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On Finite-Valued Propositional
Logical Calculi

O. ANSHAKOV and S. RYCHKOV

Abstract In this paper we describe, in a purely algebraic language, truth-
complete finite-valued propositional logical calculi extending the classical
Boolean calculus. We also give a new proof of the Completeness Theorem for
such calculi. We investigate the quasi-varieties of algebras playing an analo-
gous role in the theory of these finite-valued logics to the role played by the
variety of Boolean algebras in classical logic.

1 Introduction Assume that ann-valued logicLn, n > 1, is given by means of
truth tables. We shall denote the set of truth values byV = {0,1/(n − 1), . . . , (n −
2)/(n − 1),1}. AssumeMARK ⊆ V, where 1∈ MARK and 0 �∈ MARK. We shall
call MARK the collection ofdesignated (marked) truth values. Let the algebra of the
logic Ln be〈V, σ1〉, where the signatureσ1 consists of operations onV. The logicLn

is completely determined by the triple〈V, σ1, MARK 〉.
Small Greek lettersα, β, . . . , shall be used to denote arbitrary truth values. We

say that the logicLn is truth-completeiff all J-operators{J∗
α | α ∈ V} are functionally

expressible in the signatureσ1, where (see Rosser [48])

J∗
αβ =

{
1 if β = α,

0 if β �= α.

Intuitively, the expressibility in the signatureσ1 of all J-operators{J∗
α | α ∈ V} means

that, for everyα ∈ V, it ispossible to say in the language of the logicLn that a propo-
sition A assumes the given truth valueα.

A logic Ln is said to beC-extendingiff in Ln one can functionally express the
binary operations∧∗,∨∗,⊃∗, and the unary operation¬∗ (whose restrictions to the
subset{0,1} of V coincide with the classical logical operations of conjunction, dis-
junction, implication, and negation). Note thatLn coincides with classical logicC
over the set{0,1}.
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An algebraV = 〈V,∧∗,∨∗〉 is called aquasi-latticeiff for all α, β, γ ∈ V the
following conditions are satisfied (see Płonka [43]):

1. α ∧∗ α = α ∨∗ α = α,

2. α ∧∗ β = β ∧∗ α, andα ∨∗ β = β ∨∗ α,

3. α ∧∗ (β ∧∗ γ) = (α ∧∗ β) ∧∗ γ andα ∨∗ (β ∨∗ γ) = (α ∨∗ β) ∨∗ γ.

We say that a logic iswell-quantifiediff the corresponding algebra〈V,∧∗,∨∗〉 is a
quasi-lattice. Note that the quantifiers∀ and∃ can be defined in a logic as generalized
conjunction and disjunction iff the logic is well-quantified.

Since every lattice is a quasi-lattice, the class of truth-completeC-extending
well-quantified logics contains many well-known nonclassical logics whose conjunc-
tion and disjunction induce a lattice structure, e.g., all the finite-valued logics of
Łukasiewicz [35], the functionally complete logics of Post [44], the class of logics
Tn+1

ε0,1,1
of Yablonskii [57], and the logics corresponding to the algebras of Moisil [36].

In our opinion, it is even more interesting to consider examples of truth-complete
C-extending logics such that the algebra〈V,∧∗,∨∗〉 is a quasi-lattice but not a lattice:
a well known example is Bochvar’s three-valued logicB3 [9]. Other examples in-
clude the three-valued logic of Ebbinghaus [17], the logicD of Segerberg [53], which
is a functional extension of Hallden’s logic [31], and the finite-valued generalization
of Bochvar’s logic introduced by Grigolia and Finn [27]. Of related interest are also
the three-valued logic of Hoogewijs [32], certain conditional logics (see Guzman [28]
and Guzman and Squier [29]), and many of the significance logics considered by God-
dard and Routley [24].

In Finn et al. [21], many-valued logics are classified in terms of the informal se-
mantics arising from the algebraic properties of their logical operations: thus, a logic
is said to beof the uncertainty typeif the truth values different fromtrue andfalse
stand for degrees of uncertainty (fuzziness); alternatively, if these truth values stand
for “defects of sense,” then the resulting logics are calledsignificance logics. Both
classes are examples of logics ofpartially defined predicates. There are certain sim-
ilarities between some notions from [21] and our definitions of truth-complete,C-
extending, and well-quantified logics.

Among the papers containing results related to ours, first of all we should men-
tion Surma [56] and Rousseau [49]. In these papers the authors give algorithms for
axiomatizing every finite-valued logic; using these axioms one can construct calculi
of n-termed sequents and analytic tableaux in the style of Smullyan [54]. Hilbert-type
calculi are not considered in [49] or [56].

The main result of our joint papers [2] and [5] is the specification of a gen-
eral, effective method for constructing Hilbert-type first-order calculi for any truth-
completeC-extending well-quantified logic. (Note that the condition of being well-
quantified is not necessary for constructing propositional calculi.) Further, in the final
sections of [2] and [5], we describe a general effective method to construct so-called
“quasi-Hilbert”-type first-order calculi for arbitrary finite-valued logics. A general
computational scheme for two-termed sequents in finite-valued logics is given in
our papers [3] and [4]. In [4] one can find proofs of the analogues of some well-
known model-theoretic results for arbitrary finite-valued calculi. (Examples include
the Łós ultraproduct theorem, Maltsev’s compactness theorem, and others.) In this
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connection, at least the following papers should also be mentioned: [2], [3], [4], [5],
D’Ottaviano [40], [41], and [42], along with the abstracts [6] and [52].

Let us now mention the papers that were the sources of some of our ideas
and methods. These papers are mainly concerned with logics where the algebra
〈V,∧∗,∨∗〉 is a quasi-lattice but not a lattice (logics of significance, in the terminol-
ogy of [21]). Bochvar’s logicB3 from [9] is the first example. This logic and its
corresponding class of algebras were axiomatized by Finn [19], [20], Bochvar and
Finn [10]. Grigolia and Finn [22], [27] considered highly nontrivial logics and alge-
bras yielding finite-valued generalizations ofB3. The techniques developed by these
two authors found subsequent applications in more general contexts. In particular,
our formulations of logical and algebraic axioms are generalizations and simplifica-
tions of those in [22] and [27].

The main results of this paper are as follows: we introduce a general method of con-
structing Hilbert-type propositional calculi for all truth-completeC-extending logics.
Wesimilarly construct “quasi-Hilbert”-type propositional calculi for all finite-valued
logics. We prove the completeness of all these calculi. We study the relationship be-
tween classical validity and validity in truth-completeC-extending logics. We de-
scribe the corresponding algebras of this class of logics and prove two representa-
tion theorems. Our proof of the completeness theorem is new: we constructrealiza-
tionsfor formulas and valuations, following an idea of Skvortsov (see [7]). The same
method is used in the present paper to obtain various algebraic results.

Although all papers mentioned up to now are mainly concerned with finite-
valued logics, let us also briefly mention some papers dealing with infinite-valued
logics (and their corresponding algebras) having some relationship with the present
paper. For example, in Rousseau [50], [51], and Girard [23], intuitionistic versions of
finite-valued logics are considered. Such logics were also considered in Anshakov’s
dissertation [1]. Unfortunately, some of Anshakov’s papers about intuitionistic ver-
sions of finite-valued logics are quite inaccessible for western readers. Also the so-
called J-defined logics from [7] are closely related to the logics considered in the
present paper. J-defined logics can be infinite-valued, as well as finite-valued. It is
not hard to prove that every truth-completeC-extending logic is J-defined.

Unless otherwise specified, by alogic Ln we shall mean a truth-complete and
C-extending logic given by a triple〈V, σ, MARK 〉, where the signature

σ = σ1 ∪ {
J∗
α | α ∈ V

} ∪ {∧∗,∨∗,⊃∗,¬∗}
= 〈{

J∗
α | α ∈ V

}
,∧∗,∨∗,⊃∗,¬∗, F1, . . . , Fk

〉
is functionally equivalent to the basic signatureσ1. In Section 4 we shall briefly dis-
cuss (along the lines of [2] and [5]) the possibility of extending our results to other
classes of finite-valued logics. In Section 5 we shall describeLn-derivable formulas
of a truth-completeC-extending finite-valued propositional calculusLn in an alge-
braic language.

