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Antifoundation and Transitive Closure
in the System of Zermelo

OLIVIER ESSER and ROLAND HINNION

Abstract The role of foundation with respect to transitive closure in the Zer-
melo systemZ has been investigated by Boffa; our aim is to explore the role of
antifoundation. We start by showing the consistency of “Z + antifoundation+
transitive closure” relative toZ (by a technique well known forZF). Further,
we introduce a “weak replacement principle” (deductible from antifoundation
and transitive closure) and study the relations among these three statements in
Z via interpretations. Finally, we give some adaptations forZF without infinity.

1 Definitions and prerequisites In this paper, byZ we mean the set theory of Zer-
melo without foundation. Recall that the axioms ofZ are: extensionality, pairing,
union set, power set, infinity in the original form of Zermelo:∃ξ ξ =
{∅, {∅}, {{∅}}, . . . } and the local versionAC of the axiom of choice: for every set of
nonempty sets, there exists a choice-function. InZ, we shall use the notion of class
as usual.

Remark 1.1 Although we have included the axiom of choice inZ for convenience,
all our results remain true forZ \ {AC} (except Proposition2.3 and maybe Theo-
rem 2.11for which it is an open question). This uses the interpretability ofZ in Z
\{AC}.

Definition 1.2

1. Theordered pair of a andb is defined by(a, b) = {{a}, {a, b}}.
2. A class-function of domain A (class) is a classF of ordered pairs such that

(∀a ∈ A)(∃!b)((a, b) ∈ F); as usual, this uniqueb will be notedF(a).
3. A function is a class-function which is a set.
4. An ordinal is a transitive set well-ordered by the relation∈. We denote byOn

the class of ordinals.
5. A classX is transitive if and only if (∀z ∈ X)(∀t ∈ z)(t ∈ X).
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6. Thetransitive closure of a setx is defined by

TC(x) =
⋂

{y|x ⊆ y & y is a transitive set}.

7. TC is the transitive closure axiom:∀x ∃t x ⊆ t ⊆ P t.
8. A graph is a structure of type(G,∈G) whereG is a set and∈G ⊆ G × G.

We will often allow ourselves just to write ‘G’ for ‘ (G,∈G)’. We also write
‘ (Y,∈Y )’ for ‘ (Y,∈G ∩ (Y × Y ))’ to denote the graph obtained by restricting
∈G to Y ⊆ G.

9. For a graphG andg ∈ G, wedefinegG = {h | h ∈G g}.
10. A subsetX ⊆ G (graph) isG-transitive if and only if (∀z ∈ X)(∀t ∈G z)(t ∈ X).
11. For a graphG, theG-transitive closure of X ⊆ G is defined by

TCG(X) =
⋂

{Y | X ⊆ Y & Y is a setG-transitive}.

12. Anapg (accessible pointed graph) is a structure of type(G,∈G, n(G)) where
G is a set,∈G ⊆ G × G, andn(G) is a distinguished element ofG, realizing
TCG({n(G)}) = G.

13. An isomorphism of apg is a graph isomorphismf : G → G′ realizing

f (n(G)) = n(G′).

14. A decoration of a graphG is a functiond realizing

(∀g ∈ G)(d(g) = {d(z) | z ∈G g}).

15. AFA is the well-knownantifoundation axiom: each graph has exactly one dec-
oration.

16. A structure of type(X,∈X ) whereX is a class and∈X ⊆ X × X is calledwell-
founded if and only if

(∀a ⊆ X
)(

a �= ∅ =⇒ (∃z ∈ a)(∀t ∈X z) t �∈ a
)
.

17. MOST is Mostowski’s collapsing principle: each well-founded graph has a
(necessarily unique) decoration.

18. WREP is the followingweak replacement principle (it is a scheme in our first-
order language). For any seta and F a class-function: if{F(x) | x ∈ a} is a
transitive class, then it is a set.

2 Relations among AFA, TC, and WREP

Proposition 2.1 (in Z) AFA + TC =⇒ WREP.

Remark 2.2 The axiomTC cannot be dropped as is shown by Theorem2.12.
Proposition2.6shows that, inZ, WREP + AFA does not implyTC.

