in the presence of the postulates of closure, inclusion,
success and preservation. The following example illustrates that saturatable con-
traction does not satisfy core-retainment. Letconsist of p, g and their truth-
functional combinations and (as was shown above to be possibl&) sep equal
toCn({g — p}). Thenp — g e K\(K = p). Assume for contradiction that
core-retainment is satisfied. Then there exist\an K such thatAu {p — q} +
p and A ¥ p. But, by the deduction propertdAU {p — q} + p implies A
(p - q) — p,which entailsA+ p. And thus we have a contradiction.

5 Thelimitingcases All maxichoice AGM-contractions are maxichoice Levi con-
tractions:

Theorem 5.1  If — isa maxichoice AGM-contraction operator for K, then — isa
maxichoice Levi-contraction operator for K.

Lemmab5.2 Letpe Kandqge K. If S(K, p)=S(K,q),then KLp=K_Lq.

Proof: (Lemmab.2) Suppose to the contrary th& K, p) = S(K, q) andK L p #
K_1g. Without loss of generality, we may assume that there is sérsech thatX e
KlpandX ¢ KLq.

It follows from X € K_L pby Lemmd3.2thatX € S(K, p) and thusX € S(K, ),
so thatg ¢ X. From this andX € K_L pit follows by Lemmd4.4khat X € K_Lq. This
contradiction concludes the proof.

Proof: (Theorene.I) Let < be a maxichoice AGM-contraction that is based on the
selection functiory. Lety’ be the selection function such that for plly/ S(K, p) =
y(KLp). Itfollows from Lemma&.2lands.2thaty’ is a well-defined selection func-
tion. Let+' be the Levi-contraction thatis based@nThenclearlyKk - p=K +'p

for all p.

However, Theoreis.1kannot be strengthened to say that fenerates a maxi-
choice AGM-contraction operator fdf, then it also generates a maxichoice Levi-
contraction operator fdk. To see this, ley generate a maxichoice AGM-contraction
operator forK. This means thay mapsK_Lx on a single element dk_Lx. It may
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nevertheless be the case thahaps the wider se3(K, x) on a subset 08(K, x) with
more than one member. If this is the case, then the Levi-contraction operator gener-
ated byy is not maxichoice, although generates a maxichoice AGM-operator. For
an example, let the language consispof] and their truth-functional combinations.
Let K = Cn({p&a}), let y(KLp) = {Cn({gh)}, and lety(S(K, p)) = {Cn({p <
a),.Cn({p Vv gh}. Inthis exampley(KLp) is a singleton buy(S(K, p)) is not a
singleton.

In their [2]] Alchourron and Makinson proved the following result for full meet
AGM contraction:

N(KLp)=KnNCn({—p}).

Hence, full meet AGM contraction involves a radical deformation of the belief set. As
Gardenfors observes, “full meet [AGM-] contraction in general results in contracted
belief sets that are far too small,” (see page 79 [It is therefore not regarded to

be a realistic operation of change. As the following theorem shows, full meet Levi
contraction fares still worse in this respect. (It should be emphasized that Levi does
not himself propose the application of ignorant selection functions to saturatable con-
tractions.)

Theorem 5.3 If — isa full meet Levi-contraction operator for K, then K ~ p =
Cn(o) for all nontautological p € K.

Proof: Let + be a full meet Levi-contraction operator f&. Let p € K\Cn().
ThenK +— p = NyS(K, p) = NS(K, p). We will prove thatnS(K, p) = Cnh(@).
Since allX € S(K, p) are logically closed, it follows thaEn(2) € NS(K, p). It
remains to be shown thatS(K, p) € Cn(@), i.e., that ifx ¢ Cn(@) thenx ¢
NS(K, p). This is trivial unlessx € K. Let x € K\Cn().

Casel: xVv p¢Cn(@). ThenK_L(xV p) is nonempty. Lety € KL(xV p).
Clearly,x ¢ Y. It follows by Lemmdd.4thatY € K_Lx. It follows by Lemmd3.2]
thatx € Y € S(K, p).