Different algebraic approaches to various classes of many-valued logics are de-
veloped in several papers (notably Chang [13] and[14], Rasiowa [45], Cleave [16],
Rosenberg [47], Cignoli [15], Grigolia [25], [26] and [27], Mundici [37], [38],
and [39], Guzman and Squire [29], Komori [33] and [34], Rose and Rosser [46],
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Hähnle [30], Suchon [55], and Figallo [18]).

2 Syntax With the operations
{
J∗
α | α ∈ V

}
, ∧∗, ∨∗, ⊃∗, ¬∗, andF(m1)

1 , . . . , F(mk)

k
we associate the formal symbols (calledpropositional connectives) {Jα | α ∈ V}, ∧,
∨, ⊃, ¬ and f (m1)

1 , . . . , f (mk)

k , with the corresponding number of arguments.

Definition 2.1 (Alphabet and Formulas) We have:

1. A countable set of propositional variables,
2. Propositional connectives,
3. Parentheses ) and ( .

Formulas are defined in the usual way by induction. Propositional variables will be
considered as atomic formulas.

We shall adopt the usual conventions on the omission of parentheses. All connec-
tives inσ\ {∧,∨,⊃} have the same strength, and they are stronger than∧,∨,⊃. The
connectives∧ and∨ are stronger than⊃.

Definition 2.2 External formulasare inductively defined as follows:

1. For eachα ∈ V, if A is a formula, then Jα A is an external formula.
2. If X andY are external formulas, then so are (X ∧ Y), (X ∨ Y), (X ⊃ Y), (¬X.)

In what follows, the lettersp, q, r, . . . shall stand for arbitrary atomic formulas, the
lettersA, B, C, . . . for formulas, and the lettersX, Y, Z, . . . for external formulas.

Notation 2.3 Throughout this paper,p0 shall denote a fixed propositional variable.
Wealso use the following notations and abbreviations:

1. T = (J1 p0 ⊃ J1 p0) andF = (¬T),
2. A ≡ B = (A ⊃ B) ∧ (B ⊃ A),

3. The abbreviations
∧
i∈I

Xi and
∨
i∈I

Xi are interpreted, respectively, asX1 ∧ (X2 ∧
. . . ∧ (Xk−1 ∧ Xk) . . .)) andX1 ∨ (X2 ∨ . . . ∨ (Xk−1 ∨ Xk) . . .)), under the as-
sumption thatI = {1, . . . , k}. If I = ∅, thenT is identified with the formula∧
i∈I

Xi , andF with the formula
∨
i∈I

Xi . As for the binary operations∧∗ and∨∗,

the expressions
∧∗
β∈I

β and
∨∗
β∈I

β are handled in the same way, with
∧∗
β∈I

β = 1

and
∨∗
β∈I

β = 0 for I = ∅.

4. If W ⊆ V, then we set JW A = ∨
β∈W

Jβ A. Let mark A = JMARK A.

Definition 2.4 Weadopt the followingAxiom Schemes:

Propositional axioms (P)

(P1) X ⊃ (Y ⊃ X),

(P2) (X ⊃ (Y ⊃ Z)) ⊃ ((X ⊃ Y) ⊃ (X ⊃ Z)),

(P3a) X ⊃ (Y ⊃ X ∧ Y),

(P3b) X ∧ Y ⊃ X,

(P3c) X ∧ Y ⊃ Y,
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(P4a) (X ⊃ Z) ⊃ ((Y ⊃ Z) ⊃ (X ∨ Y ⊃ Z)),

(P4b) X ⊃ X ∨ Y,

(P4c) Y ⊃ X ∨ Y,

(P5) (X ⊃ Y) ⊃ ((X ⊃ ¬Y) ⊃ ¬X),

(P6) ¬¬X ⊃ X.

Connection Axioms (Con)

(Cg) Jαg(A1, . . . , Ar ) ≡ ∨
G(β1,...,βr )=α

(
r∧

i=1
Jβi Ai

)
,

whereG ∈ σ\{
J∗
α | α ∈ V

}
and the propositional connectiveg corres-

ponds to the operationG,
(CJ0) J0X ≡ ¬X,

(CJ1) J1X ≡ X,

(CJα) Jα X ⊃ F for α �∈ {0,1}.

Axioms of n-valuedness
For eachα ∈ V:

(NVα) Jα A ≡ ∧
β �=α

¬Jβ A.

Definition 2.5 Weuse the followinginference rules:

1. modus ponens:
Y, X ⊃ Y

Y

2. mark-introduction:
A

mark A

3. mark-elimination:
mark A

A

As usual, a formulaA is said to bederivablefrom a collection of formulas� in the
calculusLn if it is derivable from the axioms and� by the rules of inference (notation:
��Ln A, or simply� � A.)

LetEF(Ln) be the set of all external formulas of the calculusLn. LetPV(C) bethe set
of all propositional variables of the classical propositional calculusC, and letAF(C)
be the algebra of formulas of the logicC, that is, the absolutely free algebra of signa-
ture{∧,∨,⊃,¬} generated byPV(C). We also denote byAF(C) the support of this
algebra.

Proposition 2.6 Let S: 〈AF(C),∧,∨,⊃,¬〉 −→ 〈EF(Ln),∧,∨,⊃,¬〉 be a ho-
momorphism. By abuse of notation, let S: PV(C) −→ EF(Ln) also denote the
restriction of S toPV(C). If � ∈ AF(C) and � ⊆ AF(C), then��C� implies
S(�)�Ln S(�), where S(�) = {S(�) | � ∈ �} .

Proof: An obvious induction on the length of the derivation of the formula� in the
classical propositional calculusC. �
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It follows from the above proposition that we can use well-known derived rules of
inference of the classical logicC for constructing derivations in the calculusLn, pro-
vided that we restrict the area of their application to the setEF(Ln) of external for-
mulas.

Lemma 2.7 If 1 ∈ W ⊆ V and0 �∈ W,then�LnJWX ⊃ X and�Ln X ⊃ JWX.

Proof: (a) Let us prove that� X ⊃ JWX. By axiom (CJ1) and Proposition2.6, we
have� X ⊃ J1X. Moreover,� J1X ⊃ JWX because 1∈ W. Then we have� X ⊃
JWX.

(b) Let us prove� JWX ⊃ X. By axiom (CJ1) and Proposition2.6, we have
� J1X ⊃ X. If 1 �= α ∈ W then by axiom (CJα) we have� Jα X ⊃ F becauseα �= 0.
Again by Proposition2.6we get� (Jα X ⊃ F) ⊃ (Jα X ⊃ X). Then, by modus ponens,
� Jα X ⊃ X for 1 �= α ∈ W. Sofor all α ∈ W we have� Jα X ⊃ X, which implies
� JWX ⊃ X. �

Corollary 2.8 �Ln X ≡ mark X.

Theorem 2.9 (Deduction Theorem) Let� be a collection of formulas, and suppose
A and B to be formulas of Ln. Then�, A�Ln B implies��Ln mark A ⊃ mark B.

Proof: By induction on the length of the derivation of the formulaB, as in classical
logic. If necessary, use Proposition2.6and the above corollary. �

Corollary 2.10 If X and Y are external formulas, then�, X�LnY implies� �Ln

X ⊃ Y.

Definition 2.11 We definenormalformulas by the following inductive procedure:

1. Forα ∈ V, if A is an atomic formula, then Jα A is a normal formula.
2. If X andY are normal formulas, then so are the expressions(X ∧ Y), (X ∨

Y), (X ⊃ Y), and(¬X).

Definition 2.12 By induction we define theI operator, transforming external for-
mulas into normal formulas, as follows.