Proof of Proposition 2.1: It suffices to prove that if a class-functionJ injects a tran-
sitive classX into a setb thenX is a set. Define a graphG by

G = {J(t) | t ∈ X} & J(z) ∈G J(t) iff z ∈ t.
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The axiomAFA guarantees that(G,∈G) has a decorationd. It is easy to check that
both d ◦ J and the identity function are decorations for the graph (TC({a}),∈) (for
eacha fixed in X), so that (byAFA): (∀z ∈ X)(d(J(z) = z)). So X is exactly the
image of the setG under the functiond and is itself a set. �

Proposition 2.3 (in Z + MOST) Every set is in bijection with an ordinal.

Proof: Let a be a set and letu �∈ a. Let ch be a choice-function onP a \ {∅}. Define
a function f by induction onα ∈ On:

f (α) =
{

ch(a \ { f (β) | β < α}) if this set is not empty,
u otherwise.

There exists an ordinalα such thatf (α) = u. OtherwiseOn could be injected ina
by a class-functionF. Define a graph(G,∈G) in the following way: G = im( f ),
∈G = {(x, y) | F−1(x) ∈ F−1(y)}. (G,∈G) is a set sinceG ⊂ a and this graph is
obviously wellfounded, so has a decorationd. One check by induction onα ∈ On
that, for x ∈ G, d(x) = F−1(x). This gives im(d) = On andOn would be a set, a
contradiction. Now the first ordinalα with f (α) = u is in bijection witha. �

Definition 2.4 Wedefine inZ, #a as being the least ordinal in bijection witha if it
exists. By Proposition2.3, #a always exists inZ + MOST.

The aim is now to show the interpretability of antifoundation in Zermelo. The proof
is similar to the one inZF (see, e.g., Aczel [1]).

Proposition 2.5 There is an interpretation of Z + AFA + TC in Z.

Proof: We use the well-known “trick” ofgraph-models; the reader can find earlier
variants of this in Hinnion [7], Forti and Honsell [5], and [1].

Consider asuniverse the classM of the strongly extensional (in the sense of [1])
apg’s. Let us recall that a bisimulation on a graphG is an equivalence∼ on G such
that “x ∈G y ∼ y′ =⇒ (∃x′ ∈G y′)(x′ ∼ x)” holds inG; that any graphG admits a
maximum bisimulation which is exactly the union of all bisimulations onG; thatG
is strongly extensional if and only if (definition) its maximum bisimulation coincides
with equality (onG). It is also useful to keep in mind that any strongly extensional
graphG is necessarilyFinsler-(strongly) extensional, that is, it satisfies

∀x, y ∈ G
(
((TCG({x}),∈G, x)

as apg∼= (TCG({y}),∈G, y)) =⇒ x = y
)
.

The reader can find more about bisimulations and strong forms of extensionality in
Hinnion [8] and [1]. The∈-relation of our interpretation is defined forG, G′ ∈ M by

G′ ∈M G ⇐⇒ (∃x ∈G n(G)
)(

(TCG({x}),∈G, x)
as apg∼= G′).

At last, interpret equality onM as apg-isomorphism, that is,G =M G′ if and only if G ∼=
G′. It is asimple routine task to check that the structure(M,∈M,=M ) is an interpre-
tation forZ + AFA +TC. �
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Proposition 2.6 There is a supertransitive interpretation of Z + AFA + ¬TC +
WREP in Z + AFA +TC +∃�ω .

Comment 2.7 The axiom∃�ω is the following: thebeth number of level ω (the
first limit ordinal) does exist as a set (actually�ω is the cardinal⋃

n∈ω

�n with �0 = ℵ0 and�n+1 = 2�n ).

Comment 2.8 An interpretation is supertransitive (see Boffa [3]) if it is a structure
of type (M,∈)(∈M is the “true”∈ and=M is the “true”=) whereM is a supertran-
sitive class, that is,M is transitive and realizes:x ⊆ y ∈ M =⇒ x ∈ M.

Comment 2.9 This is the analogue, with antifoundation in place of foundation, of
Theorems 2 and 5 of [3].

Proof of Proposition 2.6: Working inZ + AFA + TC +∃�ω, we can easily construct
a setb = {bi | i ∈ ω} such thatbi = {bi+1} ∪ �i (just decorate the adequate graph).
Then take the classM = M�ω

(∅) as defined in [3]:

M = {x | (∀n ∈ ω)
⋃n

x is of power < �ω}.

