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On Finite-Valued Propositional
Logical Calculi

O. ANSHAKOV and S. RYCHKOV

Abstract In this paper we describe, in a purely algebraic language, truth-
complete finite-valued propositional logical calculi extending the classical
Boolean calculus. We also give a new proof of the Completeness Theorem for
such calculi. We investigate the quasi-varieties of algebras playing an analo-
gous role in the theory of these finite-valued logics to the role played by the
variety of Boolean algebras in classical logic.

1 Introduction Assume that am-valued logicL,, n > 1, is given by means of
truth tables. We shall denote the set of truth value¥/by{0,1/(n—1),...,(n—
2)/(n—1),1}. AssumeMARK C V, where 1e MARK and 0¢ MARK. We dhall
call MARK the collection ofdesignated (marked) truth valudset the algebra of the
logic L, be(V, o1), where the signature, consists of operations ov. The logicL
is completely determined by the tripl¥/, o1, MARK).

Small Greek letters, 8, . .., shall be used to denote arbitrary truth values. We
say that the logid.j is truth-completeff all J-operatordJ;, | « € V} are functionally
expressible in the signatuse, where (see Rosséf])

|1 ifBg=a,
‘]3’3‘{0 if B .

Intuitively, the expressibility in the signatueg of all J-operator$J;, | « € V} means
that, for every € V, itispossible to say in the language of the lobjcthat a propo-
sition A assumes the given truth valae

A logic L, is said to beC-extendingff in L, one can functionally express the
binary operations\*, v*, >*, and the unary operation* (whose restrictions to the
subset{0, 1} of V coincide with the classical logical operations of conjunction, dis-
junction, implication, and negation). Note thiat coincides with classical logi€
over the sef0, 1}.
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An algebraV = (V, A*, v*) is called aquasi-latticeiff for all «, 8,y € V the
following conditions are satisfied (see PtonK&]):

l.aAN*a=aV*a=aqa,
2. a A" B=B A*a,anda V* 8= B V*a,
. a AT (BATY)=(a A*B) A" yanda VF (BV* ) = (a V* B) V* y.

We say that a logic isvell-quantifiediff the corresponding algebr@/, A*, v*) is a
guasi-lattice. Note that the quantifiateind3 can be defined in a logic as generalized
conjunction and disjunction iff the logic is well-quantified.

Since every lattice is a quasi-lattice, the class of truth-compileéxtending
well-quantified logics contains many well-known nonclassical logics whose conjunc-
tion and disjunction induce a lattice structure, e.g., all the finite-valued logics of
tukasiewicz [B5], the functionally complete logics of Po&t], the class of logics
Tgr(‘;;ll of Yablonskii [E7], and the logics corresponding to the algebras of Md&si].[

In our opinion, itis even more interesting to consider examples of truth-complete
C-extending logics such that the algel¥a A*, v*) is a quasi-lattice but not a lattice:

a well known example is Bochvar's three-valued logig [9]. Other examples in-
clude the three-valued logic of Ebbinghdg]f the logicD of Segerberddd], which

is a functional extension of Hallden’s logg]], and the finite-valued generalization
of Bochvar’s logic introduced by Grigolia and Fif&7]. Of related interest are also
the three-valued logic of Hoogewi[&F], certain conditional logics (see Guzm&g}

and Guzman and Squié&d]), and many of the significance logics considered by God-
dard and Routley4].

In Finn et al. P, many-valued logics are classified in terms of the informal se-
mantics arising from the algebraic properties of their logical operations: thus, a logic
is said to beof the uncertainty typd the truth values different frontrue andfalse
stand for degrees of uncertainty (fuzziness); alternatively, if these truth values stand
for “defects of sense,” then the resulting logics are cadligahificance logics Both
classes are examples of logicspafrtially defined predicatesThere are certain sim-
ilarities between some notions frofa] and our definitions of truth-complete;-
extending, and well-quantified logics.

Among the papers containing results related to ours, first of all we should men-
tion Surmal[G6] and Roussealtfl]. In these papers the authors give algorithms for
axiomatizing every finite-valued logic; using these axioms one can construct calculi
of n-termed sequents and analytic tableaux in the style of SmulBAnifilbert-type
calculi are not considered idg or [B6].

The main result of our joint paperg][and [5] is the specification of a gen-
eral, effective method for constructing Hilbert-type first-order calculi for any truth-
completeC-extending well-quantified logic. (Note that the condition of being well-
quantified is not necessary for constructing propositional calculi.) Further, in the final
sections offf] and [], we describe a general effective method to construct so-called
“quasi-Hilbert™-type first-order calculi for arbitrary finite-valued logics. A general
computational scheme for two-termed sequents in finite-valued logics is given in
our paperslf] and[{]. In [[4] one can find proofs of the analogues of some well-
known model-theoretic results for arbitrary finite-valued calculi. (Examples include
the L.cs ultraproduct theorem, Maltsev’'s compactness theorem, and others.) In this
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connection, at least the following papers should also be mentidakd3], [[4], [E],
D’Ottaviano f0], [47], and 2], along with the abstractf] and E2).

Let us now mention the papers that were the sources of some of our ideas
and methods. These papers are mainly concerned with logics where the algebra
(V, A*, v¥) is a quasi-lattice but not a lattice (logics of significance, in the terminol-
ogy of [21]). Bochvar’s logicB; from [9] is the first example. This logic and its
corresponding class of algebras were axiomatized by Eff [20], Bochvar and
Finn [L0] Grigolia and Finn[22], [27] considered highly nontrivial logics and alge-
bras yielding finite-valued generalizationsRBY. The techniques developed by these
two authors found subsequent applications in more general contexts. In particular,
our formulations of logical and algebraic axioms are generalizations and simplifica-
tions of those in[f2] and B7].

The main results of this paper are as follows: we introduce a general method of con-
structing Hilbert-type propositional calculi for all truth-compl€eextending logics.