1. If A is an atomic formula, then (Jα A)I = Jα A.

2. (X ∗ Y)I = XI ∗ YI , where∗ here denotes one of the connectives,∨,∧,⊃.
3. (¬X)I = ¬(XI ).

4. (Jα f (A1, . . . , Ar ))
I = ∨

F(β1,...,βr )=α

(
r∧

j=1
(Jβ j Aj )

I

)
, where the connectivef

corresponds to the operationF ∈ σ\{
J∗
α | α ∈ V

}
,

5.

(JαJβ A)I =



(Jβ A)I if α = 1,

¬(Jβ A)I if α = 0,

F if α �∈ {0,1} .

Lemma 2.13 �Ln X ≡ XI .
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Proof: By induction on the logical depth of the external formulaX. Use Proposi-
tion 2.6and the axioms of connection (Con). �

Corollary 2.14 �Ln A if and only if �Ln (mark A)I .

3 Semantics Recall thatAF(Ln) denotes the algebra of formulas of our logicLn

(that is, the absolutely free algebra of signatureσ). Homomorphisms from the algebra
of formulasAF(Ln) into the algebra〈V, σ〉 will be calledLn-valuations.

Lemma 3.1 Let X be an external formula of the calculus Ln. If v is an Ln-
valuation, thenv(X) ∈ {0,1}.
Proof: By an obvious induction on the construction of the formulaX. �

Definition 3.2 A formula A of the languageLn is said to beLn-valid if we have
v(A) ∈ MARK for eachLn-valuationv.

The following is an immediate consequence of the definition.

Lemma 3.3 Let v be an arbitrary Ln-valuation and W⊆ V. Then

v(JW A) =
{

1 if v(A) ∈ W
0 if v(A) �∈ W.

Corollary 3.4 A formula A of the language Ln is Ln-valid if and only if the formula
mark A is Ln-valid.

Theorem 3.5 (Correctness Theorem) All formulas derivable in the calculus Ln are
Ln-valid.

Proof: It suffices to verify that the axioms areLn-valid and the rules of inference
preserveLn-validity. The fact that modus ponens preservesLn-validity is clear. For
the rules ofmark-introduction andmark-elimination, this follows from Corollary
3.4.

The Ln-validity of axioms of group (P) follows from Lemma3.1, since the re-
strictions of the operations∧∗,∨∗,⊃∗,¬∗ to the subset{0,1} of the setV are the
usual operations of conjunction, disjunction, implication, and negation, respectively.
The Ln-validity of the other axioms can be directly verified. �

Lemma 3.6 A formula A is Ln-valid if and only if the normal formula(markA)I

is Ln-valid.

Proof: Use Corollary3.4, together with the Correctness Theorem3.5 and Lem-
ma2.13. �
Let PV(Ln) denote the set of all propositional variables of the logicLn. We shall
present the setPV(Ln) as adisjoint union ofn-element subsets ofPV(C). To this pur-
pose, we assume to be given, once and for all, a one-to-one correspondence between
the setPV(Ln) andthe set of alln-element subsets ofPV(C). So each propositional
variablep ∈ PV(Ln) will correspond to some fixed collection ofn propositional vari-
ables fromPV(C). For convenience, we shall denote the elements in this collection
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as propositional letters indexed by the elements of the setV of truth values. So we
have

PV(C) =
⋃

p∈PV(Ln)

{pα | α ∈ V} ,

where{pα | α ∈ V} ∩ {qα | α ∈ V} = ∅ for p �= q, and pα �= pβ wheneverα �= β.

Wedenote byPV(A) the set of all propositional variables of a formulaA.

Definition 3.7 The expressionXR denotes the formula of classical logic obtained
from a normal formulaX by substitutingpα for all occurrences of Jα p. Weshall call
this classical formulaXR therealizationof the formulaX.

Definition 3.8 Let v be anLn-valuation. Let us define a classical valuationvR as
follows: we setvR(pα) = v(Jα p), and then we extend this valuation to the setAF(C)
of all formulas of the classical logicC. Weshall call this valuationvR therealization
of the Ln-valuationv.

Lemma 3.9 Let v be an Ln-valuation and X be a normal formula. Thenv(X) =
vR(XR).

Proof: By an obvious induction on the construction of the formulaX. �
Wenow define

(NV)A =
∧
α∈V

(
Jα A ≡

∧
β �=α

¬Jβ A

)
.

Compare with the axioms (NVα).

Definition 3.10 A classical valuationu will be called normal if for every p ∈
PV(Ln) we haveu((NV)R

p) = 1.

Lemma 3.11 If v is an Ln-valuation, thenvR is a normalC-valuation.

Proof: By Lemma3.9, together with the Correctness Theorem3.5, wehave
vR((NV)R

p) = v((NV)p) = 1. �

Lemma 3.12 For every normalC-valuation u there exists an Ln-valuationv such
that u = vR.

Proof: Sinceu((NV)R
p) = 1, there exists a uniqueα ∈ V such thatu(pα) = 1. Let-

ting nowv(p) = α, weextend (by induction) this map to anLn-valuation. Then it is
easy to see thatvR = u. �

Lemma 3.13 A normal formula X is Ln-valid if and only if for every normalC-
valuation u it is true that u(XR) = 1.

Proof: Let X beLn-valid andu be a normalC-valuation. By Lemma3.12, there ex-
ists anLn-valuationv such thatu = vR. By Lemma3.9, wehaveu(XR) = vR(XR) =
v(X) = 1. Assumeu(XR) = 1 holds for every normalC-valuationu. Then by
Lemma3.11, for everyLn-valuationv, vR is a normalC-valuation. By Lemma3.9,
we concludev(X) = vR(XR) = 1. �
In the rest of this paper we letp0 ∈ PV(Ln) be the same distinguished propositional
variable used in our notational stipulations2.3.
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Lemma 3.14 Let X be a normal formula. Let℘ be a finite subset of the setPV(Ln)

such thatPV(X) ⊆ ℘ and p0 ∈ ℘. Then X is Ln-valid if and only if the formula∧
p∈℘

(NV)R
p ⊃ XR (1)

is a classical tautology.

Proof: Let a normal formulaX beLn-valid. Letu be an arbitraryC-valuation. As-
sume we have

u

( ∧
p∈℘

(NV)R
p

)
= 1.

Let us define aC-valuationw as follows. If p ∈ ℘, then we setw(pα) = u(pα); in
the opposite case we set

w(pα) =
{

1 if α = 1,

0 if α �= 1.

It is easy to see thatw is a normalC-valuation. Moreover, if all propositional vari-
ables occurring in a classical formula� are contained in the set{pα | p ∈ ℘,α ∈ V},
thenw(A) = u(A). Then, by Lemma3.13, we haveu(XR) = w(XR) = 1.

Let the formula (1) be aclassical tautology andv be an arbitraryLn-valuation.
Let us setu = vR. Then, by Lemma3.11, u is a normalC-valuation. Therefore,
u(XR) = 1. Thenv(X) = u(XR) = 1. �

Corollary 3.15 (Embedding ofLn into classical logicC) Let A be a formula of the
logic Ln, PV(A) ⊆ ℘ ⊆ PV(Ln), where℘ is a finite set, and p0 ∈ ℘. Then A is Ln-
valid if and only if the formula∧

p∈℘

(NV)R
p ⊃ ((mark A)I )R

is a classical tautology.

Proof: Use Lemmas3.6and 3.13. �

Theorem 3.16 (Completeness Theorem)If a formula A of the language Ln is Ln-
valid, then A is derivable in the calculus Ln.

Proof: Let ℘ = PV(A)∪ {p0}. Let A beLn-valid. By Corollary3.15and the Com-
pleteness Theorem for the classical logicC, we have

�C
∧
p∈℘

(NV)R
p ⊃ ((mark A)I )R.

Then, by Proposition2.6, wehave

�Ln

∧
p∈℘

(NV)p ⊃ (mark A)I .

