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AN INFORMATION-BASED THEORY OF
CONDITIONALS

WAYNE WOBCKE

Abstract We present an approach to combining three areas of research which
we claim are all based on information theory: knowledge representation in Ar-
tificial Intelligence and Cognitive Science using prototypes, plans, or schemata;
formal semantics in natural language, especially the semantics of the ‘if-then’
conditional construct; and the logic of subjunctive conditionals first developed
using a possible worlds semantics by Stalnaker and Lewis. The basic premise of
the paper is that both schema-based inference and the semantics of conditionals
are based on Dretske’s notion of information flow and Barwise and Perry’s notion
of a constraint in situation semantics. That is, the connection between antecedent
A and consequent B of a conditional ‘if A were the case then B would be the
case’ is an informational relation holding with respect to a pragmatically deter-
mined utterance situation. The bridge between AI and conditional logic is that
a prototype or planning schema represents a situation type, and the background
assumptions underlying the application of a schema in a situation correspond to
channel conditions on the flow of information. Adapting the work of Stalnaker
and Lewis, the semantics of conditionals is modeled by a refinement ordering on
situations: a conditional ‘if A then B’ holds with respect to a situation if all the
minimal refinements of the situation that support A also support B. We present
new logics of situations, information flow, and subjunctive conditionals based
on three-valued partial logic that formalizes our approach, and conclude with a
discussion of the resulting theory of conditionals, including the “paradoxes” of
conditional implication, the difference between truth conditions and assertability
conditions for subjunctive conditionals, and the relationship between subjunctive
and indicative conditionals.

1. Information Flow and Schema-Based Inference

The aim of this paper is to combine three strands of research, in artificial intelligence,
semantics, and logic. One basic question concerns the semantics of schemata or other
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similar knowledge structures such as prototypes (Rosch [56]), frames (Minsky [45]),
and scripts (Schank and Abelson [59]), representations widely used in artificial intel-
ligence. Just what do schemata represent? To answer this question, we draw on the
theory of situation semantics (Barwise and Perry [10]). The main feature of situation
semantics that is useful for interpreting schemata is the partiality of situations and
situation types. Two distinct senses of partiality are involved: (i) partiality in the
sense that a situation need not decide every fact (a schema represents only part of the
world), and (ii) partiality in the sense that situation types may contain object and event
types (serving as the interpretations of the variables or placeholders in a schema): this
kind of partiality arises from abstraction.

A knowledge-based system typically contains not just one schema but a collection
of schemata usually organized in a hierarchy. This raises the question of what the
hierarchical relationship between schemata represents. To answer this question, we
use the notion of a constraint. In situation semantics, constraints between event types
model meaningful relations: a constraint ‘A involves B’ holds if whenever some situ-
ation supports A, there must be some related situation that supports B. In this paper,
schema-based inference is modeled using constraints. However, constraints are not
formalized directly, but rather as arising from a more basic hierarchical relationship
between situation types that we call the refinement relation. This is meant to cap-
ture the idea that a schema is used in reasoning as an idealization or abstraction of
a complex state of affairs, and as such, its application relies on a collection of back-
ground assumptions. As a reasoner moves through the hierarchy to more and more
specific schemata, the set of background assumptions underlying the applicability of
the schemata change. These background assumptions are intended to characterize the
context of application of the schema: schema-based reasoning is situated reasoning,
or reasoning in context. On our approach, the conditionals accepted by the agent in
a situation are determined by the minimal refinements of the situation: a conditional
‘if A then B’ is accepted if all the minimal refinements of the situation that support
A also support B. As the reasoner moves about the hierarchy, the refinements of the
situation change, and the conditionals accepted also change.