We similarly construct “quasi-Hilbert”-type propositional calculi for all finite-valued
logics. We prove the completeness of all these calculi. We study the relationship be-
tween classical validity and validity in truth-complefeextending logics. We de-
scribe the corresponding algebras of this class of logics and prove two representa-
tion theorems. Our proof of the completeness theorem is new: we consalizh-
tionsfor formulas and valuations, following an idea of Skvortsov (§8 [The same
method is used in the present paper to obtain various algebraic results.

Although all papers mentioned up to now are mainly concerned with finite-
valued logics, let us also briefly mention some papers dealing with infinite-valued
logics (and their corresponding algebras) having some relationship with the present
paper. For example, in Rousse&d][ [51], and Girard[23], intuitionistic versions of
finite-valued logics are considered. Such logics were also considered in Anshakov’'s
dissertation[f]. Unfortunately, some of Anshakov’s papers about intuitionistic ver-
sions of finite-valued logics are quite inaccessible for western readers. Also the so-
called J-defined logics fronfi] are closely related to the logics considered in the
present paper. J-defined logics can be infinite-valued, as well as finite-valued. It is
not hard to prove that every truth-compl&@eextending logic is J-defined.

Unless otherwise specified, byl@gic L, we shall mean a truth-complete and
C-extending logic given by a tripléV, o, MARK ), where the signature

o = o1U{J laeVIU{a*, v¥ % ="}
= ({FlaeV}, A"V, D" =" F,....R)

is functionally equivalent to the basic signatare In Section 4 we shall briefly dis-
cuss (along the lines dP] and [E]) the possibility of extending our results to other
classes of finite-valued logics. In Section 5 we shall desdrjpderivable formulas
of a truth-completeC-extending finite-valued propositional calculug in an alge-
braic language.

Different algebraic approaches to various classes of many-valued logics are de-
veloped in several papers (notably Chdmg]jfand[[L4], Rasiowal5], Cleave [L§],
Rosenbergld7], Cignoli [L5], Grigolia 25, [26] and 7], Mundici [37], [33],
and B9, Guzman and Squird?P], Komori [B3 and [34], Rose and Rosself],
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Hahnle Bd, Suchon[E5], and Figallo [Lg]).

2 Syntax  With the operation§J; | o« € V}, A*, v*, o, =*, andF{™, ..., F{™
we associate the formal symbols (calf@@positional connectivg@dJ, | « € V}, A,
v, D, —and f{™ ..., f{™) with the corresponding number of arguments.

Definition 2.1 (Alphabet and Formulas) We have:

1. A countable set of propositional variables,
2. Propositional connectives,
3. Parentheses) and (.

Formulas are defined in the usual way by induction. Propositional variables will be
considered as atomic formulas.

We shall adopt the usual conventions on the omission of parentheses. All connec-
tivesino\ {A, v, D} have the same strength, and they are strongerthan >. The
connectivesn andv are stronger tham.

Definition 2.2  External formulasare inductively defined as follows:

1. Foreachr € V, if Ais a formula, thenyJA is an external formula.
2. If XandY are external formulas, then so abeA Y), (X VY), (X DY), (—=X.)

In what follows, the letter®, g, r, ... shall stand for arbitrary atomic formulas, the
lettersA, B, C, ... for formulas, and the letterX, Y, Z, . .. for external formulas.

Notation 2.3 Throughout this papepg shall denote a fixed propositional variable.
We also use the following notations and abbreviations:

1. T=(Xpo D hpo) andF = (=T),

2. A=B=(ADB)A(BD A),

3. The abbreviationg\ X and\/ X; are interpreted, respectively, s A (X A
o A (X A Xy) .I.E.I)) andzI V(XoV...V(Xke_1V X)...)), under the as-
sumption that = {1, ...,k}. If | = &, thenT is identified with the formula
A Xi, andF with the formula\/ X;. Asfor the binary operations* andv*,

iel iel
the expressiong\* g and\/* 8 are handled in the same way, witg* 8 = 1
Bel Bel Bel
and\/* g =0for | = 2.
Bel
4. If WC V,thenwe setd A= \/ JgA Letmark A= Jyarc A.
BeW

Definition 2.4  We adopt the followingAxiom Schemes

Propositional axioms (P)

(P1) X>(Y>X)),

P2) (XD>(YD>2)D>(UXDY)D (XD 2),
(P3a) XD (YD XAY),

(P3b) XAY DX,

(P3c) XAYDY,
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(P4a) (XDZ)D((YDZ)D(XVYDZ)),
(P4b) XD XVY,

(P4c) YD XVY,

(P5) (XDY)D ((XD=Y)D—=X),

(P6) ——=X> X.

Connection Axioms (Con)

r
(Cag) Lo(Aq,....A) = \/ﬂ) <./\1JﬂiAi>,
=a \i=
whereG € o\ {J; |a € V} and the propositional connectigecorres-
ponds to the operatioB,
(Ch) bX=-X
(Ch) X=X,
(CL) I XDFforad{o,1}.

Axioms of n-valuedness
For eachx € V:

(NV,) A= A —BA.
pra

Definition 2.5  We use the followingnference rules

Y, XDY
1. modus ponens: y
2. mark-introduction: mark A
3. mark-elimination: L:A

As usual, a formul&A is said to baderivablefrom a collection of formulag® in the
calculusLy, if itis derivable from the axioms andby the rules of inference (notation:
Ik, A orsimplyI' = A)

LetEF(Ly) be the set of all external formulas of the calculs Let PV(C) bethe set

of all propositional variables of the classical propositional calc@iusnd IetAF(C)

be the algebra of formulas of the lodl; that is, the absolutely free algebra of signa-
ture{A, v, D, =} generated bV (C). We also denote b F(C) the support of this
algebra.