If p ∈ ℘, then(NV)p is the axiom of the calculusLn. By modus ponens, we have
�Ln (mark A)I . Then, by Lemma 2.13 and themark-elimination rule, we have�Ln

A. �
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Definition 3.17 For convenience, now we shall consider thatPV(C)={qm |m∈ ω}
andPV(Ln) = {pm | m∈ ω}. Let u be aC-valuation. We setun(pm) = u(qm), and
then we shall extendun to Ln-valuation by the usual inductive procedure. ThisLn-
valuationun will be called theLn-version of theC-valuation u.

Definition 3.18 The expression�B denotes the external formula of the logicLn

obtained from a formula� of classical logicC by substituting J1D for all occur-
rences of every atomic subformulaD of the formula�. This formula�B is called
theBochvar versionof the formula�.

Lemma 3.19 Let v be aC-valuation and� be a formula of the classical logicC.
Thenv(�) = vn(�

B).

Proof: By an obvious induction on the complexity of�, recalling Lemma3.1. �

Theorem 3.20 (Embedding of classical logicC into Ln) Let � be a formula of
classical logicC. Then�C � if and only if �Ln �B.

Proof: By Proposition2.6, �C � implies�Ln �B. If �Ln �B, then�B is Ln-valid
by the Correctness Theorem for the calculusLn. Let v be an arbitraryC-valuation.
Thenv(�) = vn(�

B) = 1. Therefore,�C � follows from the Completeness Theo-
rem for classical logicC. �

4 Axiomatizing arbitrary finite-valued logics Wenote that, for an arbitrary finite-
valued logicLn given by a triple〈V, σ, MARK 〉 there is no known effective method
for constructing a calculus either in the Hilbert form or in the form of a calculus of
two-termed sequents, which will be complete with respect toLn-validity. Admittedly,
Rousseau [49] and Surma [56] developed methods of axiomatizing finite-valued log-
ical calculi, but although these methods may be of theoretical value, it seems to us
that they are too complex and unintuitive.

Investigators of finite-valued logical calculi usually strive to obtain complete
(with respect toLn-validity) axiomatizations of predicate or propositional many-
valued calculi, either of the Hilbert type, or in the form of two-termed sequents. In
this way one has the opportunity to obtain deeper proof-, as well as model-theoretic
results: as a matter of fact, these methods of axiomatization are nicely linked with
natural mathematical intuition, and they also enable us to extend to finite-valued log-
ical calculi methods and results that were originally developed for classical logic.
This is the case, e.g., of the axiomatizations for logics of Łukasiewicz in [35],
Bochvar [9], [24], Ebbinghaus [17], Rose and Rosser [46], and others.

In our papers [2], [3], [4], [5] we presented a general effective method for con-
structing a predicate calculus of “quasi-Hilbert” type, which is complete with respect
to Ln-validity, for any finite-valued logic. It appears that in many problems arising for
finite-valued calculi, “quasi-Hilbert”-type calculi are no less convenient than Hilbert-
type calculi—the only difference being the addition of finitely many symbols in the
language. Once the language is so extended, all subsequent reasoning is carried out
in a Hilbert type calculus. We shall briefly discuss this idea for propositional calculi
only.
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Let the logicLn be given by a triple〈V, σ1, MARK 〉. We extend the alphabet of
Ln by introducing the following new symbols: theexternal connectives, ∧,∨,⊃,¬,
and{Jα | α ∈ V}. Formulas and external formulas are defined as in Section 2. Thus,
although formulas will be in the language of the logicLn, external formulas will
not be in it. For the axiomatization of this extended calculus we take all the ax-
ioms from Section 2 (excluding the axioms (CJ0), (CJ1) and (CJα)). Moreover, we
shall assume that the axioms (Cg) are valid for allG ∈ σ1 ∪ {∧∗,∨∗,⊃∗,¬∗}, where
∧∗,∨∗,⊃∗,¬∗ are usual two-valued logical operations on the subset{0,1} of the set
V of truth values; further, we shall maintain all conventions of Section 2 about meta-
symbols for formulas and external formulas. We denote this extended calculus by
Ln(+). It is convenient to regard our calculusLn(+) as the counterpart of the two-
sorted algebra

〈
V, {0,1} , σ1,∧∗,∨∗,⊃∗,¬∗,

{
J∗
α | α ∈ V

}〉
. It is possible to define

Ln(+)-valuations of formulas and external formulas in the usual way. We set

�M =
{

(mark �) if � is a formula,
� if � is an external formula.

It is not difficult to check that all results from Sections 2 and 3 (except Lemma
2.7and Corollary2.8) are true for the calculusLn(+). To see this, one may proceed
as follows:

1. If necessary, substituteAM for mark A (see for example, in2.9, 2.14, 3.4, 3.6,
and3.15),

2. Exclude all cases dealing with formulas (Jα X), whereX is an external formula,
since now the expressions of the type (Jα X) are not formulas or external for-
mulas of our calculusLn(+). Of course, the relevant definitions must be cor-
respondingly adapted: for example, the fifth item in Definition2.12must be
eliminated.
Repeating (with natural modifications) the arguments of Sections 2 and 3, one
can see that the following result holds.

Theorem 4.1 (Completeness Theorem)Let� be a formula or an external formula
of the calculus Ln(+). Then�Ln(+) � if and only if� is Ln(+)-valid.

Remark 4.2 A formulaA of the calculusLn(+) is Ln(+)-valid if and only if A is
Ln-valid, sinceA is written in the languageLn.

A modified method of sequents and tableaux systems with additional logical
metasymbols was recently used in Carnielli [11] and [12] for the axiomatization of
calculi for various finite-valued logics.

5 An algebraic approach to finite-valued logics Let Ln be an arbitrary truth-
completeC-extending logic determined by the triple〈V, σ, MARK 〉.
Definition 5.1

1. For an arbitrary Boolean algebra〈B,∩,∪,−,0,1〉 we shall use the following
standard abbreviations:

(a) a → b = −a∪ b,
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(b) a ↔ b = (a → b) ∩ (b → a).

2. We define the sets

B̂ =
{

x ∈ BV

∣∣∣∣∣ x(α) =
⋂
β �=α

−x(β) for eachα ∈ V

}
,

wherex(α) denotes theαth coordinate ofx ∈ BV, and

MARK(B̂) =
{

x ∈ B̂

∣∣∣∣∣
⋃

α∈MARK

x(α) = 1

}
.

3. For eachm-ary operationG ∈ σ we define the operation̂G on BV as follows:

(a) Forx1, . . . , xm ∈ BV andG ∈ σ\
{
J∗
β | β ∈ V

}
we set

(Ĝ(x1, . . . , xm))(α) =
⋃

G(β1,...,βm)=α

(
m⋂

j=1

xj (β j )

)
,

(b) Forx ∈ BV we set

(Ĵβx)(α) =



x(β) if α = 1,

−x(β) if α = 0,

0 if α �∈ {0,1} .

4. For eacha ∈ B, we define the element̂a ∈ BV as follows:

â(α) =



a if α = 1
−a if α = 0,

0 if α �∈ {0,1} .

5. Forx ∈ BV we shall use the following abbreviation:

[[ NV]] x =
⋂
α∈V

(x(α) ↔
⋂
β �=α

−x(β)).

Proposition 5.2 Let〈B,∩,∪,−,0,1〉 be a Boolean algebra. Then for any x∈ BV

the following three conditions are equivalent:

1. x∈ B̂,

2.
⋃
α∈V

x(α) = 1, and x(α) ∩ x(β) = 0 for α �= β.

3. [[ NV]] x = 1.

Proof: The fact that (1) is equivalent to (3) follows from the observation thata →
b = 1 if and only ifa ≤ b. Let us prove that (1) and (2) are equivalent. Let (1) be
true. Then

⋃
α∈V

x(α) = x(α) ∪
( ⋃

α �=β

x(β)

)

=
(

−
⋃
β �=α

x(β)

)
∪

( ⋃
β �=α

x(β)

)
= 1.
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Moreover, ifα �= β, then

x(α) ∩ x(β) =
( ⋂

β �=α

−x(β)

)
∩ x(β) = 0.