Case2: xVvpeCn(@). LetZe KLpandY € Z1x. Sincet xV p, we have
Y U {=p} F %, and thusCn(Y U {x}) € Cn(Y U {—p}). By the recovery property,
Cn(Y U {x}) = Z, and consequentlZ € Cn(Y U {—=p}). ThenCn(ZU {—p}) C
Cn(YU{=p}). SinceCn(Y U {—p}) is consistentp & Cn(Y)),andCn(ZU {—p}) €
L1+ (by Lemmal5), we haveCn(Y U {—=p}) = Cn(Z U {=p}), s0 thatCn(Y U
{(=p}) € LL+ and thusx ¢ Y € S(K, p).

We may conclude that there is no nontautological sentenceS(K, p), and,
consequently, that S(K, p) € Cn(@). This fact and the previous observation that
Cn(@) € NS(K, p) yields the desired conclusion.

6 Informational value Both Levi’'s account and that of the AGM trio are based on
the assumption that the “best” or most valuable contraction should be chosen. Let
7 be a measure on the set of logically closed subsels ¢following Levi, we will
consider? to represent the informational value of various belief sets smallerkhan
Levi distinguishes between two monotonicity requirement$/osee page 82 of his

=D):
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if Ac B, then?”(A) < ¥(B) (strong monotonicity,)
if Ac B, then?”(A) <V(B) (weak monotonicity)

Levi argues that contraction should be guided by some medgufeinforma-
tional value that satisfies weak monotonicity. He provides two equivalent formula-
tions of how contraction can be based‘BnOne of these formulations is thit— p
is the meet of all saturatable contractionkofemovingp that minimize the loss of
informational value, (see page 130 B})[ In other words K + p = Ny(S(K, p))
where the selection functionis defined so that (whe8(K, p) # 2):

(1) y(S(K, p)={XeSK,p|VY) <VX) forallYe SK, p).

As Levi notes, the problem with contraction based on informational value is
that the recommended contraction strategy need not be optimal. To see this, recall
from the example in Section 3 that the meet of two saturatable contractions might
well be nonsaturatable and, hence, suboptimal. Since Levi adheres to the decision-
theoretically motivated idea that the recommended contraction alternative should be
optimal, he offers an alternative way to interpret contraction. The alternative formula-
tion is based on a modification of the meastteThe modified measurgp (damped
informational value) assigns to each logically closed subsef K the minimum
(greatest lower bound) oF (Y) for any saturatable contractiohsuch thatX C .

In this formulation K + pis the meet of all logically closed subsetsofemovingp

that minimize the loss alamped informational value, see page 128[6}.[Levi con-
cludes that although the definition-efusing informational value and the one that ap-
peals to damped informational value are formally interchangeable, the notion based
on damped informational value is better motivated from a decision-theoretical point
of view, (see page 129 dg]).

Since the two formulations yield the same result, we are going to use the formu-
lation in terms of?/, that better brings out the similarities between Levi's approach
and that of AGM.

Definition 6.1 = is a value-based Levi-contraction iff:

() if pe K,thenK +~ p=ny(S(K, p)) wherey(S(K, p)) = {X € S(K, p)|
YY) < V(X) forall Y € S(K, p)} and¥ is a real-valued measure on the
logically closed subsets &€ satisfying weak monotonicity;

(i) if p¢ K, thenK + p= K.

Definition[6.Ildoes not, however, have the full structure of Levi’s proposal for
belief contraction. The measuféis intended to be probability-based, an aspect that
will not be covered in this paper.

The transitively relational contractions of AGM are based on a transitive relation
< defined over the sefilx = {X| X € KL p for somep € K}. Such a relation gives
rise to a selection function according to the following relationship:

(2) y(KLp)={XeKLp|YXforallY e KLp}.