Proposition 2.6 Let S: (AF(C), A, V, D, =) — (EF(Lp), A, Vv, D, =) be a ho-

momorphism. By abuse of notation, let 8V (C) — EF(L,) also denote the
restriction of S toPV(C). If & € AF(C) andI" € AF(C), thenT'Fc® implies

SNk, S(P), where SI') = {S(V) | W eT}.

Proof: An obvious induction on the length of the derivation of the formailan the
classical propositional calcul. O
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It follows from the above proposition that we can use well-known derived rules of
inference of the classical log(e for constructing derivations in the calcullug, pro-
vided that we restrict the area of their application to theE$&iL,) of external for-
mulas.

Lemma27 If 1e W< Vand0¢gW,thent JwX D> Xandk, X D> JwX.

Proof: (a) Let us prove that X > JyX. By axiom (CJ;) and Propositiof2.6] we
have X > J X. Moreover,- ;1 X D JyX because E W. Then we have- X D
Jw X.

(b) Let us prove- JwX D X. By axiom (CJ;) and Propositioﬁl we have
FXXD X Ifl=#£ae Wthen by axiomCJ,) we have- J, X O F becauser # 0.
Again by Propositio®.6lwe get- (J, X D F) D (J, X D X). Then, by modus ponens,
FJ XD Xforl#a«aeW. Sofor all « € Wwe have J, X D X, which implies
FJwvX D X O

Corollary 2.8 F, X=mark X.

Theorem 2.9 (Deduction Theorem) LetI” be a collection of formulas, and suppose
Aand B to be formulas of .. ThenI", A B impliesT"-, mark A D> mark B.
Proof: By induction on the length of the derivation of the form@gaas in classical

logic. If necessary, use Proposit{arGland the above corollary. O

Corollary 210 If X and Y are external formulas, théh Xt Y impliesT"
XDY.

Definition 2.11  We ddine normalformulas by the following inductive procedure:

1. Fora € V, if Ais an atomic formula, then, A is a normal formula.

2. If X andY are normal formulas, then so are the expressiofg Y), (X Vv
Y), (XD Y),and(—X).

Definition 2.12 By induction we define thé operator, transforming external for-
mulas into normal formulas, as follows.

1. If Ais an atomic formula, then((J\)' =J, A
2. (XxY)' = X'« Y' wherex here denotes one of the connectivesy, .
3. (=X) ==(xh.

r
4. (LT(AL ..., A)) = \/ (/\ (Jg; Aj)l), where the connectivé
F(Br..f)=e \ j=1
corresponds to the operatiéhe o\ {J; | @ € V},

5.

A ifa=1,

LA =1 =(FA)' ifa=0,
F if & ¢ {0, 1.

Lemma213 + X=X
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Proof: By induction on the logical depth of the external forma Use Proposi-
tion2-6land the axioms of connection (Con). O

Corollary 214 + Aifandonlyif ., (mark A)'.

3 Semantics Recall thatAF(L,) denotes the algebra of formulas of our lodji¢
(thatis, the absolutely free algebra of signattxeHomomorphisms from the algebra
of formulasAF(L,) into the algebrdV, o) will be calledL,-valuations

Lemma3.1l Let X be an external formula of the calculug.LIf v is an L,-
valuation, therv(X) € {0, 1}.

Proof: By an obvious induction on the construction of the formMla O

Definition 3.2 A formula A of the languagé., is said to bel,-valid if we have
v(A) € MARK for eachL-valuationv.

The following is an immediate consequence of the definition.

Lemma3.3 Letvbe an arbitrary Ly-valuation and WC V. Then

(1 ifuAew
“(‘]WA)_{ 0 if v(A) ¢ W.

Corollary 3.4 Aformula A of the languageylis Ly-valid if and only if the formula
mark A is L,-valid.

Theorem 3.5 (Correctness Theorem) All formulas derivable in the calculus,lare
L,-valid.

Proof: It suffices to verify that the axioms atg,-valid and the rules of inference
preservel,-validity. The fact that modus ponens preserigsvalidity is clear. For
the rules ofmark-introduction andmark-elimination, this follows from Corollary
.4

The Ly-validity of axioms of group (P) follows from Lemnfa1] since the re-
strictions of the operations*, v*, >*, =* to the subsef0, 1} of the setV are the
usual operations of conjunction, disjunction, implication, and negation, respectively.
The Ln-validity of the other axioms can be directly verified. O

Lemma3.6 Aformula A is L,-valid if and only if the normal formulamark A)'
is Ly-valid.

Proof: Use CorollaryB.4] together with the Correctness Theormiland Lem-
mal2.13 O

Let PV(L,) denote the set of all propositional variables of the logjc We sall
presentthe sV (L) as adisjoint union ofn-element subsets &V (C). To this pur-

pose, we assume to be given, once and for all, a one-to-one correspondence between
the setPV(Ln) andthe set of alin-element subsets &V (C). So each propositional
variablep € PV(Lp) will correspond to some fixed collection npropositional vari-

ables fromPV(C). For convenience, we shall denote the elements in this collection
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as propositional letters indexed by the elements of th& safttruth values. So we
have
PVCO = [J (pulaeV),
pePV (Ln)
where{p, |« € V}N{Qq, | @ € V} = @ for p# q, and p, # pg whenever # B.
We denote byPV(A) the set of all propositional variables of a formua

Definition 3.7  The expressiorXR denotes the formula of classical logic obtained
from a normal formulaX by substitutingp,, for all occurrences of,Jo. We shall call
this classical formul&R therealizationof the formulaX.

Definition 3.8  Let v be anL,-valuation. Let us define a classical valuatinpas
follows: we setvr(py) = v(J, P), and then we extend this valuation to the 8&(C)
of all formulas of the classical logiC. We shall call this valuationr therealization
of the L,-valuationv.

Lemma3.9 Letv be an Ly,-valuation and X be a normal formula. ThegX) =
vr(XR).