Now let (2) be true. Ifα �= β, thenx(α)∩ x(β) = 0 impliesx(α) ≤ −x(β). Therefore,

x(α) ≤
⋂
β �=α

−x(β).

On the other hand, ⋃
α∈V

x(α) = 1

implies ⋂
β �=α

−x(β) ≤ x(α).

In conclusion,x ∈ B̂. �

Corollary 5.3 If a ∈ B, thenâ ∈ B̂.

Remark 5.4 1̂ ∈ MARK(B̂) and0̂ /∈ MARK(B̂).

Proposition 5.5 The setB̂ is closed under the operations{Ĝ | G ∈ σ}.
Proof: Let G ∈ σ\{J∗

α | α ∈ V} be an arbitrarym-ary operation andx1, . . . , xm ∈ B̂.
Let A be a formulag(p1, . . . , pm) of the calculusLn, where the propositional con-
nectiveg corresponds to the operationG, and p1, . . . , pm are different propositional
variables ofLn (each of them not coinciding withp0). Let X be a formula ((NV)A)I

(see Definition2.12). The normal formulaX is Ln-derivable, by the Axioms of Def-
inition 2.4. And therefore, by Theorem3.5, Lemma3.14and the Completeness The-
orem for classical logic, the formula

m∧
j=0

(NV)R
p ⊃ XR

is derivable in the classical propositional calculus. Therefore, for every homomor-
phismh : AF(C) → 〈B,∩,∪,−,→〉 the image of this formula is equal to 1. Re-
calling our stipulation made above, we shall consider a homomorphismh such that
h(pjα ) = xj (α) for j = 1, . . . , m. Let x0 = 1̂. Then by Corollary5.3 and Proposi-
tion 5.2, wehave

h

(
m∧

j=0

(NV)R
Pj

)
=

m⋂
j=0

([[ NV]] xj ) = 1.

Therefore, [[NV]] Ĝ(x1...,xm)
= h(XR) = 1. By Proposition5.2, this means that

Ĝ(x1, . . . , xm) ∈ B̂. The setB̂ is closed under the operations
{
Ĵβ | β ∈ V

}
, by Corol-

lary 5.3, sinceĴβx = ˆx(β) for x ∈ B̂. �
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Definition 5.6 Wecall the algebra
〈
B̂,

{
Ĝ | G ∈ σ

}〉
the Ln-versionof the Boolean

algebra〈B,∩,∪,−,0,1〉, and denote it byB(Ln).

Lemma 5.7

1. The Ln-version B(Ln) of every Boolean algebra B contains an isomorphic
copy of the algebra〈V, σ〉 of the logic Ln;

2. If the Boolean algebra B2 consists of the two elements 0 and 1, then there exists
an isomorphism from the algebra〈V, σ〉 onto the algebra B2(Ln) such that the
setMARK(B̂2) is the image of the setMARK .

Proof: Wedefine a (+)-map fromV to BV as follows: ifα ∈ V, then we set

α+(β) =
{

1 if β = α,

0 if β �= α.

By Proposition5.2.2, we have
{
β+ | β ∈ V

} ⊆ B̂. Letting x ∈ B̂ and Rang(x) ⊆
{0,1}, wealso have ⋃

α∈V

x(α) = 1,

whence there exists anα0 such thatx(α0) = 1. If β �= α0, then (again by Propo-
sition 5.2.2) we havex(β) = 0. So, x = α+

0 . This shows that
{
β+ | β ∈ V

} ={
x ∈ B̂ | Rang(x) ⊆ {0,1}

}
.

To see that the set
{
β+ | β ∈ V

}
is closed under the operations

{
Ĝ | G ∈ σ

}
, it

suffices to prove that the results of these operations on the elements
{
β+ | β ∈ V

}
are{0,1}-valued functions. But this follows from the definitions of the operations{

Ĝ | G ∈ σ
}
, and the fact that the set{0,1} is the support of a two-element subal-

gebra of the Boolean algebraB. Thus, the set
{
β+ | β ∈ V

}
is the support of some

subalgebra of the algebraB(Ln).
It is clear that the (+)-map is a one-to-one correspondence between the setsV

and
{
β+ | β ∈ V

}
. Now let us prove that the (+)-map is a homomorphism of algebras

of signatureσ. Let G(β1, . . . , βm) = α, whereG ∈ σ\{
J∗
α | α ∈ V

}
. We shall show

that Ĝ(β+
1 , . . . , β+

m) = α+. For this it suffices to prove that̂G(β+
1 , . . . , β+

m)(α) = 1.
In fact, by definition, we have

(Ĝ(β+
1 , . . . , β+

m))(α) =
⋃

G(δ1,...,δm)=α

(
m⋂

j=1

β+
j (δ j )

)

SinceG(β1, . . . , βm) = α andβ+
i (βi ) = 1 (for i = 1, . . . , m), we have(Ĝ(β+

1 , . . . ,

β+
m))(α) = 1.

Assume that J∗α(β) = 1. Thenβ = α and, therefore,̂Jα(β+)(1) = β+(α) = 1.
Thus,Ĵα(β+) = 1+. Now assume that J∗

α(β) = 0. Thenα �= β and, by definition,
Ĵα(β+)(0) = −β+(α) = −0 = 1. Thus,̂Jα(β+) = 0+.

So we have proved that the (+)-map is an isomorphism from the algebra〈V, σ〉
onto the subalgebra

〈{
β+ | β ∈ V

}
,
{

Ĝ | G ∈ σ
}〉

of the algebraB(Ln). Moreover,

this subalgebra is theLn-version of the Boolean subalgebra of the Boolean algebraB
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that is isomorphic toB2. Thus,〈V, σ〉 is isomorphic toB2(Ln). Using the definition
of the setMARK(B̂), it is easy to see thatα ∈ MARK if and only if α+ ∈ MARK(B̂2).

�

Lemma 5.8 Let h : AF(Ln) → B(Ln) be a homomorphism. If a formula A∈
AF(Ln) is Ln-valid, then h(A) ∈ MARK(B̂).

Proof: Let A be Ln-valid. AssumePV(A) ∪ {p0} ⊆ ℘. By Corollary3.15, the for-
mula ∧

p∈℘

(NV)R
p ⊃ ((mark A)I )R (2)

is a classical tautology.
We sethR(pα) = h(p)(α), whereα ∈ V, p ∈ PV(Ln) and pα ∈ PV(C) and

then we extend this map to a homomorphismhR of the algebraAF(C) to the Boolean
algebraB. Then the homomorphismhR has the value 1 on the formula (2). Moreover,

hR

( ∧
p∈℘

(NV)R
p

)
=

⋂
p∈℘

[[ NV]] h(p) = 1,

sinceh(p) ∈ B̂ for p ∈ ℘. Therefore,

hR(((mark A)I )R) = 1. (3)

By our notational stipulations in Section 2, together with Definition2.12.2 and Defi-
nition 3.7, wehave

hR(((mark A)I )R) =
⋃

α∈MARK

hR
(
((Jα A)I )R)

. (4)

By induction on the logical depth of the formulaA, it follows that

hR
(
((Jα A)I )R) = h(A)(α). (5)

hR. The inductive step follows from Definitions2.12, 3.7, and5.1.3.
Identities (3), (4), and (5) imply⋃

α∈MARK

hR(A)(α) = 1.

Thus,h(A) ∈ MARK(B̂). �

Theorem 5.9 A formula A of the language Ln is derivable in the calculus Ln if and
only if for every Boolean algebra B and every homomorphism h: AF(Ln) → B(Ln)

it is the case that h(A) ∈ MARK(B̂).

