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Automated theorem proving is now a firmly autonomous domain of investigation. At
its early stage it was focused mainly on the problem of mechanizing classical proof
procedures so they would be entirely covered or, at least, supported by an actual or
theoretical computer. To obtain desirable results, the most frequently used were the
methods based on different versions of refutation for propositional and first-order
logic.

An interest in various nonclassical logics as related to computer science stem-
ming from successful applications has grown recently. This, in turn, has stimulated
investigation of automated proof procedures. Hähnle’s book is intended to be a mono-
graph on automated deduction in multiple-valued logics. The work consists of nine
chapters, including an introduction and conclusion. These are followed and com-
pleted by references and an index.

1 In the introduction Ḧahnle professes the faith. First, he rightly states that the book
is the first monograph exclusively devoted to automated theorem proving in multiple-
valued logics. There and later, he uses the term ‘many-valued’ as a replacement for
‘multiple-valued’ and ‘multi-valued’. It is common practice to use these terms in-
terchangeably in the literature with, perhaps, an inclination to note ‘multiple-valued’
in the environment of computer science. The author remarks that the existing books
deal either with automated theorem proving or with many-valued logics but never the
two topics together. Furthermore, for some other systems of nonclassical logics such
as intuitionistic, modal, linear, conditional, nonmonotonic, and temporal logics, the
references on theorem proving are quite numerous. The author explains this by the
fact that these systems found applications in computer science. As for many-valued
logics there are several reasons which cause unavailability of a good device or al-
gorithm appropriate for computation and proving; first, the widespread opinion that
many-valued logic is not very useful and that it lacks convincing applications; and
secondly, according to Ḧahnle, a nonhomogeneity of the subject of many-valuedness,
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its conceptual opaqueness, and great dispersion of the systems, which are mutually
difficult to compare. The latter would also be responsible for the absence of general
proof procedures and uniform automated proving theory.

The author briefly presents the program of the book. It comprises parts of a
general, expository character. Such are, for example, Chapters 7 and 8, where one
may find the overview of applications of many-valued logics and a comprehensive
historical account of activities in many-valued theorem proving. The main body of
the book, which emerged from the author’s Ph.D. thesis, presents an original seman-
tic tableau framework for many-valued theorem proving. Hähnle sets the following
catalog of properties which such a framework should satisfy: (1) wide applicabil-
ity, (2) flexibility, (3) easy adaptability, (4) performance and, finally, (5) closeness
to the classical version. The approach in question uses sets-as-signs, instead of signs,
to achieve more efficient representation of many-valued computational space. The
author promises to evaluate his proposal vis-à-vis the catalog of properties just col-
lected.

2 Chapter 2,Preliminaries, contains definitions and elementary properties of some
concepts from the abstract algebra, syntax, and semantics of propositional and first-
order logic. The material is selected and organized with a view to its use in further
parts of the book. One finds here the notions of an abstract and free algebra and, on
the other hand, several concepts from the theory of logical calculi such as proposi-
tional formula, propositional language, valuation, satisfiability, model, and tautology.
Propositional logicis understood as a pairL = (L, A), whereL is a propositional
language andA a matrix for L. A handy repertoire of notions important for theorem
proving treatment of first-order formulas completes the stock. So, the reader will find
readable definitions of a parameter, the Skolem function, a substitution, a syntactical
variant, a literal, and a clause, to mention only a few.

Deserving special attention are the notions and concepts related to finite many-
valuedness. Definition 2.11 on p. 7 specifies that ak-ary connective inn-valued
propositional logic is ann-valued generalization of some classical connective of the
same arity whenever the corresponding function of the matrix on classical submatrix
coincides with the 0− 1 function of the latter. Further, a natural “ordering” of con-
nectives simulating the order of their respective functions is described, and thus one
may speak about weak and strong connectives.

In Section 2.3 closing the chapter, one finds definitions of particular many-
valued connectives and logics or, rather, classes of logics, which are used several
times throughout the rest of the book. All matrices are defined using the setn =
{0,1/n−1, . . . , n−2/n−1,1} and{n− k/n−1, n− k+1/n−1, . . . ,1} as the set
of designated logical values. The language of the basic first-order logicLn

M is with-
out 0-ary predicate symbols and has the connectives of disjunction∨, conjunction
∧, negation¬, andn unary connectives J0, . . . ,Jn−1 corresponding to values fromn.
The Ji are the well-known Rosser-Turquette’s connectives, which in the correspond-
ing logical algebra are characteristic functions of the respective values. The author
claims that the propositional part ofLn

M is functionally complete, that is, that every
n-valued connective is definable by the ones already present. This desirable property,
however, can hold in general only when we assume that all or, in some cases, at least
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some elements of the universe of the matrix treated as constant functions correspond
to some propositional 0-ary connectives, (i.e., constants). From the text it is not clear
whether this is assumed or not.

Next, there are definitions of weak connectives inn-valued logic, which are sim-
ply theclassicalconnectives of Rosser and Turquette. They are tailored relatively to
the division of the setn into two subsets—designated and undesignated elements—
in such a way that if one thinks about their characteristic functions then the resulting
connectives are classical. Note that disjunction and conjunction previously defined
remain the same. The author remarks that the Rosser and Turquette logics bear a
close resemblance to the three-valued Kleene logics. Consequently, he straightfor-
wardly generalizes Kleene’s construction onto the case ofn-valued logic and subse-
quently considersn-valued strong Kleene logic, which is, obviously, not function-
ally complete. Definitions of two families ofn-valued first-order logics in this no-
tation, Łukasiewicz and Post, including two infinitely many-valued versions of the
latter close the introduction.