Proof: By an obvious induction on the construction of the formMla O
We now define
(NV)a= A\ (JQAE A —JﬁA) .
aeV BF#a
Compare with the axioma\\,,).
Definition 3.10 A classical valuatioru will be called normal if for every p €
PV(Ln) we haveu((NV)§) = 1.

Lemma3.11 If vis an Ly-valuation, thervr is a normalC-valuation.

Proof: By Lemmad3.9 together with the Correctness Theoflérh] we have
vR(INV)R) = v((NV)p) = 1. O

Lemma3.12 For every normalC-valuation u there exists antvaluationv such
that u = vg.

Proof: Sinceu((NV) E) =1, there exists a uniquee< V such that(p,) = 1. Let-
ting nowv(p) = «, we extend (by induction) this map to dnp-valuation. Then itis
easy to see thaig = u. O

Lemma3.13 A normal formula X is k-valid if and only if for every normaC-
valuation u it is true that gxR) = 1.

Proof: Let X belL,-valid andu be a normaC-valuation. By LemmE&.12 there ex-
ists anL-valuationv such that = vg. By Lemmd3.9 we haveu(XR) = vg(XR) =
v(X) = 1. Assumeu(XR) = 1 holds for every normaC-valuationu. Then by
Lemma3.11] for every Ln-valuationv, vg is @ normalC-valuation. By Lemm{z.9]
we concludey(X) = vr(XR) = 1. O

In the rest of this paper we lgf € PV (L)) be the same distinguished propositional
variable used in our notational stipulatidas]
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Lemma3.14 Let X beanormalformula. Lgt be a finite subset of the 98V (L)
such thatPV (X) € p and @ € g. Then X is ly-valid if and only if the formula

N\ (NV)E > XR 1)
pep

is a classical tautology.
Proof: Leta normal formulaX be Ly-valid. Letu be an arbitraryC-valuation. As-

sume we have
u ( /\ (NV)E}) =1.

pegp
Let us define &-valuationw as follows. If p € g, then we sew(p,) = U(Py); in
the opposite case we set

(Do) = 1 ifa=1,
WP =1 0 ifg£1.

It is easy to see thab is a normalC-valuation. Moreover, if all propositional vari-
ables occurring in a classical formutaare contained inthe s¢p, | p € e, @ € V},
thenw(A) = u(A). Then, by Lemm&.13 we haveu(XR) = w(XR) = 1.

Let the formulal{j be aclassical tautology and be an arbitrank -valuation.
Let us setu = vg. Then, by LemmdB.11] u is a normalC-valuation. Therefore,
u(XR) = 1. Thenv(X) = u(XR) = 1. O

Corollary 3.15 (Embedding ofL,, into classical logicC) Let Abe aformula ofthe
logic Ln, PV(A) C p C PV(L,), whereg is a finite set, and e . Then A'is Ls-
valid if and only if the formula

A\ (NV)E S ((mark A)HR

pegp
is a classical tautology.
Proof: Use LemmaB.6land 3.13. O
Theorem 3.16 (Completeness Theorem)If a formula A of the languageis Ly-
valid, then A is derivable in the calculus, L

Proof: Letgp = PV(A)U{po}. Let AbeLy-valid. By CorollaryE_15hnd the Com-
pleteness Theorem for the classical loGicwve have

Fe /\(NV)§ > ((mark A)HR.
pep
Then, by Propositiol2.6] we have
Fi, [\ (NV)p D (mark A)'.
pep

If pegp,then(NV), is the axiom of the calculus,. By modus ponens, we have
kL, (mark A)'. Then, by Lemma 2.13 and timear k-elimination rule, we have |,
A. O
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Definition 3.17  For convenience, now we shall consider tRe{(C)={qm | M € w}
andPV(Ln) = {pm | me w}. Let u be aC-valuation. We seti,( pm) = u(gm), and
then we shall extend, to Ly-valuation by the usual inductive procedure. Thjs
valuationup will be called thelL,-version of theC-valuation u

Definition 3.18 The expressio? denotes the external formula of the lodig
obtained from a formulab of classical logicC by substituting JD for all occur-
rences of every atomic subformulof the formula®. This formula®®B is called
theBochvar versiorof the formulad.

Lemma3.19 Letv be aC-valuation and® be a formula of the classical logiC.
Thenv(®) = vp(PB).

Proof: By an obvious induction on the complexity &f recalling Lemm&1 O

Theorem 3.20 (Embedding of classical logi€C into L,) Let ® be a formula of
classical logicC. Thent-¢ @ if and only if -, ®5.

Proof: By PropositiofZd - @ impliest-, ®B. If -, ®F, then®d® is Ly-valid
by the Correctness Theorem for the calculys Let v be an arbitraryC-valuation.
Thenv(®) = va(PB) = 1. Thereforef-c @ follows from the Completeness Theo-
rem for classical logi€. O

4 Axiomatizing arbitrary finite-valued logics We note that, for an arbitrary finite-
valued logicL,, given by a triple(V, o, MARK) there is no known effective method

for constructing a calculus either in the Hilbert form or in the form of a calculus of
two-termed sequents, which will be complete with respetitoalidity. Admittedly,
Roussealdd and Surmalff] developed methods of axiomatizing finite-valued log-
ical calculi, but although these methods may be of theoretical value, it seems to us
that they are too complex and unintuitive.

Investigators of finite-valued logical calculi usually strive to obtain complete
(with respect toL,-validity) axiomatizations of predicate or propositional many-
valued calculi, either of the Hilbert type, or in the form of two-termed sequents. In
this way one has the opportunity to obtain deeper proof-, as well as model-theoretic
results: as a matter of fact, these methods of axiomatization are nicely linked with
natural mathematical intuition, and they also enable us to extend to finite-valued log-
ical calculi methods and results that were originally developed for classical logic.
This is the case, e.g., of the axiomatizations for logics of tukasiewicB [
Bochvar [, [24], EbbinghaudI7], Rose and Rossd#{], and others.