Proof: Using Theorems3.5, 3.16, and Lemma5.7.2, one argues as in the proof of
Lemma5.8. �

Definition 5.10 We call the algebra〈M, {F◦ | F ∈ σ}〉, whereF◦ is an operation
with the same number of arguments asF, an Ln-algebraif for any a, b, c ∈ M and
α, β ∈ V the following conditions hold:
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1. Axioms of exterior elements (Ex):

(EX1) J◦αa ∨◦ J◦
αa = J◦

αa,

(EX2) J◦αa ∨◦ J◦
βb = J◦

βb ∨◦ J◦
αa,

(EX3) (J◦
αa ∨◦ J◦

βb) ∨◦ J◦
γc = J◦

αa ∨◦ (J◦
βb ∨◦ J◦

γc),

(EX4) J◦αa ∧◦ (J◦
βb ∨◦ J◦

γc) = (J◦
αa ∧◦ J◦

βb) ∨◦ (J◦
αa ∧◦ J◦

γc),

(EX5) ¬◦ ¬◦ J◦
αa = J◦

αa,

(EX6) ¬◦(J◦
αa ∨◦ J◦

βb) = ¬◦ J◦
αa ∧◦ ¬◦ J◦

βb,

(EX7) J◦αa ∨◦ (J◦
βb ∧◦ ¬◦ J◦

βb) = J◦
αa,

(EX8) J◦αa ⊃◦ J◦
βb = ¬◦ J◦

αa ∨◦ J◦
βb,

2. Axioms ofn-valuedness (n-Val):

(n-Valα)
J◦
αa =

∧◦

β �=α

¬◦ J◦
βa,

(for eachα ∈ V), where

∧◦

i∈I

ai =
{

J◦
1b ∨◦ ¬◦ J◦

1b if I = ∅,

(ai1 ∧◦ . . . (. . . ∧◦ aik ) . . .) if I = {i1, . . . , ik} .

3. Connective Axioms (Cn):

(Cn-F)

J◦
α(F◦(a1, . . . , am)) =

∨◦

F(β1,...,βm)=α

m∧◦

j=1

J◦
β j

a j ,

whereF ∈ σ\{
J∗
α | α ∈ V

}
and

∨◦

i∈I

ai =
{

J◦
1b ∧◦ ¬◦ J◦

1b if I = ∅,

(ai1 ∨◦ . . . (. . . ∨◦ aik ) . . .) if I = {i1, . . . , ik} .

(Cn J0) J◦
0 J◦

βa = ¬◦ J◦
βa,

(Cn J1) J◦
1 J◦

βa = J◦
βa,

(Cn Jα) J◦
α J◦

βa = J◦
1a ∧◦ ¬◦ J◦

1a for α �∈ {0,1}.
4. Axioms of closure (C1):

(C1∗) J◦
αa ∗◦ J◦

βb = J◦
1 (J◦

αa ∗◦ J◦
βb), where∗◦ denotes one of the oper-

ations∧◦, ∨◦ or ⊃◦,

(C1¬) ¬◦ J◦
αb = J◦

1(¬◦ J◦
αb),

5. Quasi-identity (QI):
&
α∈V

(J◦
αa = J◦

αb) =⇒ a = b.

Lemma 5.11 Let�Ln X ≡ Y. Then for every Boolean algebra B and every homo-
morphism h: AF(Ln) → B(Ln) it is true that h(X) = h(Y).
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Proof: Let �Ln X ≡ Y. Then, by Proposition2.6 and axioms (CJ0), (CJ1), and
(CJα) of the calculusLn, we have�Ln Jα X ≡ JαY for eachα ∈ V. Therefore, by
Lemma2.13and Proposition2.6, �Ln (Jα X)I ≡ (JαY)I . Then, by Theorem3.5and
Lemma3.14, for eachα ∈ V, the formula∧

p∈℘

(NV)R
p ⊃ (((Jα X)I )R ≡ ((JαY)I )R) (6)

will be a classical tautology, where{p0} ∪ PV(X) ∪ PV(Y) ⊆ ℘. If h : AF(Ln) →
B(Ln) is a homomorphism, then (in a manner following that employed in the proof
of Lemma5.8) it ispossible to define the homomorphismhR : AF(C) → B of these
algebras in such way that the following conditions hold:

hR

( ∧
p∈℘

(NV)R
p

)
= 1, (7)

hR(((Jα X)I )R) = h(X)(α), (8)

hR(((JαY)I )R) = h(Y)(α). (9)

From identity (7) and the fact that the value of the homomorphismhR on the formula
(6) is equal to 1, it follows that

hR(((Jα X)I )R ≡ ((JαY)I )R) = 1,

for all α ∈ V. And by identities (8) and (9), it follows thath(X) = h(Y). �

Theorem 5.12 For any Boolean algebra B its Ln-version B(Ln) is an Ln-algebra.

Proof: Let a, a1, . . . , am, b ∈ B̂ and p, p1, . . . , pm, q ∈ PV(Ln), where all these
propositional variables are different. We seth(p) = a, h(q) = b, h(pi ) = ai for i =
1, . . . , m, and extend this map to an arbitrary homomorphismh : AF(Ln) → B(Ln)

of these algebras.
By Proposition2.6, wehave�Ln ¬¬Jα p ≡ Jα p. Then, by Lemma5.11, we have

h(¬¬Jα p) = h(Jα p) and, therefore,̂¬¬̂Ĵαa = Ĵαa. This means that the axiom (Ex5)
of Ln-algebra holds. The other axioms of the group (Ex) hold for analagous reasons.
For the cases of the axioms (Cn), (Cl), (n-Valα) we need to appeal to the axioms
(Con), (CJα), and(NVα) of the calculusLn, respectively.

Let us now show that the quasi-identity (QI) is true in the algebraB(Ln). Let
Ĵαa = Ĵαb anda �= b. In order to obtain a contradiction, suppose thata(α) �= b(α)

for someα ∈ V. Then, by Definition5.1.3, we have

(Ĵαa)(1) = a(α) �= b(α) = (Ĵαb)(1),

acontradiction. �

Definition 5.13 Let M = 〈M, {F◦ | F ∈ σ}〉 be anLn-algebra. We call the set
E(M) = {

J◦
αa | a ∈ M, α ∈ V

}
the set ofexternal elementsof the Ln-algebraM .

Moreover, we define the set

MARK[M] =
{

a ∈ M

∣∣∣∣∣
∨◦

α∈MARK

J◦
αa = J◦

1a ∨◦ ¬◦ J◦
1a

}
.
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Theorem 5.14 (First Representation Theorem)Let M = 〈M, {F◦ | F ∈ σ}〉 be an
Ln-algebra. Then there exists a monomorphism of Ln-algebras g: M → B(Ln) for
some Boolean algebra B.

Proof: By axioms (C1), the setE(M) is closed under the operations∧◦,∨◦,⊃◦,
and¬◦. By axioms (Ex), the algebraB = 〈E(M),∧◦,∨◦,¬◦〉 is a Boolean alge-
bra anda ⊃◦ b = ¬◦ a ∨◦ b for everya, b ∈ E(M) (see for example Huntington’s
theorem in Chapter 2 of Birkhoff [8]). We define the mapg : M → (E(M))V by
the ruleg(a)(α) = J◦

αa, for everyα ∈ V anda ∈ M. By the axioms (n-Val), we have
g(a) ∈ ˆ(E(M)) (see Definition5.1). By the quasi-identity (QI), the mapg is an injec-
tion. Moreover, by the axioms (Cn), this mapg is a homomorphism ofLn-algebras.

�

Lemma 5.15 Let B(Ln) = 〈B̂, {F̂ | F ∈ σ}〉 is the Ln-version of a Boolean algebra
B. ThenMARK(B̂) = MARK[ B̂] (see Definitions5.1and5.13).

Proof: It is easy to see thatE(B̂) = {
â | a ∈ B

}
, since forx ∈ B̂ andβ ∈ V we have

Ĵβx = ˆx(β) andâ = Ĵ1â (see Definition5.1).
We set â � b̂ if and only if â ∧̂ b̂ = â. Then〈E(B̂),�〉 is a Boolean algebra (see

the proof of Theorem5.14). Let us show that the mapf : B → E(B̂), defined by the
rule f (a) = â for all a ∈ B, is an isomorphism of Boolean algebras. Obviously, the
map f is a bijection. Thus, it suffices to show thatf preserves the partial orders≤
and� of our Boolean algebras.