Theorem 5 of [3] can be obviously adapted to work here and shows that this class
gives a supertransitive interpretation ofZ. The supertransitivity immediately guaran-
teesAFA + WREP in M. But evidentlyTC is false inM because the transitive closure
of b0 (for example) is of cardinal�ω. �

Remark 2.10 To prove this proposition we have added toZ the axiom∃�ω which
cannot be interpreted inZ. The next theorem shows that if we want the interpretation
to be supertransitive, we cannot avoid this axiom. Theorem2.12gives nevertheless
the relative consistency ofZ + AFA + ¬TC with Z via a more complicated technique
(permutation models).

Theorem 2.11 Let Z∗ be an extension of Z such that there is a supertransitive in-
terpretation of Z + AFA + ¬TC in Z∗+ TC. Then there is an interpretation of Z
+∃�ω in Z∗+ TC.

Proof: Let us work inZ∗+ TC. Let (M,∈) be a supertransitive interpretation ofZ
+ AFA + ¬TC. By Proposition2.3, #a exists inM for anya ∈ M. Since(M,∈) is
supertransitive, we have that the internal cardinal of anya ∈ M agrees with its exter-
nal cardinal; so we can speak aboutthe cardinal ofa without confusion. Leta ∈ M be
such thata has no transitive closure inM. For anyi ∈ ω, let ai = ∪ia and letλi = #ai.
Let us first prove the following preliminary fact:

(∀i ∈ ω)(∃ j ∈ ω)(#a j � �i). (∗)

If not, we should have

(∃i ∈ ω)(∀ j ∈ ω)(#a j < �i).
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Then it would follow that the class TC(a) can be injected in�i and so TC(a) would
be a set in(M,∈) by Proposition2.1, acontradiction.

Since the ground universe satisfiesTC, TC(a) is a set in this ground universe.
By (∗), the class�ω can be injected inTC(a) and so, inZ∗+ TC, there is a graph
isomorphic to the structure(�ω,∈). We interpret nowAFA in Z∗+ TC as described
in Proposition2.5. It is now clear that this last interpretation satisfies∃�ω. �
The next theorem shows that inZ, if one does not haveTC, one cannot prove thatAFA
=⇒ WREP. It gives also the relative consistency ofZ + AFA + ¬TC relative toZ.
We use the technique of permutations. Similar results for foundation instead ofAFA
can be found in Boffa [2].

Theorem 2.12 There is an interpretation of Z +AFA + ¬WREP in Z.

Proof: We begin to interpret the theoryZ + AFA + TC in Z (see Proposition2.5).
Let M = Rω+ω. Recall that theRα’s are defined by induction onα ∈ On in the fol-
lowing way: Rα = ⋃

β<α

P Rβ. Using Proposition2.1, we easily see thatRω+ω exists

as a class. Letai = �i × {�i} (for i ∈ ω). Let us consider the permutationϕ on M
defined in the following way fori ∈ ω:


ϕ(ai) = {ai+1}
ϕ({ai+1}) = ai

ϕ(x) = x if (∀i ∈ ω)(x �= {ai+1} & x �= ai)

.

Define∈ϕ on M by: x ∈ϕ y ⇐⇒ ϕ(x) ∈ y. Various set-theoretic operations will be
used with an indexϕ when they are to be considered in the sense of(M,∈ϕ).

The permutationϕ satisfies conditions 1 and 2 of [2], so (M,∈ϕ) |= Z. Let us
prove that(M,∈ϕ) |= ¬TC. For example,{a0} has no transitive closure in(M,∈ϕ).
Otherwise, putt = TCϕ({a0}). Wehave

· · · ∈ϕ {a2} ∈ϕ {a1} ∈ϕ {a0},
thus∀i {ai} ∈ϕ t, which gives(∀i � 1)(ai−1 ∈ t) which is impossible since #t would
be equal to�ω.

Let us prove now that, in(M,∈ϕ), each graph has a decoration. It amounts to
proving that for each graph(G,∈G), there is a∈ϕ-decorationdϕ; that is,dϕ is a func-
tion of domainG such that

(∀x, y ∈ G
)({y | y ∈ϕ dϕ(x)} = {dϕ(z) | z ∈G x}).

Let d be a decoration (in the usual sense) ofG; for technical reasons, we suppose
also that(∀g ∈ G)(g �∈ TC(dom(ϕ))—by dom(ϕ), we mean{x ∈ M | ϕ(x) �= x}. To
eachg ∈ G with d(g) = ai, weassociate an apgK(g) = (K(g),∈K(g), n(K(g))) as
follows: 


K(G) = TC({{ai+1}})
n(K(g)) = {ai+1}
∈K(g) = ∈ ∩ (G × G)

.