In our papers], [2], [[4], [E] we presented a general effective method for con-
structing a predicate calculus of “quasi-Hilbert” type, which is complete with respect
to Ly-validity, for any finite-valued logic. It appears thatin many problems arising for
finite-valued calculi, “quasi-Hilbert’-type calculi are no less convenient than Hilbert-
type calculi—the only difference being the addition of finitely many symbols in the
language. Once the language is so extended, all subsequent reasoning is carried out
in a Hilbert type calculus. We shall briefly discuss this idea for propositional calculi
only.
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Let the logicL, be given by a triple€V, o1, MARK). We extend the alphabet of
L, by introducing the following new symbols: tlexternal connectives\, v, D, —,
and{J, | « € V}. Formulas and external formulas are defined as in Section 2. Thus,
although formulas will be in the language of the lodig, external formulas will
not be in it. For the axiomatization of this extended calculus we take all the ax-
ioms from Section 2 (excluding the axiom3J), (CJ.) and CJ,)). Moreover, we
shall assume that the axion@qg) are valid for allG € o7 U {A*, V*, D*, =*}, where
A*, V¥, D* —* are usual two-valued logical operations on the sulikel} of the set
V of truth values; further, we shall maintain all conventions of Section 2 about meta-
symbols for formulas and external formulas. We denote this extended calculus by
Ln(+4). Itisconvenient to regard our calcullig(+) as the counterpart of the two-
sorted algebrdV, {0, 1}, o1, A%, v*, D%, =* {J} | « € V}). Itis possible to define
Ln(4)-valuations of formulas and external formulas in the usual way. We set

oM — (mark ®) if ®isaformula
N if ® is an external formula

It is not difficult to check that all results from Sections 2 and 3 (except Lemma
[2-7land Corollary2.8) are true for the calculuk,(+). To see this, one may proceed
as follows:

1. If necessary, substituM for mark A (see for example, 16.9][2.14][3.4][3.6]
andB.15,

2. Exclude all cases dealing with formulagX), whereX is an external formula,
since now the expressions of the typgXJ are not formulas or external for-
mulas of our calculug,(+). Of course, the relevant definitions must be cor-
respondingly adapted: for example, the fifth item in DefinifiaiZmust be
eliminated.

Repeating (with natural modifications) the arguments of Sections 2 and 3, one
can see that the following result holds.

Theorem 4.1 (Completeness Theorem)Let ® be a formula or an external formula
of the calculus k(+). Then, ), ® if and only if ® is L, (4)-valid.

Remark 4.2 A formulaA of the calculudn(+) is Ln(4)-valid if and only if Ais
Lp-valid, sinceA is written in the languagé,..

A modified method of sequents and tableaux systems with additional logical
metasymbols was recently used in Carni€lllj[and [[Z] for the axiomatization of
calculi for various finite-valued logics.

5 An algebraic approach to finite-valued logics Let L, be an arbitrary truth-
completeC-extending logic determined by the tripl¥, o, MARK).

Definition 5.1

1. For an arbitrary Boolean algeb{B, N, U, —, 0, 1) we shall use the following
standard abbreviations:

(@) a— b=—-aub,
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(b)) axsb=(@—b)Nn(b— a).
2. We define the sets

B= [xe BY | x(a) = ﬂ—x(ﬁ) foreachaev},

pa

wherex(«) denotes therth coordinate ok € BY, and

U x@):l}.

aEMARK

MARK (B) = {xe B

3. For eachm-ary operatiorG € o we define the operatio on B as follows:

(@) Forxy,...,%m e BY andG € o\ {J;g | ,Bev} we set

GO x)) @ = ( x,-(xsj)),
G(B1.--.pm)=  \ j=1

(b) Forx e BY we set

X(B) ifa=1,
) (@)= —x(B) ifa=0,
0 ifag{01}.

4. For eacta € B, we define the elemeré € BY as follows:
a ifa=1
ala)={ —a ifa=0,
0 fag{0,1}.
5. Forx € BV we shall use the following abbreviation:

[INVILx= ) (X(@) < [ =X(B)).

acV BF#a

Proposition 5.2  Let(B,N, U, —, 0, 1) be a Boolean algebra. Then for anyexBY
the following three conditions are equivalent:

1. xe B,

2. U x(e) =1, and xa) N x(B) = Ofor o # B.
aecV

3. [[NV]]x=1

Proof: The fact that (1) is equivalent to (3) follows from the observation #hat
b= 1if and only ifa < b. Let us prove that (1) and (2) are equivalent. Let (1) be
true. Then

Ux@ = x@u ( U X(ﬂ))

aeV a#p

= ({Jﬂ@)u(Ux@»:L

pa pa
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Moreover, ifa # B, then

X(@) N X(B) = ( N —X(ﬂ)) Nx(p) =0.
B#a

Now let (2) be true. & # B, thenx(a) N x(B) = 0impliesx(a) < —x(B). Therefore,

x(@) < (1) =X(B).

pta
On the other hand,
U X(a) =1
aeV
implies
[ —X(B) < X(@).
B#a
In conclusionx € B. 0

Corollary 5.3 Ifa e B,thena e B.
Remark 54 1 e MARK(B) and0 ¢ MARK (B).

Proposition 55 The setB is closed under the operatior{é | G e o}.