Let a ≤ b for a, b ∈ B. Let us consider the following identity:

(â ∧̂ b̂)(1) =
⋃

α∧∗β=1

(â(α) ∩ b̂(β)).

It is clear that ifα �∈ {0,1} orβ �∈ {0,1}, thenâ(α)∩ b̂(β) = 0. Therefore, a summand
of the Boolean sum on the right hand side of the above equality is not equal to 0 if
and only ifα, β ∈ {0,1}. But α∧∗β = 1 and, therefore,α = β = 1. Thus,

(â ∧̂ b̂)(1) = â(1) ∩ b̂(1) = a∩ b = a.

Therefore,̂a∧̂ b̂= â; stated otherwise,̂a� b̂. Moreover, it is clear that̂a� b̂ implies
a ≤ b for everya, b ∈ B. Let us define the maph : E(B̂) → B by the ruleh(Ĵαx) =
h( ˆx(α)) = x(α), for all α ∈ V and x ∈ B̂. This maph is the inverse map for the
isomorphismf and, therefore,h is also an isomorphism of Boolean algebras. Thus,
for everyx ∈ B̂, it is true that ∨̂

α∈MARK

Ĵαx = Ĵ1x ∨̂ ¬̂ Ĵ1x

if and only if ⋃
α∈MARK

x(α) = 1.

SoMARK[ B̂] = MARK(B̂). �

Corollary 5.16 The algebra〈V, σ〉 of the logic Ln is an Ln-algebra such that
MARK[V] = MARK.
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Proof: From Lemma5.7.2 together with Theorem5.12and Lemma5.15. �

Lemma 5.17 Let M = 〈M, {F◦ | F ∈ σ}〉 be an Ln-algebra and h: AF(Ln) →
M be a homomorphism. If A is an Ln-valid formula of the logic Ln, then h(A) ∈
MARK[M].

Proof: In fact, the algebraB = 〈E(M),∧◦,∨◦,¬◦〉 is a Boolean algebra, and the
mapg : M → ˆE(M), defined for alla ∈ M, α ∈ V by the ruleg(a)(α) = J◦

αa, is
a monomorphism from the algebraM to the algebraB(Ln) (see the proof of Theo-
rem5.14). Moreover, it is clear thata ∈ MARK[M] i f and only ifg(a) ∈ MARK(B̂).

Let us identify the algebraM with its imageg(M ) in the algebraB(Ln). Thenh
will be the homomorphism from the algebraAF(Ln) to the algebraB(Ln). Therefore,
our lemma follows from Lemmas5.8and5.15. �

Theorem 5.18 The formula A of the logic Ln is Ln-derivable if and only if for every
Ln-algebraM = 〈M, {F◦ | F ∈ σ}〉 and every homomorphism h: AF(Ln) → M it
is true that h(A) ∈ MARK[M].

Proof: Similar to the proof of Theorem5.9. �

Definition 5.19 Let D I be a Cartesian power of the algebraD = 〈D, τ〉, andK be
any set. If f : K → DI is a map, then we shall denote byfi , wherei ∈ I , the map
defined by the rulefi (a) = f (a)(i ), for all a ∈ K. As usual, we denote byB2 the
two-element Boolean algebra.

Theorem 5.20 (Second Representation Theorem)Every Ln-algebra is isomorphi-
cally embeddable into a Cartesian power of the algebra〈V, σ〉 of the logic Ln.

Proof: Let M = 〈M, {F◦ | F ∈ σ}〉 be anLn-algebra. By Lemma5.7.2, it is pos-
sible to identify the algebra〈V, σ〉 with the algebraB2(Ln). Now by Theorem5.14,
there exist a Boolean algebraBand a monomorphism ofLn-algebrash : M → B(Ln).
And by the Birkhoff-Stone Theorem (see Birkhoff [8], Chapter 8, Section 8), for some
set I there exists a monomorphismg : B → BI

2. Let us prove that there exists a
monomorphismG : M → (B2(Ln))

I . In order to defineG , it suffices to define its
projectionsGi for all i ∈ I . (Note that for everya ∈ M, Gi (a) is a map fromV to
{0,1}.) We defineGi by the following rule:

Gi (a)(α) = gi (h(a)(α)) (10)

for α ∈ V anda ∈ M.
Now let us show thatGi (a) ∈ B̂2 for all a ∈ M. It suffices to prove the following

identities:

⋃
α∈V

Gi (a)(α) = 1, (11)

⋃
β �=α∈V

(Gi (a)(α) ∩ Gi (a)(β)) = 0. (12)
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Sinceh(M) ⊆ B̂, we have ⋃
α∈V

h(a)(α) = 1 ∈ B, (13)

⋃
β �=α∈V

(h(a)(α) ∩ h(a)(β)) = 0 ∈ B. (14)

Therefore, we have the two identities⋃
α∈V

gi (h(a)(α)) = 1, (15)

⋃
β �=α∈V

gi (h(a)(α) ∩ h(a)(β)) = 0. (16)

In light of (10), the identities (15) and (16) imply (11) and (12). Now let us show that
the mapGi : M → B2(Ln) is a homomorphism ofLn-algebras. In order to prove that

Gi (F◦(a1, . . . , ar )) = F̂(Gi (a1), . . . , Gi (ar )),

whereF ∈ σ\{
J∗
α | α ∈ V

}
anda1, . . . , ar ∈ M, it suffices to prove that for every

α ∈ V it is true that

Gi (F◦(a1, . . . , ar ))(α) = F̂(Gi (a1), . . . , Gi (ar ))(α). (17)

Let us consider the following chain of identities:

Gi (F◦(a1, . . . , ar )) (α) = gi (h (F◦(a1, . . . , ar )) (α))

= gi

(
F̂ (h(a1), . . . , h(ar )) (α)

)

= gi

( ⋃
F(β1,...,βr )=α

(
r⋂

j=1

h(aj )(β j )

))

=
⋃

F(β1,...,βr )=α

(
r⋂

j=1

gi (h(aj )(β j ))

)

=
⋃

F(β1,...,βr )=α

(
r⋂

j=1

Gi (aj )(β j )

)

= F̂(Gi (a1), . . . , Gi (ar ))(α).

The first and the fifth identities are true by (10), the third by Definition5.1.3, and the
sixth by Definition5.1.3. The proof that(

Gi (J
◦
βa)

)
(α) =

(
ĴβGi (a)

)
(α) (18)

is true for everyα ∈ V anda ∈ M, issimilar to the proof of (17). So we have proved
thatGi is a homomorphism for everyi ∈ I .

Let us define the mapG : M → (B̂2)
I by the ruleG(a)(i ) = Gi (a), for all a ∈

M. ThenG : M → (B2(Ln))
I is a homomorphism ofLn-algebras. Let us show that

G is a monomorphism. Indeed, leta, b ∈ M anda �= b. Thenh(a) �= h(b). Therefore,
there existsα ∈ V such thath(a)(α) �= h(b)(α). Theng(h(a)(α)) �= g(h(b)(α)).
Thus there is ani ∈ I such thatgi (h(a)(α)) �= gi (h(b)(α)). By (10), it follows that
Gi (a)(α) �= Gi (b)(α). Thus,Gi (a) �= Gi (b), whenceG(a) �= G(b). �
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Corollary 5.21 Every Ln-algebra is isomorphic to a subdirect product of subalge-
bras of the algebra〈V, σ〉 of the logic Ln.