A more detailed intuitive picture is as follows. At any time, the agent is in some
situation that it classifies as being an instance of some situation type σ . Any con-
ditionals accepted are determined by applying the schema to the present situation:
applying a given schema to a given situation means grounding the variables in the
schema to particular objects in the situation and then copying part of the schema hier-
archy with root at the given schema (with variables grounded) to form a new hierarchy
of situations rooted at the given situation. We will say that the situation in this way
inherits the constraints from the situation type of which it is classified. Furthermore,
when the agent learns a new fact A, it should reclassify the situation using one or
more refined situation types than σ that support A; as a result, the constraints and
hence the conditionals accepted by the agent will change. For example, suppose the
agent is trying to start its car and classifies its current situation as being of type σ

that supports two event types (and the constraint) between turning an ignition key
and the car’s starting. The agent accepts the conditional ‘if I were to turn this key
then this car would start’. Now suppose the agent learns that the car’s battery is dead.
The agent should reclassify the situation using a more specific type that represents
the constraint that turning an ignition key in a car with a dead battery means the car
won’t start. The agent then accepts conditionals such as ‘if I were to turn this key then
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this car wouldn’t start’ and ‘if I were to charge this battery then this car would start’.
The hierarchy of schemata thus implicitly represents a collection of constraints with
varying background contexts of applicability.

The situation semantics notion of constraints comes from Dretske’s theory of
information (Dretske [21]): a constraint ‘A involves B’ primarily reflects the property
that a signal A carries the information B. In Dretske’s theory, information is viewed as
a commodity that can be transmitted over channels via signals and extracted from those
channels by agents attuned to the information they carry. Dretske’s central examples
are real physical channels like the channels on a television set that carry information
about what occurred prior to transmission. What is important about constraints is that
the flow of information is regulated by lawlike connections: accidental correlations
cannot convey information. As a simple example, even when it is 4 p.m., a broken
watch that always shows the time as being 4 p.m. does not convey the information that
it is 4 p.m. because the watch would have displayed this anyway (even when it was not
4 p.m.). That is, the channel of communication has to constitute a reliable indicator
of the state of affairs obtaining at the source of the transmission for information
flow to occur. Thus the flow of information along a channel is contingent on a
set of background “channel conditions” which together ensure the veracity of the
information transmitted. This means that information flow, like schema application,
is “situated” or dependent on context. Although this seems at first sight to conflict
with the condition that constraints are lawlike, constraints are still underwritten by
causal laws: it is just that the scheme of such laws is thought of as set against an
implicit background.

Real physical channels are far removed from schema application in knowledge
representation systems. However, we claim that the relevant features of physical
channels do apply to schema-based inference and default reasoning. Let us illustrate
this claim with perhaps the two most overused examples of the bird object type in a
type hierarchy and the restaurant script in a planning hierarchy. The schemata are
used to infer that Tweety flies or that the customer paid for lunch. Now the distinctive
mark of information flow is its lawlike (or nomic) nature, the fact that the signal must
carry the information. To make sense of these schema-based inferences, we take it
that the collection of schemata represent channels consisting of lawlike connections
between properties or events. So there is a “channel” connecting the property of
being a bird and the property of flying. Although Tweety’s being a bird may not
cause its flying, the relationship between Tweety’s flying and its being a bird is not an
accidental one (if any other object were a bird, it would also fly). Similarly, in the case
of inference based on plan schemata, although Schank and Abelson [59] explicitly
define a script as representing a network of causal relationships between events, these
causal relations include relations such as enablement or motivation which are not
notions of causality used to describe physical channels. Nevertheless, there is a sense
in which paying is related to eating lunch at a restaurant in a lawlike rather than
accidental way (the customer has to pay at the restaurant in order to fulfill social
obligations, and anyone else going to the restaurant would also have to pay).