It was shown by AGM that a selection function is based in the manner of (2) on
some transitive relatior if and only if it is based in that way on some transitive
and connected relatiog’, see[[]. Since all transitive and connected relations can
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be represented by real-valued measures, see pages 110-111 of Ridlettiefe is
ameasurel/ such that:

3) y(KLp)={XeKLp|VY)<V(X)foralYeKLp}.

Since it holds for all distincX, Y € Uk that X is not a subset of (see [1]),7
(vacuously) satisfies strong monotonicity.

It is essential for value-based Levi-contraction that the weakly monotonic mea-
sure? is applied only to the elements 8K, p). (If S(K, p) is replaced b (K, p),
i.e., the set of logically closed subsetsofot implying p, in (1), then?’ will have to
be replaced by the more complex measuieto yield the same result.) On the other
hand, it is not difficult to show that it makes no difference if a strongly monotonic
measure chooses between the elements bp (as in the AGM theory) or between
the elements 0§(K, p) or those ofC(K, p):

Theorem 6.2 Let 1 be a measure on the logically closed subsets of K satisfying
strong monotonicity. Then:

N{X e KLp|V(Y) <V (X) foral YeKLp}

= N{XeSK,p) | VY)<V(X) foral Ye SK, p)}

= N{XeCK,p |VY)<VX) foral YeCK,p).
Proof: Let 7 be a measure satisfying strong monotonicity. It suffices to show that
{(XeCK, p|VY) <V (X)forallY e C(K, p)} € KLp. If pis atautology, then
this follows fromC(K, p) = @. Assume thap is nontautological and leX € {X €
C(K, p)|V(Y) <V (X)forallY e C(K, p)}. Itfollows immediately thaX € K and
not X - p. It remains to show that K ¢ Z € K, thenZ I p. AssumeX c Z C K.
Assume for contradiction that € C(K, p). By the definition ofX, 7/ (Z) < V(X).
However, strong monotonicity and C Z entails thatl/(X) < 9/(Z). Thus we have
acontradiction. We may conclude thatg C(K, p). We may conclude thaZ + p.
Hence,X € K1 p as desired.

The main results of this section are the following two theorems, that show that
partial meet Levi-contraction satisfiegf@enfors’ supplementary postulates.

Theorem 6.3 Value-based Levi-contraction satisfies:
(K-a)yn(K+h) € K= (a&bh).

The following lemmas will be used in the proof:
Lemma6.4 S(K,a&b) € S(K,a)U S(K, b).

Proof: (LemmaB.4] Let X € S(K, a&b). Then Cn(X U {—a Vv —b}) is maximally
consistent. Since it is maximally consistent and contaias/ —b it contains either
—aor—b.

Casel: —aeCn(XU{—av —=b}). ThenCn(XU {—a}) = Cn(XU {—-aV —=b}),
so thatCn(X U {—a}) is maximally consistent. Since we already know that
Cn(X) C K, we can conclude thaK € S(K, a).

Case2: —be Cn(XU{—av —b}). It follows in the same way that € S(K, b).
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Lemma6.5 Lety beaseectionfunctionthatisbased onaweakly monotonic mea-
sure. Thenif Z € yS(K, p)and Z € Z' € KLpthen Z' € yS(K, p)

Proof: (Lemmdg5 AssumethaZ € yS(K, p) andthaiZz € Z’' € K_Lp. Itfollows
from the weak monotonicity of’ that?(Z) < V(Z'). Itfollows fromZ € yS(K, p)
andZ’ € S(K, p) that?¥(Z") < V(Z). Thus,V(Z") = V(Z). We can conclude that

Z' e yS(K, p).
Proof: (Theorenf.3] Let y be the selection function on which is based.

Casel: ace Cn(@). Westart with the left side of the equatioK. -~ a = Ny () =
N{K} = K sothatk —~an K +b = K + b. For the right side of the equation, note
that if a € Cn(@) thenb anda&b are logically equivalent. Since extensionality is
satisfied (TheorefdT), K = (a&b) = K = b.

Case2: be Cn(@). This case is symmetrical to Case 1.