Let us note that in the definition of the first-order valuation in Definition 2.19 on
p. 9, then-valuedquantifiers are interpreted asminandmax, respectively. This way of
defining quantifiers, acceptable for finitely-valued logics with linearly ordered values,
is unacceptable in some other cases, not to mention infinite logics with uncountable
sets of logical values.

Chapters 3–6 bring the most essential and relevant material. They concern the
tableaux in classical and, mainly, many-valued logics. Chapter 3 starts with an ex-
haustive introduction to that part of the book. The reader finds here a sketch of a rel-
atively short history of the subject. Let us mention only that the formal proof sys-
tems called semantic (or analytic) tableaux can be traced back to the early 1950s.
They have two founding fathers: Beth and Hintikka. Beginners may have some prob-
lems with crediting the early constructions, since the author’s reference to Beth is
indirect—the original 1955 famousSemantic Entailment an Formal Derivabilityis
cited through its 1986 appearance in a collection of logic texts published in Germany.
Hähnle distinguishes the 1968 Smullyan version of tableaux as particularly elegant
and underlines that most tableau systems used today are based on this formulation.
He does not, however, give any analysis of the similarities and differences of the germ
solutions by Beth and Hintikka.

3 Chapter 3 is entitledThe logical basis: signed analytic tableaux. Its four sections
form an introduction to semantic tableaux for classical logic, a sketch of two tableau
methods for finitely-valued logics, and a discussion of problems concerning multiple-
valued extension of tableau systems.

In Section 3.1,Signed tableaux for classical logic, wefind an account of seman-
tic tableaux for classical first-order logic. As is well known the tableau systems for
the logic in question come in two versions: signed and unsigned. In the first version,
a two-element set of prefixes, usually called signs,{ F, T} with F corresponding to 0
and T corresponding to 1, is used. Furthermore, the two approaches are equivalent.
The author prefers the signed approach since it is naturally adaptable to many-valued
cases. The obvious step leading from the two-valued to the multiple-valued signed
tableau system consists of introducing a more-than- two-element set of signs and thus



634 GRZEGORZ MALINOWSKI

generalizes the notion of a signed formula. Following Smullyan, the author divides
the set of signed formulas into four classes:α for propositional formulas of conjunc-
tive type,β for propositional formulas of disjunctive type,γ for quantified universal
formulas, andδ for quantified existential formulas. Next there come all necessary
definitions concerning tableaux, branches, closure, and so on.

Recall that the tableau method of constructing logics is a syntactic counterpart
of the method of verifying by contradiction whether a given formula is a tautology or
not. The property thatϕ is a first-order tautology is equivalent, in terms of Smullyan’s
signed approach, to the fact that{Fϕ} is a closed tableau, that is, each of its branches
contains a pair of complementary formulas: Fψ and Tψ. This adequacy (soundness +
completeness) theorem mentioned on p. 9 is completed by Remark 3.14 stating that
the strong soundness and completeness can be easily obtained from the former by
observing that the deduction theorem

{ϕ1, . . . , ϕn} |= ϕ iff |= ϕ1 ∧ · · · ∧ ϕn ⊃ ϕ

holds true. The author emphasizes that the above theorem does not hold in most
many-valued logics and, moreover, that the consequence relation is not necessarily
characterizable by finite matrices.

Contrary to the classical case the notion of a ‘sign’ or ‘prefix’ is central to the
approach to many-valued theorem proving presented in the book. Hähnle defines an
n-valued propositional logic as a tripleL = ( L, A, S ) whereS is a finite set of signs
with L ∩ S = ∅. Furthermore, he remarks that the selection of the set of signs will
result in different proof systems and force one to express basic queries, such as com-
pleteness, differently.

Building a multiple-valued tableau starts with the choice of a set of signs which
is an alphabetic variant of the truth value set. The rules of tableau construction reflect
matrices. The external link structure remains classical. Finally, the overall procedure
of constructing tableaux to verify tautologousness in every particular case depends
upon the designated set of valuesD or, more directly, on its complement to the set
of all logical values. If there is only one undesignated value, then one constructs one
tableau starting with the signed formula, with the sign corresponding to the value in
question. In general, as many tableaux must be opened as there are undesignated val-
ues.

Section 3.3,Multiple-valued extension of tableau systems, brings a concise pre-
sentation of Surma’s method of extending tableaux to handle any finitely-valued first-
order logic. The method was first presented by Surma in 1974 at the International
Symposium on Multiple-Valued Logics. Surma’s somewhat sketchy presentation
was developed, completed, and extended by Carnielli in 1987. The subsequent steps
of Hähnle’s presentation of the Surma-Carnielli method of refutation are illustrated
with examples anchored in the three-valued logicL3

M defined in Section 2.3. The
tableau rules mirror entries of the truth-tables of the connectives. Thus, for the dis-
junction∨ characterized by the max functioni ∨ j = max{i, j}, the disjunctive for-
mula signed with1/2, the rule emerges simply from the entry on the table described by
the formula

1/2(ϕ ∨ ψ) iff (1/2ϕ and 0ψ) or (1/2ϕ and1/2ψ) or (0ϕ and1/2ψ)
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and it has the following form.