Proof: LetG € o\{J, | « € V} be an arbitraryn-ary operation andy, ..., Xm € B.
Let A be a formulag(py, ..., pm) of the calculud.,, where the propositional con-
nectiveg corresponds to the operati®) andp, ..., pm are different propositional
variables ofL, (each of them not coinciding witpyp). Let X be a formula (NV) a)'
(see Definitiol2.13. The normal formulaX is L,-derivable, by the Axioms of Def-
inition[2.4] And therefore, by Theore®.5] Lemma3.14and the Completeness The-
orem for classical logic, the formula

m
ANV)F > XR
j=0

is derivable in the classical propositional calculus. Therefore, for every homomor-
phismh: AF(C) — (B,N, U, —, —) the image of this formula is equal to 1. Re-
calling our stipulation made above, we shall consider a homomorphisach that
h(pj,) = Xj(x) for j=1,...,m Letxg = 1. Then by Corollarfe.3land Proposi-

tionE.2] we have
h (/\(Nw%) = (INVIIx) =1.
j=0

j=0

Therefore, [NVl g, ., = h(X®) = 1. By Propositiorb.2] this means that
G(X4, ..., %m) € B. The setBis closed under the operatio{f% | B e V}, by Corol-
lary 53] since Jyx = x(B) for x € B. a
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Definition 5.6  Wecall the algebréé, {G |G e a}) the L,-versionof the Boolean
algebra(B, N, U, —, 0, 1), and denote it byB(L,).

Lemmab5.7

1. The ly-version BL,) of every Boolean algebra B contains an isomorphic
copy of the algebraV, o) of the logic Ly;

2. Ifthe Boolean algebra Bconsists of the two elements 0 and 1, then there exists
an isomorphism from the algebt®, o) onto the algebra B(L,,) such that the
setMARK (By) is the image of the setaRK.

Proof: We define a ¢)-map fromV to B as follows: ifa € V, then we set

|1 ifp=aq,
°‘+(’3)_{0 if 8 a.

By Propositiorlz.22, we have{p* | e V} € B. Letting x € B and Rangx) €
{0, 1}, we also have
U x@ =1,

aeV

whence there exists ar such thatx(ag) = 1. If 8 # «ag, then (again by Propo-
sition[52]12) we havex(8) = 0. So,x = «f. This shows thafp"™ | g V} =

{xe B | Rangx) < {0, 1}}.

To see that the sgg* | B € V} is closed under the operation{wé |Ge cr}, it

suffices to prove that the results of these operations on the eIerhifhlsﬂ € V}
are {0, 1}-valued functions. But this follows from the definitions of the operations

{é |G e a}, and the fact that the s¢®, 1} is the support of a two-element subal-

gebra of the Boolean algebi Thus, the se{,BJr | B € V} is the support of some
subalgebra of the algebB(L,).

It is clear that the-€)-map is a one-to-one correspondence between the/sets
and{,B+ | B e V}. Now let us prove that theK)-map is a homomorphism of algebras
of signatures. Let G(By, .. .., fm) = a, whereG € o\ {J; | @ € V}. We shall show
thatG(B7, ..., ) = . For this it suffices to prove th& (81, ..., ) (a) = 1.

In fact, by definition, we have

GBT. .= | ( ﬂ,*((%’))
j=1

G(81,--, dm)=«

SinceG(By, ..., fm) =@ andg (B) =1 (fori =1,...,m), wehave(G(57, ...,
) (@) =1 .

Assume that}X8) = 1. Theng = « and, therefore), (87)(1) = Bt (a) = 1.
Thus,J,(87) = 1*. Now assume thatid) = 0. Thena # g and, by definition,
3 (B (0) = =Bt (@) = —0=1. Thus,J, (") = 0.

So we have proved that the-Y-map is an isomorphism from the algel§k4 o)
onto the subalgebréa{ﬂ+ | B e V} , {é |G e a}> of the algebraB(Ly). Moreover,
this subalgebra is thie,-version of the Boolean subalgebra of the Boolean algB8bra
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that is isomorphic td,. Thus,(V, o) is isomorphic toB,(Ln). Using the definition
of the seMARK (B), it is easy to see that € MARK if and only if a™ € MARK(By).
O

Lemmab5.8 Let h: AF(L,) — B(L,) be a homomorphism. If a formula &
AF(Ly) is Ly-valid, then HA) € MARK (B).
Proof: Let AbeL,-valid. AssumePV(A) U {pg} C . By Corollary3.15 the for-
mula
A\ (NV)F D ((mark A)HR )
pep

is a classical tautology.

We sethr(py) = h(p)(«), wherea € V, p € PV(L,) and p, € PV(C) and
then we extend this map to a homomorphisgof the algebraF(C) to the Boolean
algebraB. Then the homomorphisimg has the value 1 on the formul@( Moreover,

hR</\<NV>§) = (INVIInp =1,

peg peg
sinceh(p) € B for p € ». Therefore,
hr(((mark A))F) = 1. (3)

By our notational stipulations in Section 2, together with Definifioh2]2 and Defi-
nition[3.7] we have

hr((mark AYHYF) = | ] he(((GAHF). 4)

By induction on the logical depth of the formuky it follows that
hr ((GAHF) = h(A) (). (5)

hr. The inductive step follows from Definitiof512]B.7]and5113.
Identities B), @), and [E) imply

U hr(A)(a) = 1.

odEMARK
Thus,h(A) € MARK(B). O

Theorem 5.9 Aformula A of the languagelis derivable in the calculuslif and
only if for every Boolean algebra B and every homomorphistAR(L,) — B(Ly)
it is the case that fA) € MARK (B).