Case3: a¢ K. Westart with the left side. & ¢ K, then it follows from the defini-
tion of = thatK +— a = K. Consequently, the left side is equalko+- b. Concerning
the right side, we note that¢ K entailsa&b ¢ K. Hence, from the definition of,
K = (a&b) = K. Since inclusion is satisfiedk —~ b C K.

Case4: b ¢ K. This case is symmetrical to Case 3.

Case5: a,be K\Cn(@). Letee (K+a) N (K -+Db). Wehave to prove that
e e K = (a&bh). It follows frome € (K —-a) N (K = b) that if X € yS(K, a) or

X € yS(K, b), thene e X. Now letY € yS(K, a&b). It follows from Lemmd6.4]
that eitherY € S(K, a) or Y € S(K, b). Without loss of generality, we may assume
thatY € S(K, a). There is then som&’ such thatY C Y € Kla. By Lemma
B4 Y e KL(a&b). By LemmaB5] Y’ € yS(K, a&b). We are going to prove
thatY € yS(K, a). To do this, it is sufficient to prove that iZ € S(K, a), then
V(Z) < Y(Y). Suppose to the contrary tha@ € S(K,a) and ¥ (Y) < V(2). It
follows from Z € S(K, a) that there is somg&’ such thatZz € Z' € K_La. By Lemma
Z' € KL(a&b). By weak monotonicity//(Z) < ¥ (Z’). We therefore have
VYNY)Y=V)<V(Z)<V(Z),ie., V) <V (Z). This, however, cannot hold
sinceY’ € yS(K, a&b) andZ’ € S(K, a&b). We can conclude from this contradic-
tion that if Z € S(K, a), then?/(Z) < V(Y), and consequently that € yS(K, a).

It follows from Y € yS(K, a) thate e .

Theorem 6.6 Let — be a value-based Levi-contraction on K. Thenif a ¢ K =
(a&b), then K = (a&b) € K —a.

The following lemma will be used in the proof:

Lemma6.7 Leta, banddbeeementsof K. Ifd¢ Y e S(K, a), thenthereissome
ZsuchthatY € Z e S(K,a&b)andd ¢ Z.

Proof: (Lemmd6.7] Letd ¢ Y € S(K, a). There are three cases:

Casel: avd¢gyY. LetZ=Cn(YU{a — b}). Itfollows thatCn(ZU {—a Vv
—b}) = Cn(Y U {—a}). SinceY e S(K, a), wehaveCn(Y U {—a}) € L1+, and thus
Cn(ZU{—av —b}) € L L. Suppose thadl € Z. Then, sinceZ < Cn(Y U {—a}),



LEVI CONTRACTIONS 117

we haveY U {—a} I d, and thusY  a v d, contrary to the condition for this case.
Thusd ¢ Z.

Case2. b — dgY.LetZ=Cn(YU{a — b}). Itfollows just asin Case 1 that
Cn(ZU{—-av —b}) € L1'. Suppose thad € Z. ThenY+ (a — b) — d, from
which followsY b — d, contrary to the condition. Thut ¢ Z.

Case3: {avd,b — djCY. LetY=Cn(YU{a,d — b}). Weare going to
show thatY’ ¥ a&b. Suppose to the contrary thét+- a&b. ThenY’' U {—a Vv —b} is
inconsistent, i.eYU{a,d — b, —av —b}F L. However, sincdavd, b — d} C
Y, we haveCn(YU{a,d — b, —mav —b}) C Cn(Y U {—d}), sothatCn(Y U {—d})
1, contrary tod ¢ Y. We can conclude from this contradiction thét¥ a&b.

SinceY’ C K, there is some& such thaty’ € Z € KL (a&b). It follows from
Lemma3.2that Z € S(K, a&b). It remains to be shown thdt¢ Z. Suppose to the
contrary thatd € Z. Since{a,d — b} € Z we then have&b € Z, contrary to
Z € S(K, a&b). We can conclude from this contradiction thatZ Z.