1/2(ϕ ∨ ψ)
1/2ϕ 1/2ϕ 0ϕ

0ψ 1/2ψ 1/2ψ

As usual the vertical line signifies branching. It is obvious that in general the increase
of logical value increases both the number of rules and the size of branching.

The author also discusses Carnielli’s use ofdistribution quantifiersin a many-
valued tableau environment. The idea, originated by Mostowski in 1957, is roughly
that the quantifiers, including the standard two, are defined by the use of mappings
from the powerset of the set of logical valuesn into n. In this part of the book, Ḧahnle
recalls some defects of Carnielli’s early formalization, namely, the presence of incom-
plete quantifier rules, and he criticizes Carnielli’s refinement of introducing additional
rules with an empty premise as ineffective. The chapter closes with a discussion of
the advantages and disadvantages of Surma and Carnielli’s method. On the side of
merits there is, first of all, the ability to give a tableau proof system for many-valued
first-order logic including distribution quantifiers. Among the obstacles which make
the actual use of the method in a theorem prover highly problematic, the most impor-
tant and typical are: the redundancy of the representation of the many-valued space,
the complexity of quantifier rules, and the excessivity of the branching factor.

4 Chapter 4,A new technique: Truth value sets as signs, is the first part of the au-
thor’s own setting. It contains the detailed description of an original and new ap-
proach to automated deduction in multiple-valued proving. An ingenious solution,
which has to decrease redundancy of tableau systems considered in the preceding
chapter, is the use of sets of signs as prefixes instead of signs.

In Section 4.1,Sets as signs, wefind the detailed presentation of the new frame-
work. The algebra of signs for a given propositional logicL = ( L, A, S ) is defined
as an algebraAS = (S, f ′

1, . . . , f ′
r) similar to A = (N, f1, . . . , fr) with N finite and

the operations defined as mappings from finite sequences of elements ofS into sets
of signs:

f ′
1(S1, . . . ,Sm) =

⋃
{fi(j1, . . . , jm) | jk ∈ Sk,1 ≤ k ≤ m}.

Any algebraAS defines a semantics ofL in terms of truth values sets corresponding
to the members ofS. Thus, for a formulaϕ = F(ϕ1, . . . , ϕm) two related interpreta-
tions f and f′ of F in A andAS are associated. The definition of an (L-) tableau rule,
Definition 4.4 on p. 34, specifies the conditions ensuring all expected properties, that
is, soundness, completeness, and some minimizing requirements, expressed in terms
of linear subtrees calledextensions. A collection of extensions is aconclusionof a
tableau rule when it satisfies four conditions which relate possible functions of the
matrix with extensions and homomorphisms from the languageL into the algebra of
signsAS. The properties, which the class of homomorphisms associated to a given
logic must satisfy, imply a kind of minimality of a number of extensions as well as
exhaustiveness of the covering of the truth tables of the connectives. A minimal set
of homomorphisms associated to a connective immediately leads to a tableau rule.
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For the disjunction{1/2}(ϕ ∨ ψ) in the three-valued logic already considered, this set
of homomorphisms has two elementsh1 andh2:

h1(ϕ) = {1/2}, h1(ψ) = {0, 1/2}
and

h2(ϕ) = {0, 1/2}, h2(ψ) = {1/2}.
This, in turn, means that we get the following rule.

{1/2}(ϕ ∨ ψ)

{0, 1/2}ϕ {1/2}ϕ
{1/2}ψ {0, 1/2}ψ

(1)

The new paradigm requires some further changes in the conceptual environment.
To provide them all one should collect and consider all possible queries or, at least,
reduce them to a small set. The author is aware of that, and he gives a definition of a
contradiction set of signed formulas: A signed formula for which no rule is defined
is self-contradictory.

The section closes with two examples. The first, Example 4.8, brings a full
tableau system for the propositional part of the three-valued logicL3

M using the fol-
lowing set of signs:

{ {0}, {1/2}, {1}, {0, 1/2}, {1/2,1} }.
The set of rules, plainly presented on pages 38 and 39, consists of schemes such as
(1) for every set in the family just specified and for every connective ofL3

M. It might
be interesting to mention that for Rosser-Turquette connectives no rule with the pre-
fix {1/2} exists, which is a simple consequence of the fact that they range over the
set{0,1}. The last example, Example 4.9, contains theL3

M tableau proof of valid-
ity of the formula¬p ⊃ (∼ p ∧ ¬p). The functions corresponding to connectives
are: ¬i = 1 − i;∼ i = 0 if i = 1 and ∼ i = 1 otherwise; i ∧ j = min{i, j}; i ∨ j =
max{i, j}; and finally,i ⊃ j = j for i = 1 andi ⊃ j = 1 otherwise. Now, the proof
tree in the system designed by the author appears as follows:

(1) [−]{0, 1/2}(¬p ⊃ (∼ p∧ ¬p))

|
(2) [1]{1}¬p

|
(3) [1]{0, 1/2}(∼ p∧ ¬p)

|
(4) [2]{0}p

(5) [3]{0, 1/2} ∼ p (7) [3]{0, 1/2}¬p
| |

(6) [5]{1}p (8) [7]{1/2,1}p

closed with (4,6) closed with (4,8)

The next two sections, 4.2Soundnessand 4.3Completeness, provide a proof of
adequacy of the formalism. Consider a multiple-valued logic withN being the set
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of logical values andD the set of distinguished values, letN andD denote the sets
of signs corresponding toN andD, respectively. Then the fact that there is a closed
proof tree overN − Dϕ is abbreviated with the string	S ϕ and the property thatϕ is
anL-tautology with|=L ϕ. Soundness of a tableau formalism, that is, the implication
that	S ϕ implies |=L ϕ, holds true whenever the set S of signs iscomplete with re-
spect to L, which means that it contains all signs corresponding to all connectives of
L (see p. 41 for details). The last property yields that an appropriate rule(s) for signed
formulas in which F is the main connective is (are) defined and is ultimately the first
part of adequacy.