Inferences made using schemata differ from inferences based on information flow
in one very important respect. This is that inferences made using schemata are
defeasible, that is, subject to review as further information is obtained: the inference
that Tweety flies has to be retracted when it becomes known that Tweety is a penguin.
But on Dretske’s definition of information, no signal can carry the information that p
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unless p is true (no signal can carry the information that Tweety flies unless Tweety
actually does fly). Thus the status of an inference as information entails, additionally,
the property of nondefeasibility. This means that the logic of information flow is
different from the logic of default inference, analogous to the way in which the logic
of knowledge differs from the logic of belief. However, an agent is usually in no
position to know whether or not it has information, so for an agent any information-
based inference is just as provisional as any default inference.1 It is this property
that enables schema-based inference, though defeasible, to be regarded as being
supported by constraints. To fix terminology, we call an inference information-based
if it has the status of information and hence is nondefeasible; we call an inference
constraint-based if it is based on a signal flowing along a channel that does not
necessarily have the status of information. This terminology is justified in part by
Dretske’s observations on Barwise and Perry’s use of constraints to model linguistic
conventions: linguistic conventions can be violated whereas informational relations
cannot (Dretske [22]).

So far, we have argued that schema-based inference is a special type of defeasible
inference based on information flow along channels whose background supporting
conditions are unknown to the agent. As noted above, information flow is supported
by lawlike regularities, but whether information flows along a channel can only be de-
termined relative to these background channel conditions. Let us now emphasize that
even though it initially appears that Dretske’s theory of information flow is narrowly
applicable only to real physical channels, he clearly intends the theory of information
to be applied far more widely: in fact, for Dretske [21], information flow can be
relative to agents’ beliefs, goals, and purposes, as is required for their application in
the kinds of social settings represented by scripts, for example. To explain this, first
recall that information flows along a channel only if there is a lawlike relationship
between the signal and the information carried. This means that information flows in
some situation only if there are no relevant alternative situations in which the signal
occurs without the presence of the purported information. Fixing the channel condi-
tions amounts to delineating the space of relevant alternative situations, and then the
question of which information is conveyed becomes an objective and absolute matter.
However, the key point is that the concept of relevance used to fix the background is
open to the “interests and purposes of people applying it” ([21], p. 133) which makes
the concept of information similarly relative to agents’ interests and purposes. The
important consequence for our discussion is that a reasoning agent which needs to
cope with varying sets of channel conditions, and moreover, does not know whether
those channel conditions hold in any given situation, has the same beliefs and disposi-
tions to change beliefs as an agent which attempts to facilitate reasoning by applying
a collection of schemata whose context of application it may not know, in situations
in which it cannot be certain which schemata are applicable. If the agent itself needs
to handle shifts in context, its inferences must be defeasible, regardless of whether or
not those inferences are based on information.

Thus, we conclude, schema-based inference is constraint-based inference, or infer-
ence based on signals flowing along channels that result in information if the channel
conditions hold. This provides a way to understand knowledge representation sys-
tems based on hierarchies of schemata as representing constraints as in situation
semantics, and it is this connection we explore in the remainder of this paper. In
Section 2 we present some initial considerations on the logic of conditionals and
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conclude that schema-based inferences have the right logical properties to be a basis
for understanding subjunctive conditionals, extending the argument in Wobcke [69].
In Section 3 we give an overview of situation semantics before presenting a new
formalization of information flow using a three-valued logic which borrows from
modal logic, described in Section 4. In brief, a statement expressing an informational
relation is treated as a conditional such as ‘if the doorbell is ringing then someone is
at the door’. The lawlike nature of the connection between signal and information
received is part of the analysis of the conditional. We interpret the conditional with
respect to a situation which, following Dretske’s intuition, comes with a set of relevant
alternative situations. The conditional is analyzed as a kind of strict implication: A
carries the information B with respect to a situation if there is no relevant alternative
in which A holds but B does not. The logic of information flow characterizes the
kind of inference that is not defeasible.