Proof: (Theorenk.6) Leta ¢ K = (a&b). There are five cases:

Casel: a¢ K. Then, by the definition of-, K - a= K. Alsoa&b ¢ K, and con-
sequenthK + (a&b) = K. HenceK + (a&b) € K + a as desired.

Case2: b¢ K. Thus,a&b ¢ K, sothatK + (a&b) = K. Since by hypothesia ¢
K + (a&b), it follows thata ¢ K. By the same reasoning as in Case 1, we conclude
thatK - (a&b) C K - a.

Case3. aeCn(w). Thenae K + (a&b) so that the theorem is vacuously true.

Case4: be Cn(@). Thena&bis equivalent ta, and since extensionality is satis-
fied (TheorentT), K + (a&b) = K ~a.

Case5: a,be K\Cn(9). Suppose tha ¢ K — (a&b). Then there is somg such
thata ¢ Z € yS(K, a&b). We haveCn(Z U {—aVv —b}) e L1+, and thus eithea
or —ais an element o€n(Z U {—a Vv —b}). Suppose thaa € Cn(Z U {—a Vv —b}).
ThenZ - —-av —-b — a, or equivalently Z I~ a, contrary to the conditions. It fol-
lows that—a € Cn(Z U {—aV —b}) or equivalentlya — be Z. Snhcea — be Z
we haveCn(Z U {—a Vv —=b}) = Cn(Z U {—a}), and thusZ € S(K, a). Now let
X be any element o8(K, a). Then there is som&’ such thatX € X' € Kla.
Since, by Lemm&L4] KLla € K_La&b, we also haveX’ € K_La&h, and thus, by
Lemmd3.2] X’ € S(K, a&b). It follows from X € X’ that?(X) < ¥ (X’), and from
X' e S(K,a&b) andZ € yS(K, a&b) that ¥ (X') < ¥ (Z). Thus¥V (X) < V(2).
Since this holds for alK € S(K, a), wecan conclude that € yS(K, a). We ae now
ready to show thaK — (a&b) C K - a, i.e., thatNnyS(K, a&b) € NyS(K, a). Let
d ¢ NyS(K, a). Then there is som¥ € yS(K, a) such thad ¢ Y. It follows from
Lemmdb.7that there is som@/ such thatY € W e S(K, a&b) andd ¢ W. It follows
from Z,Y € yS(K, a) that ¥V (Z) = V(Y) and fromY < W, by weak monotonicity,
that V(Y) < V(W). Thus,V(Z) < V(W). It follows from?(Z) < V(W), Z €
yS(K, a&b) andW e S(K, a&b) thatW € yS(K, a&b). Sinced ¢ W, we can con-
clude thatd € Ny S(K, a&b), as desired.
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7 Conclusions This paper contains two major formal results: (1) an axiomatic
characterization of partial meet Levi contractions in terms of the postulates of clo-
sure, inclusion, vacuity, success, extensionality, and failure; and, (2) a demonstration
that value-based Levi-contractions satisfy the two supplementargeafors postu-
lates.

Levi has not to our knowledge commented on the intuitive reasonableness of
the supplementary postulates. However, it seems to us that these postulates are fairly
reasonable demands on belief contraction, that are well in tune with his basic ideas
on the relation between belief contraction and informational value.

In summary, value-based Levi-contractions satisfy seven outaotiéhfors’
eight postulates for contraction, with recovery as the sole exception. The same ap-
plies to at least two other constructions that have been proposed in the belief revision
literature, namely: (1) Rott’s entrenchment-based contraction (sdgédjjsdnd, (2)
the operators of contraction on a belief set that are generated by transitively, maximiz-
ingly relational partial meet contraction on a finite and disjunctively closed base for
that belief set, see Hanssbf).[ The further interrelations between these three classes
of operations remain to be investigated.

The formal results of this paper confirm that Levi has succeeded in constructing
awell-behaved operation of contraction that does not satisfy recovery.
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