The completeness proof for the system may be obtained by closely following
the lines of standard tableau completeness proofs. In Section 4.3 the author makes
appropriate modifications to the definitions of a Hintikka Set and of the Analytic Con-
sistency Property adapting the whole apparatus to the many-valued case. Then, after
proving Hintikka’s Lemma and the Model Existence Theorem, a standard proof of
the implication from|=L ϕ to 	S ϕ follows. Hähnle claims, providing no justifica-
tion, that it is easy to extend and to pass through the whole procedure for first-order
formulas.

Section 4.4,Size of proof trees, brings an analysis of the size of proof trees de-
pending on the form of formulas. The only result here,Proposition 4.22, says that if
for a logicL the setSL of signs contains a sufficient number of signs, then no rule con-
structed according to the accepted standard has more thann extensions with at most
two formulas in each. Furthermore, the author claims that his approach achieves a
substantial improvement over several common many-valued logics: an appropriate
analysis permits him to delineate a class of such “well-behaving” systems and leads
to proofs which are not longer than in classical cases. Hähnle, however, is aware of
limitations of the method. The proofs for such logics as Łukasiewicz logics become
intractable, even for smalln.

Section 4.5,Function minimization, is devoted to the problem of finding SOP,
that is, sum-of-products, minimal representations of many-valued logical functions.
The method here is to adapt the well known two-valued device of Karnaugh to de-
scribe the many-valued connectives. The main goal and the result of the section is to
give an algorithm which permits one to find tableau rules for a signed formula whose
main connective is binary.

5 Chapter 5 is entitledUniform notation regained: regular logics. It brings an ex-
haustive discussion of the two problems related to the sets-as-signs formalization: the
classification problem for many-valued tableau rules and the question of introducing
quantifier rules.

In Section 5.1,Primary multiple-valued connectives, one finds an adaptation
of the well-known classification by Smullyan. First, eight primary connectives in a
givenn-valued propositional logic are listed. For uniform description of these con-
nectives the notion of the so-calledconjugatetruth value of a giveni ∈ N is defined,
which equals 1− i and is the value associated to negation of a formula evaluated as
i. ThesetD∗ = {1− i : i ∈ D}, that is, conjugate of the setD of designated values,
plays an important role in the characterization which follows. Namely,α andβ rules
for the nine connectives are given using four sets-as-signs:D, its complementD′, D∗,
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andD∗′. Depending on how the setsD′ andD∗ are related via inclusion, three kinds
of logics obtain. If, for example,D′ = D∗ and, consequently,D∗′ = D, the resulting
logic (with primary connectives) amounts to the classical logic, and its tableau system
is standard. In the remaining cases,D′ ⊂ D∗ andD′ ⊃ D∗, one gets two dual classes
of logics for which the tableau systems are unique and do not depend on the choice of
D,D′,D∗, or D∗′. The author finds this disappointing and finds it useful to consider
other possibilities for combining signs and rules so as to preserve the validity of the
α andβ rule schemata.

The following Section 5.2,Regular logics, is apartial reply to the request. The
author observes that a certain regularity can be found in the truth tables of sev-
eral multiple-valued functions. This applies in particular to functions correspond-
ing to primary connectives. A thorough analysis in this direction ends with a def-
inition of regular logicwhich, roughly speaking, is anyn-valued logic containing
only “regular” connectives and the set of signs which consists of sets of the form
{0, . . . , i − 1/n − 1} and{i + 1/n − 1, . . . ,1} denoted by< i and > i in the text
(see Definition 5.9 on p. 63). The device is so created that the resulting sound and
complete tableau system is given by the uniform notation styleα andβ component
rules which are natural generalizations of their classical counterparts and fall under
the overall schemata established in the previous section.

The main result in Section 5.3,On the scope of regular logics, Theorem 5.23,
says that for anyn there is a functionally complete regular logicL. The proof of the
theorem is based on the functional completeness of Post logics and the fact that the
Post negation is definable by the use of regular operators. Next to this, one finds an
estimation of the number of regular operators in a givenn-valued logic.

In Section 5.4,First-order multiple-valued logics, the author recovers the ques-
tion of introducing quantifiers and uniform tableau rules for these multiple-valued op-
erators. One of the aims of the approach is to get more compact rules than those of
Carnielli, discussed in Chapter 3. The author starts with the example of adapting the
sets-as-signs to two quantifiers in three-valued logic already appearing in Example
3.19 and showing the incompleteness of Carnielli’s approach. Now, the two quanti-
fiers Qx and Rxare described using sets-as-signs (more precisely, only one case of
the tableau for 1Qx and 1Rx and a simple exemplary tableau proof is presented of
inconsistency of the set� = 1(Qx)p(x),1(Rx)p(x) in Example 5.24 on pages 71
and 72). Contrary to the previous approach now, using new rules, the inconsistency
of � can be proved. The rules are

{1} (Qx)ϕ(x) {1} (Rx)ϕ(x)

{0}ϕ(c1) {0}ϕ(c3)

{1/2}ϕ(c2) {1}ϕ(c4)

{0, 1/2}ϕ(t2) {0,1}ϕ(t2)

whereci are new andti are arbitrary parameters. The tableau proof of inconsistency
of the set� runs in a straightforward way, the only difference in comparison to the
proofs in propositional logics is that now the use of Skolem constants is indispensable.
In this case also, an appropriate substitution fort2 in order to close the tableau should
be made.