In Section 5 we present a conditional logic of constraints that models defeasible
reasoning. Defeasible inference is construed as the result of a schema’s refinement
providing a more accurate world view which disagrees with its less refined parent,
or equivalently, as the result of refining the set of channel conditions underlying
information flow. Similar shifts in context are an important aspect of the analysis of
conditionals presented by Stalnaker [63] and Lewis [39]. In these semantic theories,
the context of evaluation of a subjunctive conditional ‘if A were the case then B would
be the case’ is a possible world (the actual world), and the conditional is interpreted as
a statement to the effect that B holds in those possible world(s) in which A holds that
are most similar to the actual world. The interpretation of conditionals is similarly
sensitive to background assumptions which are context dependent, the relativity to
context being part of the definition of which worlds are most “similar” to a given
world, as argued by Lewis ([39], pp. 91–95). The analogy between conditionals
and information flow and the dependence of conditionals on a background context
modeled as channel conditions has been used by Barwise [7] to develop a formal
theory of conditionals. Barwise’s account does not include a logic of conditionals,
where by this we mean a characterization of those inferences valid in any context;
Cavedon [15] and Restall [54] develop conditional logics based on channel theory. In
contrast, we formalize a conditional logic using the refinement ordering on situations
in place of Lewis’s comparative similarity relations on possible worlds. A conditional
‘if A were the case then B would be the case’ holds with respect to a situation σ if B
holds in all minimal refinements of σ that support A. The axiomatization of the logic
is determined by the conditions placed on hierarchies of situations. Here, whereas
the situations themselves are partial (in the sense of allowing indeterminacy on the
question of whether a fact holds), we shall motivate the condition that all situations
are comparable in terms of the refinement relation, so that the hierarchy of situations
forms a total preorder. Thus our conditional logic is closely related to Lewis’s.

In Section 6 we discuss a number of standard puzzles in conditional reasoning.
First, since a hierarchy of schemata determines a hierarchy of situation types, the
“paradoxes” of conditional implication (failure of strengthening the antecedent, fail-
ure of transitivity, and failure of contraposition) arise naturally from the fact that the
hierarchy of schemata utilizes defaults and exceptions. Equivalently, these paradoxes
are a consequence of how different channel conditions serve to undermine the flow of
information with respect to varying backgrounds. The use of schemata also enables
us to give a unified (pragmatic) account of factual and counterfactual conditionals.
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Second, we consider a number of examples and counterexamples in conditional rea-
soning proposed in the literature on nonmonotonic reasoning and belief revision: we
argue that our logic can handle the examples correctly. We then discuss the difference
between subjunctive and indicative conditionals. Subjunctive conditionals are viewed
as the expression of a constraint that holds over situation types, closely connected
with information flow, whereas indicative conditionals are viewed as assertions of
conditional information relating to specific facts about the world (and which are thus
sensitive to those facts and the evidence for those facts in addition to general con-
straints). We explain the different truth conditions of subjunctives and indicatives in
terms of the differences in both the context of evaluation and in the particular hier-
archy of situations types used in their evaluation. We explain why subjunctives and
indicatives are often interchangeable and suggest that they are just when the truth
of the indicative derives only from a general constraint (and not from any additional
specific facts about the world). Finally, we discuss some examples from the literature
on conditionals: Quine’s Bizet-Verdi example concerning the conditional excluded
middle and ‘might’ conditionals.

2. Conditionals and Constraints

In this section we argue that hierarchies of schemata that represent a refinement rela-
tion on situation types and hence, implicitly, a collection of constraints, can be taken
as underlying subjunctive reasoning. Our work builds on that of Barwise who has ar-
gued that conditionals can be modeled using constraints. We have claimed above that
schema-based inference can also be treated as a kind of constraint-based inference:
in this section, we consider issues specific to the interpretation of conditionals.

Our theory of conditionals is a truth-theoretic account in which a conditional ‘if
A were to be the case then B would be the case’ holds with respect to some situation
if that situation inherits a constraint A ⇒ B from some situation type of which it is
an instance. However, we use a different model of constraints from that of Barwise,
who builds into the formalization of the conditional some associated (unspecified) set
of background assumptions. Under our approach, a constraint is represented using
a hierarchy of situation types (represented by schemata), and the constraints that are
applied in a given situation are derived from a “base” situation type in the hierarchy
that is assumed to be determined partly pragmatically. The position of the base
situation type in the hierarchy implicitly determines the background context against
which the conditional is evaluated.