Proof: Using Theorem.5][B.16 and Lemmd.7, one argues as in the proof of
Lemmd=38 O

Definition 5.10 We call the algebragM, {F° | F € ¢}), whereF° is an operation
with the same number of argumentsksan Ly-algebraif for any a, b, c € M and
a, B € V the following conditions hold:
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1. Axioms of exterior elements (Ex):
(EX1) Fave Ja=Ja,
(EX2) Jav® Zb=Jbv Ja,
(EX3) (Jave J%b) vege=Jave (Jjgb veJe),
(EX4) Fan® (J%b vegeo) = (Lan’ ng) Ve (Fan® o),
(EX5) ~ ~"Fa=Ja,
(EX6) —°(Fa Vv Jb) = =*JaA® =" Jb,
(EX7) Jave (bA®="Fb) =Ja,
(EX8) Ja>® Jb=—"Jav® b,

2. Axioms ofn-valuednessr{-Val):

(n-Val,)
Ja= /\O —°Jza,
pa
(for eacha € V), where
/\o { Jbve =°Jb if l =g,
ai = [e] [e] 1 1 1
o) @, A oA ay) ) =i, i

3. Connective Axioms (Cn):
(Cn-F)

2

LF@,....,ad=\/ A%

F(B1,...0m=a j=1

whereF € o\ {J; | « € V} and

\/0 { J‘ib/\O —‘OJib if |l =,
a = ° o . . .
M @, vo...(...veay)...) if Il ={i, ... i}.
Cnk) J; Jpa=—"Ja,
Cny) JJa=Ja,
(Cnl) Jya=Jan®—"Jafora¢{0,1}.
4. Axioms of closure (C1):
(C17) Jax® Jb=J; (J,ax=" Jb), wherex® denotes one of the oper-
ationsA®, v° or O°,
(C1-) —° Lb=J("%b),
5. Quasi-identity (QI):
&V(J;a =Jb)=a=h.
(1S

Lemmab5.11 Letk, X =Y. Then for every Boolean algebra B and every homo-
morphism h AF(Ln) — B(Lp) itis true that (X)) = h(Y).
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Proof: Lett_, X =Y. Then, by Propositiof2.6l and axioms CJ), (CJ), and
(CJ,) of the calculusLy, we havel, J, X = J,Y for eacha € V. Therefore, by
Lemma2.13and Propositiofe.6]+, (J,X)' = (J,Y)'. Then, by Theorer& Sland
Lemmd3.14] for eache € V, the formula

A NVT D ((LX)HR = (@&HP) (6)

pegp
will be a classical tautology, wheKgg} U PV (X) UPV(Y) C p. If h: AF(L,) —
B(Ly) is a homomorphism, then (in a manner following that employed in the proof
of Lemmdb5.8) it is possible to define the homomorphi$m: AF(C) — B of these
algebras in such way that the following conditions hold:

hR</\<NV>§> =1, (7)
pep
hr(((JX)H®) = h(X) (@), 8

hr(((JY)H®) = h(Y)(a). 9)

From identity [7) and the fact that the value of the homomorphisgon the formula
(6) isequal to 1, it follows that

hr(((TX)HR = (YHT =1,
for all « € V. And by identities@)] and [}, it follows thath(X) = h(Y). O

Theorem 5.12 For any Boolean algebra B itsj-version BL,) is an Ly,-algebra.

Proof: Leta,aj,...,am b€ B and P, P1, ..., Pm: g € PV (L), where all these
propositional variables are different. We §€p) = a, h(q) = b, h(p;) = & fori =
1,...,m, and extend this map to an arbitrary homomorphisnAF(L,) — B(Ly)
of these algebras.

By Propositioi2.6]we have-|, ——J, p = J, p. Then, by Lemmf.11] we have
h(=—J, p) = h(J, p) and, therefore>~J,a = J,a. This means that the axiom (EX5)
of Ly-algebra holds. The other axioms of the group (Ex) hold for analagous reasons.
For the cases of the axiom€if), (CI), (n-Val,) we reed to appeal to the axioms
(Con), CJ,), and(NV,) of the calculud., respectively.

Let us now show that the quasi-identity (QI) is true in the algabih,). Let
J,a=J,banda # b. In order to obtain a contradiction, suppose that) # b(«)
for somex € V. Then, by Definitiode. 113, we have

Q) (1) = a(@) # b(@) = b)),
acontradiction. O

Definition 5.13 Let M = (M, {F° | F € 0}) be anL,-algebra. We call the set
E(M) = {Jalae M, a € V} the set ofexternal elementsf the L,-algebrad/.
Moreover, we define the set

MARK[M] = [ae M

\/' Ja=Jav® —Ja

aEMARK
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Theorem 5.14 (First Representation Theorem)Let M = (M, {F° | F € o}) be an
L-algebra. Then there exists a monomorphism gflgebras g M — B(L,) for
some Boolean algebra B.

Proof: By axioms C1), the setE(M) is closed under the operations, v°, >°,
and—°. By axioms (Ex), the algebr8 = (E(M), A°, v°, =°) is a Boolean alge-
bra anda >° b = =°a v° b for everya, b € E(M) (see for example Huntington’s
theorem in Chapter 2 of Birkhofg]). We define the mag : M — (E(M))V by
the ruleg(a) (@) = J,a, for everya € V anda € M. By the axiomsg-Val), we have
g(a) € (E(M)) (see Definitiof5.1). By the quasi-identity (QI), the mapis an injec-
tion. Moreover, by the axiom<Cf), this mapg is a homomorphism off ,-algebras.
O

Lemma5.15 Let B(Ly) = (B, {F | F € ¢}) is the Ly,-version of a Boolean algebra
B. ThenMARK (B) = MARK[B] (see DefinitionE.TlandE.13.

Proof: Itis easy to see th&(B) = {4 | a € B}, since forx € Bandp € V we have
Jpx = x(B) anda = J,& (see Definitiof.1).

We s¢ 4 < bifand onlyifa A b= 4. Then(E(B), <) is a Boolean algebra (see
the proof of Theoref®&.14). Let us show that the map: B — E(B), defined by the
rule f(a) = &for all a € B, is anisomorphism of Boolean algebras. Obviously, the
map f is a bijection. Thus, it suffices to show thatpreserves the partial orders
and<« of our Boolean algebras.

Leta < bfor a, b € B. Let us consider the following identity:

@AbW = J @@ nb)).

an*f=1

Itis clearthatifx & {0, 1} or B & {0, 1}, thenl(a) N B(ﬁ) = 0. Therefore, a summand
of the Boolean sum on the right hand side of the above equality is not equal to O if
and only ifa, 8 € {0, 1}. Butan*8 = 1 and, thereforey = 8 = 1. Thus,

(AAD)(1) =al)Nnb(l)=anb=a.