Although this kind of characterization of quantifiers is handy and the proof of
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completeness of first-order tableau systems is easy to obtain (cf. p. 72), the rules are
not standard, that is, they are neither ofγ- nor of δ- type. For the purpose of get-
ting a required description and to extend the uniform notation of classical quantifiers,
the author concentrates on many-valued generalizations of the quantifiers∀ and∃.
The author limits his attention to the case of regular logics, that is, when only signs
> i and < i are allowed. Later then, the cases of the signs≥ i and ≤ i and the

singleton sign{i} = ≥ i ∩ ≤ i are also used. Theorem 5.26 on soundness and
completeness of natural many-valued counterparts of the classical uniform tableau
for first-order regular logics is a straightforward generalization of the classical one.
For its proof the author refers to Fitting and gives only “a nontrivial modification” of
some necessary results in Lemma 5.27 describing conditions of satisfiability of signed
by > i and < i formulas with quantifiers.

In Section 5.5,Extensions, wefind a discussion of the scope of the method pro-
vided in the book. First, the author conjectures that every logic with a uniform nota-
tion style tableau system is pseudo-regular. The property is connected with a possi-
bility of reordering of truth values and the use of special so-called filter connectives:
a logic is pseudo-regular if it can be made regular with the help of reordering truth
values and use of filter connectives. Next, he claims that there is room for further ex-
tensions received when the totally orderedN is replaced with partially ordered sets of
truth values and, for example, semi-latices. Hähnle remarks that all such structures
lead to nonlinear many-valued logics considered by Gabbay in “LDS-Labelled De-
ductive Systems.” On the other hand, he claims that infinitely many-valued regular
logics can be straightly handled using the rules from Section 5.2. Finally, the author is
aware of the difficulties arising in some particular cases of many-valued logics, with
Łukasiewicz logics foremost.

6 Chapter 6,Beyond tableaux, is concerned mainly with applicability of the con-
cepts developed by the author in the context of inference procedures which are po-
tentially more efficient than pure tableaux are. The concepts such as sets-as-signs,
regular signs, and connectives are adopted in many-valued variants of certain refine-
ments of analytic tableaux and some other classical procedures and other inference
techniques.

In Section 6.1,Lemma generation—asymmetric rules—analytic cut, one finds a
presentation of the problem of the technique calledLemma Generationin application
to β-rules in classical sentential logic. In general, there are several equivalent tableau
rules; for example, for F(ϕ ∧ ψ) they are as follows.

F(ϕ ∧ ψ) F(ϕ ∧ ψ) F(ϕ ∧ ψ)

Fϕ Fψ Fϕ Fψ Fϕ Fψ

Tϕ Tψ

Choosing any of the right side rules in a current application lies in the heart of the tech-
nique. Which one of the rules must be used depends on the situation on the branch
under consideration. Since these asymmetric rules provide, in a sense, more informa-
tion then the left-side basic rule, getting possible closure of the branch is simpler. In
each such case the second formula in the column may be treated as a lemma, which
is proved by the closed branch in which it appears.
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The author discusses the complete formulasDAk of orderk. These are conjunc-
tions of all possible disjunctions ofk propositional variables and their negations. For
k = 2 the formula in question is of the form

(p1 ∨ p2) ∧ (p1 ∨ ¬p2) ∧ (¬p1 ∨ p2) ∧ (¬p1 ∨ ¬p2).

It follows that all formulasDAk are unsatisfiable, although as it was shown by
D’Agostino in 1992 the shortest closed tableau is relatively long. Just the use of
lemma generation permits us to show that there are tableaux of polynomial size with
respect to the size of the input. The example supports the thesis that usual, unmod-
ified tableaux are less effective than truth table checking and gave D’Agostino the
incentive to design a system KE, which is distinctive in that only one of its rules has
more than one extension, while all its other rules are unary. The rule in question is the
principle of bivalence(PB). A version of KE with therestricted principle of bivalence
(RPB) is equivalent to tableaux with lemma generation.

In 6.1.3,Lemma generation in multiple-valued logics, Hähnle shows how lemma
generation can be extended to the many-valued case using the sets-as-signs frame-
work and outlines a many-valued KE system (MKE). The principle of multivalence
in MKE has, for any covering{S1, . . . ,Sm} ⊆ SL,S1 ∪ · · · ∪ Sm and a formulaϕ, the
following form

S1ϕ . . . Smϕ

and is a convenient tool for proof branching. The use of (PM) is illustrated on p. 89
on a version of the tableau proof of the signed formula{0, 1/2}(¬p⊃ (∼p∧¬p) ): after
Step (4)—see above—one uses (PM) for the covering{{0, 1/2}, {1}} and the formula
∼p, and branches the proof. It is worthwhile to note that the proof thus received is
longer than the original one. On the contrary, much shorter and more elegant is a
linear MKE proof of the same formula given on p. 90. It runs as follows.