We have asserted that the selection of base type (and hence background assump-
tions) for interpreting a conditional is determined partly pragmatically but this does
not mean that it is completely arbitrary. One criterion commonly used in schema-
based inference is a principle of specificity, according to which, when two comparable
sets of background assumptions are both applicable to a situation, the more refined
set of assumptions should be preferred to the less refined set. Specificity says, for
example, that when we know Tweety to be a penguin, we should choose the pen-
guin schema as the base type when evaluating a conditional such as ‘if Tweety had a
three-foot wingspan then it would be able to fly’. Another principle from conditional
logic is minimality, according to which only those background assumptions that are
necessary to the interpretation of the conditional should be countenanced. For ex-
ample, when evaluating a conditional such as ‘if Oscar had wings then he would be
able to fly’—when Oscar is a person (say)—a context in which Oscar is a bird should
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be adopted but no more specific context (it would not do to assume that Oscar was
a penguin in evaluating the conditional). Of course, specificity and minimality do
not uniquely determine a base type for the evaluation of a conditional, especially in
view of that fact that they pull in opposite directions. Consider the Tweety example
applied to a fish, that is, the statement ‘if that fish were a bird then it would be able to
fly’. It may not be entirely irrational to suppose that if the fish were a bird, it would
be a penguin and hence not be able to fly (perhaps the fish is black and white in color
and bears a resemblance to a penguin). The point is that different intuitions about
particular conditional statements can sometimes be traced to different base types used
in their evaluation.

Thus we agree with Stalnaker and Lewis insofar as there must be some pragmatic
ambiguity in the interpretation of conditionals, but we differ on precisely where this
ambiguity is located. In Lewis’s analysis of conditionals, the context dependence
results from the criteria for determining the comparative similarity relation, that is,
the relation which defines whether one world is more similar than another to a given
world. The point of evaluation of a conditional is always the actual world. So with the
Tweety examples above, when Tweety is a penguin in the actual world, this world is
the closest world, while presumably a world in which a person, Oscar, is a penguin is
less similar to the actual world than a world in which Oscar is a flying bird, although
exactly why this should be so is not obvious without an appeal to specificity. The
idea of “similarity,” however, should not be taken too literally as it leads to some
counterintuitive consequences as discussed by Pollock [49]. In fact, Lewis [40]
states that the appropriate comparative similarity relation is determined in part by the
known truth of conditionals, so although comparative similarity serves as an analysis
of conditionals, it does not ultimately serve as an explanation of them. Our strategy is
to reduce the semantics of (a subclass of) conditionals to the application of constraints
that hold in the actual world and to confine the pragmatic aspects of conditionals to
the determination of the context of evaluation and hence to the determination of those
constraints.

One other point that must be clarified is the relationship between general constraints
(as represented in a hierarchy of schemata) and specific constraints that are inherited
by a particular situation through the application of a schema. The difference can be
seen linguistically by rendering a general constraint using a generic statement such
as ‘if a bird has wings then it can fly’ (following Cavedon [14]) while rendering a
specific application of a constraint using a statement such as ‘if Tweety has wings
then Tweety can fly’. In addition, when applying a schema to a situation to create a
subhierarchy of situations, we assume that any facts supported by the situation that
are consistent with the instantiated schemata remain supported by the situations in the
new hierarchy. This allows “irrelevant” facts to be the subject of true conditionals.
For example, suppose that in the car-starting situation described above that the car
is red. We take it that the car is still red in any more refined situation created by
inheriting constraints about starting the engine. This indicates a difference between
the truth conditions for specific subjunctive conditionals and those for generics. That
is, while the generic ‘if I turn a key in an ignition of a car, the car would be red’ is
false with respect to a base situation type, the specific statement ‘if I turn this key in
the ignition of this car, this car would be red’ is true in the above situation. In such
a way, a subjunctive conditional can be true because of the absence of a constraint
blocking information flow. This is another aspect of the minimality principle in the
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Stalnaker-Lewis semantics of conditionals: the worlds supporting the antecedent of
a conditional should differ “minimally” from the initial world.