Corollary 5.22 If an Ln-algebraM is subdirectly irreducible (i.e., it cannot be de-
composed into a proper product in the quasi-variety of all Ln-algebras) thenM is
isomorphic to a subalgebra of〈V, σ〉.
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[30] Hähnle, R.,Tableaux based methods in many-valued automated deduction, Oxford Uni-
versity Press, Oxford, 1993.1

[31] Hallden, S., “The logic of nonsense,”Arsskrift, Heft 1, Uppsala University, 1949.
Zbl 0040.29201 1

http://www.emis.de/cgi-bin/MATH-item?0551.03037
http://www.ams.org/mathscinet-getitem?mr=85i:03191
http://www.emis.de/cgi-bin/MATH-item?0299.02015
http://www.ams.org/mathscinet-getitem?mr=51:10028
http://www.emis.de/cgi-bin/MATH-item?0182.31502
http://www.ams.org/mathscinet-getitem?mr=40:7092
http://www.ams.org/mathscinet-getitem?mr=92c:03071
http://www.ams.org/mathscinet-getitem?mr=58:27304
http://www.emis.de/cgi-bin/MATH-item?0521.03011
http://www.ams.org/mathscinet-getitem?mr=86f:03040
http://www.ams.org/mathscinet-getitem?mr=56:5235
http://www.emis.de/cgi-bin/MATH-item?0302.02004
http://www.ams.org/mathscinet-getitem?mr=58:5052
http://www.ams.org/mathscinet-getitem?mr=58:21437
http://www.emis.de/cgi-bin/MATH-item?0441.03023
http://www.ams.org/mathscinet-getitem?mr=81f:03031
http://www.emis.de/cgi-bin/MATH-item?0783.03008
http://www.ams.org/mathscinet-getitem?mr=92e:03028
http://www.ams.org/mathscinet-getitem?mr=90m:03107
http://www.emis.de/cgi-bin/MATH-item?0040.29201


628 O. ANSHAKOV and S. RYCHKOV

[32] Hoogewijs, A., “On a formalization of the non-definedness notion,”Zeitschrift f̈ur
mathematische Logik und Grundlagen der Mathematik, vol. 25 (1979), pp. 213–217.
Zbl 0415.03019 MR 80f:03017 1

[33] Komori, Y., “Super Łukasiewicz propositional logics,”Nayoya Mathematical Journal,
vol. 84 (1981), pp. 119–133.Zbl 0482.03007 MR 83i:03041 1

[34] Komori, Y., “Super Łukasiewicz implicational logics,”Nayoya Mathematical Journal,
vol. 72 (1978), pp. 127–133.Zbl 0363.02015 MR 80d:03021 1

[35] Łukasiewicz, J., and A. Tarski, “Investigations into the sentential calculus,” Chapter IV
in Logic, Semantics, Metamathematics, by A. Tarski, Clarendon Press, Oxford, 1956.
1, 4

[36] Moisil, G. C., “Notes sur les logiques nonchrysippiennes,”Ann. Sci. Univ. Iassy, vol. 27
(1941), 86–98.1

[37] Mundici, D., “Satisfiability in many-valued sentential logic is NP-complete,”Theoret-
ical Computer Science, vol. 52 (1987), pp. 145–153.Zbl 0639.03042 MR 89a:68076
1

[38] Mundici, D., “The derivative of truth in Łukasiewicz sentential calculi,”Contemporary
Mathematics, vol. 69 (1988), pp. 209–277.Zbl 0648.03011 MR 89b:03045 1

[39] Mundici, D., “TheC*-algebras and three-valued logics,” pp. 61–77 inProceedings of
the Logic Colloquium ’88, Studies in Logic and the Foundations of Mathematics, North
Holland, 1989.MR 90j:03039 1

[40] D’Ottaviano, I., “The model extension theorem for J3 theories,”Lecture Notes in Math-
ematics, vol. 1130 (1985), pp. 157–173.MR 87b:03048 1

[41] D’Ottaviano, I., “The completeness and compactness of a 3-valued first-order logic,”
Revista Colombiana de Matematica, vol. 19 (1985), pp. 77–94.Zbl 0614.03020
MR 88a:03055 1

[42] D’Ottaviano, I., “Definability and quantifier elimination for J3,”Studia Logica, vol. 46
(1987), pp. 37–54.Zbl 0633.03007 MR 88m:03037 1

[43] Płonka, J., “On distributive quasi-lattices,”Fundamenta Mathematicæ, vol. 60 (1967),
pp. 191–200.Zbl 0154.00709 MR 36:85 1

[44] Post, E., “Introduction to a general theory of elementary propositions,”American Jour-
nal of Mathematics, vol. 43 (1921), pp. 63–185.1

[45] Rasiowa, H.,An algebraic approach to non-classical logics, North-Holland, Amster-
dam, 1974.Zbl 0299.02069 MR 56:5285 1

[46] Rose, A., and J. Rosser, “Fragments of many-valued statement calculi,”Transactions
of the American Mathematical Society, vol. 87 (1958), pp. 1–53.Zbl 0085.24303
MR 20:818 1, 4

[47] Rosenberg, I. G., “Completeness properties of multi-valued logic algebras,” pp. 144-
186 in Computer Science and multiple-valued logic, edited by D. C. Rine, North-
Holland, Amsterdam, 1977.1

[48] Rosser, J. B., and A. R. Turquette,Many-valued logics, North-Holland, Amsterdam,
1951.Zbl 0047.01503 MR 14,526a 1

[49] Rousseau, G., “Sequents in many-valued logic I,’Fundamenta Mathematicæ, vol. 60
(1967), pp. 23–33. Erratum:Fundamenta Mathematicæ, vol. 61 (1967–68), p. 313.
Zbl 0154.25504 MR 35:1451 1, 1, 4

http://www.emis.de/cgi-bin/MATH-item?0415.03019
http://www.ams.org/mathscinet-getitem?mr=80f:03017
http://www.emis.de/cgi-bin/MATH-item?0482.03007
http://www.ams.org/mathscinet-getitem?mr=83i:03041
http://www.emis.de/cgi-bin/MATH-item?0363.02015
http://www.ams.org/mathscinet-getitem?mr=80d:03021
http://www.emis.de/cgi-bin/MATH-item?0639.03042
http://www.ams.org/mathscinet-getitem?mr=89a:68076
http://www.emis.de/cgi-bin/MATH-item?0648.03011
http://www.ams.org/mathscinet-getitem?mr=89b:03045
http://www.ams.org/mathscinet-getitem?mr=90j:03039
http://www.ams.org/mathscinet-getitem?mr=87b:03048
http://www.emis.de/cgi-bin/MATH-item?0614.03020
http://www.ams.org/mathscinet-getitem?mr=88a:03055
http://www.emis.de/cgi-bin/MATH-item?0633.03007
http://www.ams.org/mathscinet-getitem?mr=88m:03037
http://www.emis.de/cgi-bin/MATH-item?0154.00709
http://www.ams.org/mathscinet-getitem?mr=36:85
http://www.emis.de/cgi-bin/MATH-item?0299.02069
http://www.ams.org/mathscinet-getitem?mr=56:5285
http://www.emis.de/cgi-bin/MATH-item?0085.24303
http://www.ams.org/mathscinet-getitem?mr=20:818
http://www.emis.de/cgi-bin/MATH-item?0047.01503
http://www.ams.org/mathscinet-getitem?mr=14,526a
http://www.emis.de/cgi-bin/MATH-item?0154.25504
http://www.ams.org/mathscinet-getitem?mr=35:1451


FINITE-VALUED PROP0SITIONAL LOGICAL CALCULI 629

[50] Rousseau, G., “Sequents in many-valued logic II,”Fundamenta Mathematicævol. 67
(1970), pp. 125–131.Zbl 0194.30703 MR 41:6671 1

[51] Rousseau, G., “Post algebras and pseudo-Post algebras,”Fundamenta Mathematicæ
vol. 67 (1970), pp. 133–145.Zbl 0198.01904 MR 42:159 1

[52] Rychkov, S. V., “On the Completeness Theorem for many-valued structures.”Russian
Mathematical Surveys, vol. 46 (1991), pp. 227–228.Zbl 0811.03017 MR 1164203 1

[53] Segerberg, K., “A contribution to nonsense logics,”Theoria,vol. 31 (1965), pp. 199–
217. 1

[54] Smullyan, R.,First-order logic, Springer-Verlag, Berlin, 1968.Zbl 0172.28901
MR 39:5311 1
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