(1) [−] {0, 1/2} (¬p ⊃ (∼ p∧ ¬p))

|
(2) [1] {1}¬p

|
(3) [1] {0, 1/2}(∼ p∧ ¬p)

|
(4) [2] {0}p

|
(5) [2,3] {0, 1/2}¬p

|
(6) [5] {1}p

Section 6.2,Tableaux as integer programming problems, is devoted to so-called
mixed integer programming. The author recalls a definition of a general MIP problem
(mixed integer programming) and its restricted versions, b-MIP problems (bounded
MIP problems). The former consists of minimalizing a linear function with respect to
aset of constraints given by linear inequalities in which rational and integer variables
occur. In the latter, all solutions must be in the rational interval [0,1]. If there are no
rational variables present we have a bounded integer programming (bIP) problem.
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In 6.2.2,Tableau proofs with constraints, the author gives many-valued con-
straint rules for the set of signs S being a sum ofm rational intervals inN—each
signed formula can be represented by at most 2m regular signs, such that anyk-ary
connective F is b-MIP-representable. The rules are given for Łukasiewicz implica-
tion in terms of ≤ i and ≥ i : the constraints are additional conditions appearing in
conclusions of the rules, and they either mark values of parameters or are inequalities
(possibly equalities) in which parameters are involved. Practically, constraints are al-
gebraic formulas defining connectives. The author defined the concept of a closed
tableau in this paradigm, appropriately choosing the bIP problem, in such a way that
a formulaϕ is a tautology iff there is a completed tableau for≤ n−2/n−1 , built up us-
ing constraints rules, which represents a constraint tableau proof (cf. Theorem 6.14,
p. 94). For the purpose of comparison, the author gives, in 6.2.3Example, two proofs
of the signed formula≤ 1/2 (p ⊃ (q ⊃ p)) in three-valued Łukasiewicz logic, one
derivation without and one derivation with constraints. This simple case in logic with
a small number of values shows how the latter may shorten a derivation. The “con-
straint” derivation has only nontrivial branches and the bIP problem corresponding
to it appears complex. For consolation, the author emphasizes that there exist very
efficient algorithms for solving bIP problems. He also remarks that although the bIP
problem does not become substantially more complex whenn grows, the conven-
tional tree proofs grow considerably.

The subsection 6.2.4,Complexity of multiple-valued logics, raises a natural,
though as the author says not necessarily interesting, theoretical perspective. Given
a logic with many-valued connectives one may consider the classification (of many-
valued logics) with respect to the maximum of the sum of all connectives and signs
S(i), where S(i) is one of ≤ i , ≥ i . The complexity, for example, of the classical
logic and Post logic is 2; the complexity of the classical logic with the equivalence
connective is 4.

In 6.2.5,A reduction from multiple-valued deduction to bMIP, it is shown that a
(constraint) tableau can be translated into a single constraint system, and thus it can, in
some sense, be linearized. In the following subsection the author shows that by using
constraint tableaux it is posssible to give a decision procedure for some infinitely-
valued logics. The result generalizes two previous approaches to infinite Łukasiewicz
logics by Beavers and by Mundici. Hähnle’s approach applies to all infinite logics
whose connectives are bMIP-representable.

Section 6.3,Other inference systems, briefly presents some techniques which
improve classical deductions and which can also be applied in a many-valued en-
vironment. Among these are tableau-like methods, decision diagrams, dissolution,
and resolution. The point is made that all these techniques are compatible with meth-
ods elaborated in the book. Next, the author gives his evaluation of the degree to
which the framework proposed in the book meets the desirable properties from the
Introduction. Chapter 6 closes with information on experimental implementations of
the three-valued theorem prover developed in the years 1990–92 in Germany under a
joint project between the University of Karlsruhe and the IBM Science Center in Hei-
delberg. The author lists some results of that implementation on a set of theorems of
interval arithmetic founded on many-valued logic. He compares Carnielli’s method
and the sets-as-signs approach. The second approach proves to give better results.



642 GRZEGORZ MALINOWSKI

7 Chapter 7,Applications, is of high importance though not only for automated the-
orem proving. As is well known, the problem with application of many-valued logics
is still among the contested questions of contemporary logic. Hähnle comes directly
to the point and asks, “Does many-valued theorem proving have any use?” The ques-
tion is a variation of the title of the well-known paper by Scott on many-valued logic.

7.1,Overview, contains an exhaustive list of actual or possible applications of
many-valued logics. The list is divided into eight parts corresponding to different ar-
eas of interest. These are: (1) program verification, specification, and synthesis; (2)
artificial intelligence; (3) logic; (4) natural language processing; (5) error-correcting
codes; (6) interval arithmetic; (7) hardware verification; and (8) quantum physics.
The following two sections contain more detailed descriptions of some listed appli-
cations.

In 7.2, Applications of a theoretical nature, one finds a short account of inde-
pendence proofs in Hilbert systems and a discussion of Belnap’s four-valued propo-
sitional logic corresponding to the axiom system of a first-order entailment logic. The
four values of this logic form a lattice. They are: Truth (T), Falsity (F), Both (values),
and None (its complement). Hähnle cites the 1990 paper in which D’Agostino gave
asimple signed tableau based on the set of signs, which is a special case of the tech-
nique elaborated in the book.