Constraints capture informational relations: the constraint A ⇒ B in situation
semantics holds if and only if the signal A carries the information that B, where A and
B are fact or event types. For Dretske, an informational relation between A and B is
underpinned by a causal relation between A and B although not every causal relation
is informational. A favorite example of Barwise and Perry illustrates this point.
Suppose a coin is tossed and lands heads. Then there is a causal relation between the
tossing of this coin and its landing heads. However, for an informational relation to
hold, there must be a generally applicable lawlike condition to the effect that a coin
could not have been tossed without its landing heads. Clearly, there is no such general
constraint: sometimes a coin lands tails. The correct constraint is that a coin’s being
tossed carries the information that it lands heads or tails (presumably the background
assumptions are held fixed while comparing these possible constraints). According
to Dretske, informational relations are determined by considering the network of
possible relations between source and receiver, not just single events. A similar
point regarding the interpretation of conditionals is made by Pollock who calls the
relation between antecedent and consequent required for a conditional to be true one
of contingent necessitation.

Conversely, of course, not every informational relation is causal. Thus, again fol-
lowing Dretske’s intuitive picture, informational relations can connect any two event
types in a causal chain. This means that informational relations can go “backward
in time” or relate correlated consequences of a single cause. For example, there are
presumably constraints such as ‘if a coin lands heads or tails then it was tossed’ and
‘if a person has lung cancer then she or he has emphysema’ (assuming in the latter
case that both are the result of smoking, rather than one causing the other).

The essence of our approach is to generalize Dretske’s theory of information flow as
deriving from causal chains to hierarchies of causal chains under varying background
conditions. Causal chains are represented in artificial intelligence by scripts or partial
plans: thus it is possible for an agent to represent constraints using a hierarchy of
scripts or partial plans. On our account, a constraint A ⇒ B holds at some situation
type σ if B holds at the minimal refinements of σ that support A. For example,
suppose we have causal chains representing the connections between tossing a coin
and its landing heads and tossing a coin and its landing tails, that is, situation types
supporting toss(coin) and land(heads) and toss(coin) and land(tails). If we assume
that neither situation type is strictly less refined than the other, both will be minimal
refinements of the original situation type that support toss(coin). Thus the following
conditional will be true.

If a coin is tossed, it will land heads or tails.

However, both of the following conditionals will be false.

If a coin is tossed, it will land heads.
If a coin is tossed, it will land tails.

When choosing this least refined context as the context of evaluation for the condi-
tional, it is implicitly assumed that there are no other relevant background facts about
the particular coin, for example, it is assumed to be a fair coin.

We now discuss three aspects of the semantics of conditionals which make hierar-
chies of schemata representing causal chains (and hence hierarchies of situation types)
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suitable for deriving their truth conditions. First, a conditional is not considered true
in isolation of other related true conditionals: a single causal chain may account for
the truth of a number of conditionals. Second, where the truth of a conditional relies
on an implicit background, a hierarchy of schemata implicitly represents this back-
ground context as a collection of (unspecified) assumptions: if such an assumption
is incorrect, a conditional that is true in one context may be false in a more refined
context. Third, conditionals often come in pairs, one which looks factual and one
which looks counterfactual (the first statement with both antecedent and consequent
negated): we claim that the same causal chain underlies both conditionals.

The first argument for hierarchies of schemata comes from Hanson’s discussion
of the explanation of everyday events in relation to causal statements (Hanson [34]).
Hanson claims that there are as many true causal statements (and so true conditionals)
as there are explanations, and that these explanations are dependent on the point of
view adopted. Thus, of a car crash, the following statements are asserted.

The car crashed because the driver tried to avoid the pedestrian.
The car crashed because the brakes failed.
The car crashed because the tires skidded on a patch of ice.

Here it is assumed that in trying to avoid the pedestrian, the driver applied the brakes
which failed to grip the icy road. All the conditions and events play some role in the
crash, but each causal statement isolates one of them. The point is that each causal
statement is true, so the corresponding counterfactuals are all true.