Notice that{K(g) | g ∈ G ∩ dom(K)} is a set (dom(K) is the domain of the function
K : g → K(g), that is, dom(K) = {g ∈ G | d(g) = ai}). We define a graphG′ (it
clearly suffices to define∈G′). For x, y ∈ M, we definex ∈G′ y to be the disjunction
of the following conditions:
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(i) x ∈ G & y ∈ G & ∀i x �= ai & x ∈G y;

(ii)
(∃g ∈ G

)(
x ∈ K(g) & y ∈ K(g) & x ∈ y

)
;

(iii)
(∃g ∈ G

)(
x = n(K(g)) & y ∈ G & g ∈G y

)
.

Let d′ be a decoration ofG′. Notice that ife ∈ K(g) for a g ∈ G, thend′(e) = e. We
definedϕ on G in the following way:

(i) if d(g) = ai, dϕ(g) = ai;

(ii) if d(g) �∈ {ai | i ∈ ω}, dϕ(g) = d′(g).

In order to prove thatdϕ is an∈ϕ-decoration ofG, let us prove the following prelim-
inary fact.

Fact 2.13 If d(g) �∈ {ai | i ∈ ω} then dϕ(g) �∈ dom(ϕ).

Proof: Suppose that
(∀h ∈ TCG(gG)

)(
d(h) �∈ dom(ϕ)

)
. In this case, we see that

dϕ�TCG(gG) is a decoration of TCG(gG) and thus we havedϕ(g) = d(g) �∈ dom(ϕ).
Wecan thus suppose that

(∃h ∈ TCG(gG)
)(

d(h) ∈ dom(ϕ)
)
. We can find a path

g0 ∈G g1 ∈G · · · ∈G gn = g with d(g0) = ai for ai ∈ ω andgi �= ai (for 1 � i � n). By
construction, we haven(K(g0)) ∈G′ g1 ∈G′ · · · ∈G′ gn = g and alsod′(n(K(g0))) ∈
d′(g1) ∈ · · · ∈ d′(gn) = d′(g). As d′(n(K(g0))) = {ai+1} andd′(g) = dϕ(g), we
have{ai+1} ∈ TC(dϕ(g)). Looking at the definition ofϕ, wesee that no elements of
dom(ϕ) satisfy this condition. This achieves the proof of Fact2.13. �
Let us prove thatdϕ is an∈ϕ-decoration ofG. Supposex ∈G y.

(i) If d(x) = ai, wehave thatdϕ(x) = ai anddϕ(y) = d′(y). By the construction
of G′, we have{ai+1} ∈ d′(y) and thusdϕ(x) = ai ∈ϕ dϕ(y).

(ii) If d(x) �∈ {ai | i ∈ ω}, we havedϕ(x) = d′(x), dϕ(y) = d′(y), andd′(x) ∈
d′(y). By Fact2.13d′(x) �∈ dom(ϕ) anddϕ(x) ∈ϕ dϕ(y).

Wehave thus proved that(∀x, y ∈ G
)({y | y ∈ϕ dϕ(x)} ⊇ {dϕ(z) | z ∈G x}).

It is easy to see that we have the equality.
Let us now prove the uniqueness of the decoration. Suppose we have a graphG

and two∈ϕ-decorations:dϕ andd̃ϕ. Consider the graph(G′,∈G) as previously and
consider a decorationd of G.

Fact 2.14 dϕ(g) ∈ dom(ϕ) =⇒ (
dϕ(g) ∈ {ai | i ∈ ω} & dϕ(g) = d(g)

)
for all g ∈

G.

Proof: We have thatdϕ(g) �∈ {{ai} | i ∈ ω} since{ai} has no transitive closure in
(M,∈ϕ). Suppose thatdϕ(g) = ai for a i ∈ ω. In this casedϕ�TCG(gG) is a decoration
of TCG(gG) and thusdϕ(g) = d(g). �
Let us now define two functionsh andh′ of domainG′. Let e ∈ G′. We define the
following:

(i) if e ∈ K(g) for a g ∈ G: h(e) = h′(e) = e;

(ii) if e �∈ K(g) for all g ∈ G: h(e) = dϕ(e), h′(e) = d̃ϕ(e).
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Using Fact2.14and by similar arguments as those used before, we see thath andh′

are two decorations ofG′ and thath �= h′.
Let us prove now that(M,∈ϕ) �|= WREP. Consider the classT = TCϕ({a0}).