ThereforeA A b = &; stated otherwise, <« b. Moreover, itis clear thai < bimplies

a < bfor everya, b € B. Let us define the malp: E(B) — B by the ruleh(J,x) =
h(x(&)) = X(a), for all « € V andx € B. This maph is the inverse map for the
isomorphismf and, thereforeh is also an isomorphism of Boolean algebras. Thus,
for everyx € B, itistrue that

\/ JuX =XV SJx

aEMARK

U X(a0) = 1.

aEMARK

if and only if

SoMARK[B] = MARK(B). O

Corollary 5.16 The algebra(V, o) of the logic L, is an L,-algebra such that
MARK[V] = MARK.
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Proof: From Lemmd.712 together with Theorefa.1dand Lemmds.15] O

Lemma5.17 LetM = (M, {F° | F € o}) be an L,-algebra and h: AF(L,) —
M be a homomorphism. If A is anvalid formula of the logic k, then h(A) ¢
MARK[M].

Proof: In fact, the algebrd = (E(M), A°, v°, =°) is a Boolean algebra, and the
mapg: M — E(M), defined for alla € M, « € V by the ruleg(a)(a) = Ja, is
amonomorphism from the algebf to the algebraB(Ly) (see the proof of Theo-
rem5.14). Moreover, it is clear thaa € MARK[M] if and only ifg(a) € MARK (B).
Let us identify the algebr@/ with its imageg() in the algebraB(Ly). Thenh
will be the homomorphism from the algeb&& (L) to the algebrdB(L,,). Therefore,
our lemma follows from Lemmds.gand5.15] O

Theorem 5.18 The formula A of the logic lis L,-derivable if and only if for every
Ly-algebraM = (M, {F° | F € o}) and every homomorphism:iAF (L) — M it
is true that (A) € MARK[M].

Proof: Similar to the proof of Theorefad O

Definition 5.19 Let D' be a Cartesian power of the algelba= (D, t), andK be
any set. Iff : K — D' is a map, then we shall denote tfy wherei € I, the map
defined by the rulef;(a) = f(a)(i), for all a € K. Asusual, we denote b, the
two-element Boolean algebra.

Theorem 5.20 (Second Representation Theoremievery Ly-algebrais isomorphi-
cally embeddable into a Cartesian power of the algeffac) of the logic L.

Proof: Let M = (M, {F° | F € o}) be anlL,-algebra. By Lemm&.7]2, it is pos-
sible to identify the algebréV, o) with the algebraB,(L,,). Now by Theorents.14]
there exist a Boolean algebBand a monomorphism af,-algebra$ : M — B(Lp).
And by the Birkhoff-Stone Theorem (see Birkhd®ll[Chapter 8, Section 8), for some
set| there exists a monomorphisg: B — Bé. Let us prove that there exists a
monomorphisnG : M — (By(Ln))'. In order to defineG , it suffices to define its
projectionsG; for all i € I. (Note that for evenya € M, G;(a) is a map fromV to
{0, 1}.) We defineG; by the following rule:

Gi(a)(a) = gi(h(@)(a)) (10)
fora € Vandae M.

Now let us show tha; (a) € B, forall a e M. It suffices to prove the following
identities:

UGc@w@ = 1 (11)
aeV
U G@@nG@®) = o (12)

BFaeV
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Sinceh(M) C B, we have

UJh@@ = 1eB, (13)
aeV
U (h@@nh@@) = 0eB. (14)
BacV
Therefore, we have the two identities
Jah@@) = 1. (15)
aeV
U g (h@@nh@@) = o (16)
BaecV

In light of (L0}, the identities[{5) and [L6) imply (L1} and [L2). Now let us show that
the mapG; : M — B,(Ly) is ahomomorphism df ,-algebras. In order to prove that

G (F°(a, ..., a)) = F(G(a), ..., Gi(a)),

whereF € o\ {J;; | o € V} andap,...,a € M, it suffices to prove that for every
a € V itis true that
Gi(F°(a,...,a)) (@) = F(Gi(a), ..., Gi(@))(a). (17)

Let us consider the following chain of identities:

G (F@....a)@ = ghF@.....a) @)
= g (Fh@,....h@) @)

— gi< U <ﬂh(a,-)(5,-))>
F(B1,....8r)=a \ j=1
= U (ﬂgi(maj)(ﬂj)))

F(B1,....B)=a \ j=1

= U (ﬂ Gi(a,-xﬁ,-))

F(B1,....5r)=a \ j=1
= F(Gi(a),...,Gi(a))(a).

The first and the fifth identities are true 0], the third by Definitiode.1]3, and the
sixth by Definitiorf5.1]3. The proof that

(GEGa) @ = (36@) @ (18)

is true for everyx € V anda € M, issimilar to the proof ofl{7). So we have proved
thatG; is a homomorphism for evelye 1.
Let us define the ma@ : M — (By)! by the ruleG(a) (i) = Gj(a), foralla e

M. ThenG: M — (By(Ly))' is a homomorphism of ,-algebras. Let us show that
Gisamonomorphism. Indeed, etb € M anda # b. Thenh(a) # h(b). Therefore,
there existsx € V such thath(a)(«) # h(b)(«). Theng(h(a)(«)) # g(h(b)(a)).
Thus there is an e | such thaig; (h(a)(«)) # gi(h(b)(a)). By (10}, it follows that
Gi(a)(a) # Gj(b)(x). Thus,G;(a) # G;j(b), whenceG(a) # G(b). O
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Corollary 5.21  Every Ly-algebra is isomorphic to a subdirect product of subalge-
bras of the algebrdV, o) of the logic L.

Corollary 5.22 Ifan Ly-algebraM is subdirectly irreducible (i.e., it cannot be de-
composed into a proper product in the quasi-variety of afdlgebras) then\ is
isomorphic to a subalgebra @V, o).
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