Next comes a short description of the1974 Suchoń tableau. The author rightly
claims that this is the first tableau axiomatization ofn-valued logic. Further, he re-
marks that in Suchón’s work the “sets-as-signs” notion is implicitly present. The
last theoretic application is an improvement of an S5-implementation by Caferra and
Zabel. This concerns using the sets-as-signs for a theorem prover for some proposi-
tional modal logics based on the propositional part of a many-valued theorem prover
based on the already mentioned work by Carnielli. The author outlines such a use of
his framework which permits saving much of the branching that cannot be saved by
identifying equivalent states.

Section 7.3,Applications of a practical nature, contains remarks on the use of
three-valued logic by Gerberding in modeling interval arithmetic, that is, such an ex-
tension of the usual arithmetic, which also operates on intervals. In the second part of
the section, entitled “Hardware verification,” Hähnle lists several potential applica-
tion areas for a many-valued theorem prover such as verification of genuinely many-
valued circuits, test pattern generation by propagation of undefined or error values,
and verification of the implementation of gates on the basis of switch level modes.
Besides bibliographical references and factography, one may find a number of re-
marks on the actual use of many-valuedness and related concepts, such as tempo-
ral logics in the domain. Closing this short part of the book, the author argues that
“genuinely many-valued reasoning techniques are potentially more efficient than re-
duction [of a temporal multiple-valued logic to classical propositional logic]” and
that “many-valued automated deduction is flexible and not restricted to any partic-
ular class of logics ....”

8 Chapter 8,A history of multiple-valued theorem proving, is an elegant, concise
and homogeneous overview of proof systems for many-valued logics. The existing
multiple-valued techniques may be, with a small exception, divided into two groups:
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systems based on some version of theresolution ruleand approaches founded upon
someprocedures for classical logic.

Section 8.1,Resolution-based systems, starts with an account of a historically
first (formulated by Morgan in 1976) many-valued system designed for many-valued
theorem proving. The system was primarily motivated by fuzzy logic and, more pre-
cisely, it emerged for the purpose of finite approximation of that logic. The main fea-
ture of Morgan’s solution consists in using the Ji functions as characteristic functions
of logical values of a first-order many-valued logic. Thus, clauses are of the form
Ji(p), for atomic p.

The next resolution-based proof system presented by Hähnle is a system con-
structed by Schmitt for a three-valued logic introduced by Fenstad et al. in connection
with natural language processing.

Slightly more space is then devoted to a nonorthodox Stachniak’s resolution sys-
tem, which is based on Tarski’s concept of consequence operation. The model for the
approach is the nonclausal resolution rule for the classical logic. Recall that in the
latter an important role is played by the disjunction connective, which is present in
the conclusion. Stachniak wants to get a tool for dealing with strongly finite logics,
that is, consequences which may be characterized by a finite class of finite matrices.
The main reason for dealing with nonclausal type resolution is that some logics may
not have sufficient expressive power to allow normal forms. To make his approach
more flexible and interesting the author assumes that logics taken into account have
a disjunction connective and, therefore, anSF-logic-resolution rule is defined as a
multiple-conclusion rule or, in other words, a branching schema. The system has also
the so-called transformation rules and�-rules (inconsistency rules). Here the role,
similar to that oft and f in the classical logic, is taken by the so-called verifiers. The
�-rules are defined on subsets of a given set of verifiers. Finding a (minimal) set of
verifiers for a givenSF logic is a nontrivial and not easy task. Just for that purpose
the use of some properties of consequence operation essentially weights. Ending his
instructive description of the framework, Hähnle remarks that there are several dif-
ficulties connected with the size of the resulting systems due to the branching factor
related to the number of verifiers, which are also not easy to find. He concludes that
an efficient implementation would be far from straightforward.

Next is a brief review of a resolution-based system for fuzzy logic. Here a fuzzy
logic means a logic where formulas have truth-values in the real interval [0,1]. We
find information on a first-order Lee and Chang system founded on the designated
set [0.5,1] and an extendedn-valued first-order Post logic of Di Zeno. The latter
logic contains additional disjunction and conjunction for each logical value, and its
restriction to some connectives is isomorphic with a suitable restriction of Lee and
Chang’s system. In turn, the author briefly outlines infinite generalizations of Post
logics,ω + 1-valued Post logics, constructed and investigated in Poland in the early
1970s. These infinite-valued logics were primarily motivated as a tool for describing
logic of programs. Ḧahnle points out that the infinite algebras, based on the chain
0 < 1 < · · · < ω, are potentially interesting for fuzzy application. This explains their
inclusion in this part of the book. The special feature of Post logics is the use of spe-
cial Di operators, which correspond to the signs> i and < i in regular logics. The
conjunctive normal forms (D-CNF) have literals of the form Di(p) or¬D j(p) where
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p are atomic. Although in general the D-CNF form of a given formula involves in-
finitely many clauses, it is possible to show, following Orłowska’s proof of the Her-
brand theorem, that all but finitely many statements of the form Di(p) are redundant.
Consequently, a finite resolution principle is sufficient. The section closes with infor-
mation on paraconsistent logics and resolution procedures for some systems of this
type.

Section 8.2,Other approaches, is areview of proof methods for many-valued
logics either related to semantic tableaux or having a special character.