Weeasily see thatT = {{ai} | i � 1} which is clearly in bijection withω. But T is not
a set. This achieves the proof of Theorem2.12. �

3 Other forms of antifoundation In [1], other forms of antifoundation are consid-
ered, namely,FAFA andSAFA, respectively, in relation to Finsler (strong) extension-
ality and Scott (strong) extensionality, and we express (in the local version here) as:
a graph has an injective decoration if and only if this graph is strongly extensional
(respectively, in the sense of Finsler/in the sense of Scott). Our proofs can easily be
adapted to show that our results are still true forFAFA or SAFA in place ofAFA.

Our results also hold with the local universality axiomU� (see Boffa [4]) except
Proposition2.1 and Theorem2.11. Let us recall thatU� is defined by ‘each exten-
sional graph has an injective decoration’. It should be noticed that some proofs need
more adaptations here than forFAFA orSAFA. Proposition2.5furnishes a good exam-
ple: the construction (as explained there) does not work simply by replacing “strongly
extensional” by “extensional.” One has to modify the proof like this: start with the
classM∗ of all extensional pointed graphs (i.e., structures of type(G,E, z), whereG
is a set,E ⊆ G × G andz ∈ G) and define∈∗ (on M∗) by: (G,E, z) ∈∗ (G′,E ′, z′)
if and only if G = G′ & E = E ′ & zEz′. The structure(M∗,∈∗) is universal in the
sense that any extensional graph is isomorphic to someM∗-transitive subset ofM∗,
but (M∗,∈∗) is not itself extensional, so (a fortiori) not an interpretation forZ. It suf-
fices, however, tocomplete M∗ by adding copies ofP M∗, P 2M∗, P 3M∗, . . . such
that all theseP k M∗ are disjoint (fork ∈ ω). Notice that, for a classX, we defineP X
as the class of allsubsets of X and that the unionM of the copies of theP k M∗ can
indeed be defined inZ. Naturally onecompletes also∈∗ in the obvious way (e.g., if
a ∈ P M∗, we want thatx ∈M a if and only if x ∈ a, wherez is thecopy of z and∈M is
thecompletion of ∈∗). One can easily check that(M,∈M ) is an interpretation forZ,
except extensionality, and that it is still a universal structure. It suffices now to define
=M as the minimum contraction on(M,∈M ), that is, the least (for⊆) bisimulation∼
on (M,∈M ) such that the quotient(M,∈M )/∼ is extensional, to get an interpretation
of Z +U�+ATC (details about these considerations can be found in [8], [5], and [1];
technically the situation here is relatively simple because we do not need to modelize
the replacement scheme); this proof is close to the one of von Rimscha [9] adapted
to Z.

4 A few words about ZF without infinity In Hauschild [6] i t is shown thatZF0

(i.e., the Zermelo-Fraenkel set theory without infinity, but with foundation for sets)
cannot proveTC (because it cannot prove the foundation scheme, i.e., foundation for
classes).

The main results proved in Section2 can be adapted to work withZF−
0 (i.e.,ZF

without infinity nor foundation) instead ofZ. Wegive hereafter the statements of the
adapted results. First notice that triviallyZF−

0 |= WREP.

Proposition 4.1 (see Proposition2.5) There is an interpretation of ZF−
0 + AFA +

TC in ZF−
0 .
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In ZF−
0 , the axiom∃�ω introduced in Proposition2.6 is clearly equivalent to the ax-

iom of infinity. Denote byZF− the theoryZF without foundation. Proposition2.6
becomes the following.

Proposition 4.2 There is a supertransitive interpretation of ZF−
0 + AFA + ¬TC in

ZF−+ AFA.

Proof: Replace the classM in Proposition2.6by the following:

M = {x | (∀n ∈ ω)
⋃n

x is finite}.
�

Theorem2.11becomes the following proposition.

Proposition 4.3 Let ZF−
0

∗ be an extension of ZF−
0 such that there is a supertran-

sitive interpretation of ZF−
0 + AFA + ¬TC in ZF−

0
∗+ TC, then ZF−

0
∗ |= ZF−.
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dans lesNew Foundations de Quine,”Comptes-rendus de l’Académie des sciences de
Paris, t. 282, s. A (1976), pp. 1–3.Zbl 0324.02056 MR 53:7781 2

[8] Hinnion, R., “Extensional quotients of structures and applications to the study of the ax-
iom of extensionality,”Bulletin de la société mathématique de Belgique, śerie B, vol. 33
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Université libre de Bruxelles
Campus du Solbosch
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