In 8.2.1,Decision diagrams, wefind a short introduction to the method, the main
idea of which is to express any binary propositional function with a ternary if-then-
else connective. These are known as binary decision diagrams (BDD), and their tree
representations are Shannon graphs. The author outlines some modifications of the
method which lead ton-ary decision diagrams, and discusses some possible improve-
ments in the new environment. In the end, we find information on another approach
based on decision diagrams, which represents multiple-valued deduction as a unifi-
cation problem.

8.2.2,Approaches based on tableaux and Gentzen calculi, provides information
on the history of the subject, especially important since the author’s work departs
from the method of semantic tableaux. A brief exposition ends with references to
Hähnle’s own sets-as-signs approach and related formulations.

In 8.2.3,Path dissolution by Murray and Rosenthal, the author explains the idea
of an inference for the classical first-order logic, the base of which is removing the so-
calledlinkswhich are pairs of complementary formulas. Several remarks concerning
the problem of developing a many-valued dissolution rule follow. Hähnle claims that
dissolution seems to be a promising technique for theorem proving in many-valued
logics.

8.2.4,Beavers’ approach to Łukasiewicz logic Lω, brings a short account of a
proof method based on the McNaughton criterion of definability of connectives in
Łukasiewicz logics.

8.2.5,Mellouli’s three-valued extension of Plaisted’s modified problem reduc-
tion format, is an abbreviated exposition of a proof procedure invented as a kind of
extension of Prolog-style Horn clause logic programming to the first-order logic.

8.2.6,General frameworks, completes an exposition of proof methods. The au-
thor mentions that there are two general purpose approaches: Morgan’sAUTOLOGIC

and more recently Gabbay’slabeled deductive systems. The first of these works for
arbitrary propositional logics is characterized by finite axiom schemata and inference
rules, that is, having a Hilbert-style axiomatization. The second technique useslabels
that are attached to each formula and make semantical or meta-level information ex-
plicit in a formal derivation.

The purpose of Section 8.3,Discussion, is to give an overview and to evaluate
the work done in many-valued theorem proving. The author passes through the cat-
alog of criteria appearing previously. The discussion is rather shallow and not con-
vincing. We learn, for example, that the author is of the opinion that wide applicabil-
ity excludes all special purpose systems and that the first-order logics are difficult to
cover inAUTOLOGIC, adaptability of which depends on a Hilbert-style axiomatiza-
tion.
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9 Chapter 9,Conclusion, briefly summarizes the program of the book. It ends with
a projection of next steps to be made in the development of many-valued theorem
proving.

The book is well organized and clearly written. Although the main empha-
sis is put upon the author’s proper constructions—sets-as-signs and regular logics—
the reader obtains exhaustive and extremely concise information on automated proof
techniques directly or indirectly related to many-valued logics. This part of the contri-
bution brings perhaps the most comprehensive overview of activities to many-valued
theorem proving. The bibliographical documentation is certainly exhaustive: theRef-
erencessection numbers13 pages. The conciseness of the monograph is its big advan-
tage. However, for some readers the text might be too advanced to follow at once.
Some difficult parts are much more compact than the others.

The quality of editing is excellent. In the course of careful reading it is difficult
even to find print errors. Therefore, the reviewer is proud to mention one small flaw.
The row (7) in Figure 5.5 (p. 72) should read [2]{1}p(c4) instead of [2]{1/2}p(c4)!

The author’s original sets-as-signs construction is ingenious and natural. It is,
however, limited to linearly ordered sets of values: the very conception has an alge-
braic flavor. If we take into account the fact that the matrix method and the algebraic
approach to logical calculi is nowadays one of the most powerful tools for investiga-
tion, we may come to the conclusion that proposals such as Hähnle’s are of particular
interest. Possible extensions of the method onto other sets of values should present
no conceptual difficulties. In this respect the criteria establishing sufficient and nec-
essary conditions for a logic, defined through matrices, to have a given type of char-
acterization are important. Recall that the author was about to state such a criterion
for a class of these finite-valued logics with linearly ordered values. Actually, he only
conjectured in Section 5.5 as to which logics of this kind have a uniform notation style
tableau system. So, I claim that there remains still a lot to do in this direction.

In the end, I would like to add a general remark concerning the shape of many-
valued logical constructions. The author is rather insensible of the distinctions be-
tween different existing systems of many-valued logics. True, he is aware of the
seeming heterogeneity of many-valued logics and conceptual opaqueness, which
makes it hard to compare different systems against each other. . . (see p. 1). However,
in Section 2.3. he writes that Rosser and Turquette logics bear a close resemblance
to the three-valued Kleene logics and he even generalizes the Kleene’s construction
onto the case onn ≥ 4. In connection with that, let us remark first, that the two sys-
tems have totally different intuitive and philosophical motivations. Subsequently, for
both the implication counts. The implication connectives are definable using the clas-
sical pattern, that is, as¬p ∨ q. The difference now is very transparent: in the case
of RT logics,the formula in question defined a standard implication, that is, such that
p →q is undesignated if and only if p is designated and q is not. For Kleene, the
defined connective is totally different: for example p→ p is not a tautology when,
as Kleene wished, the truth is the only designated value. Moreover, since functional
completeness is often the required property of systems of many-valued logics taken
into consideration, one may also tell that from the algebraic and technical point of
view such problems are not of great importance. One must, nevertheless, not forget
that this is an actual use or application which forces a choice of one bunch of basic
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connectives or another.
The book is interesting and is an important contribution. I think that it should

find many readers not only among those who are working in theorem proving based
on many-valued, but also, more generally, those in nonclassical logic.
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