If the driver hadn’t tried to avoid the pedestrian, the car wouldn’t have crashed.
If the brakes hadn’t failed, the car wouldn’t have crashed.
If the tires hadn’t skidded on a patch of ice, the car wouldn’t have crashed.

To handle this phenomenon, we assume that the set of causal statements forming the
complex explanation is represented in the schema representing one complex causal
chain. All the conditionals are true because the schemata which are used in evaluating
the conditionals can be derived from this one schema in a straightforward manner (see
the discussion on failure schemata below).

The second argument for hierarchies of schemata is that hierarchies implicitly
allow for default assumptions and exceptions. The effect of defaults is realized in the
theory of conditionals by the failure of strengthening the antecedent. For example,
the first conditional below is true, the second false (in an appropriate context).

If the battery had been charged, the car would have started.
If the battery had been charged and disconnected, the car would have started.

We interpret this as follows. In the first example, there is an implicit assumption
(a “channel condition”) that the battery is connected. This assumption is denied in
the antecedent of the second conditional and the causal chain between antecedent
and consequent is broken. We assume that there is a schema representing the causal
connection between a charged battery and the car starting that is less refined than one
representing the causal connection between a charged battery that is disconnected
and the car not starting. Thus the least refined situation type that supports the battery
being charged also supports the car starting, but the least refined situation type that
supports the battery being charged and being disconnected does not support the car
starting. This kind of example is also used to explain the failure of transitivity and
contraposition.



104 WAYNE WOBCKE

On the theories of conditionals developed by Stalnaker and Lewis, the next state-
ment follows from the above two statements.

If the battery had been charged, it would not have been disconnected.

Intuitively, the negation of any condition that blocks a constraint is an explicit channel
condition for that constraint. Similar examples arise in the AI literature on default
reasoning: the condition that Tweety is not a penguin is one of the assumptions
underlying the applicability of the bird schema, implying the truth of the default
statement ‘a bird is typically not a penguin’. We argue below that this condition is too
strong for a proper modeling of constraints. Hence we do not allow this inference,
agreeing with authors such as Pollock.

Third, conditionals often come in pairs.

If the battery had been charged, the car would have started.
If the battery hadn’t been charged, the car wouldn’t have started.

Both statements are taken to be true, although we argue that for this to be the case,
their contexts of evaluation must be different. In particular, it seems that part of the
reason both statements are acceptable is the pragmatic assumption that subjunctive
conditionals are normally counterfactual. That is, the first statement is normally
uttered in a context in which the battery has not been charged and the car not started,
whereas the second in a situation in which the battery has been charged and the car
started. However, there is a clear connection between the two statements: they both
entail that the dead battery (as opposed to something else) is one reason the car didn’t
start (the first statement, in addition, implies that it is the only reason).

To represent such pairs using hierarchies of schemata (and the above car accident
examples), we must further interpret what a plan schema actually means in cases
where one of its represented events fails to occur. In doing so, we follow Mackie [42]
who argues that each cause of some event is a necessary component of a collection of
events and/or conditions which together are sufficient for the occurrence of the event
(but not collectively necessary, for the event could have occurred in other ways). Now
for a causal chain containing a dependence of B on A, if A is a necessary component
of a collection of actions (all those A such that B depends on A) which together are
sufficient for B to occur, when A does not occur, B cannot. We assume that such
“failure schemata” appear in the hierarchy of schemata as refinements of their parents:
many knowledge-based systems explicitly encode failure schemata in this way. Now
to handle the examples, we take it that the context of evaluation for both statements
is a causal chain containing a link between a battery being charged and a car starting
(among others). The minimal refinement supporting the condition that the battery has
been charged is the schema itself (giving the truth of the first statement) whereas the
minimal refinement supporting the antecedent of the second conditional is a failure
schema (giving the truth of the second statement).

Of course, for the purpose of these examples, we are assuming that charging the
battery does play a causal role in the car’s starting (so that both statements are true
in their respective contexts). If charging the battery does not play this role (the
battery’s charge was sufficient to begin with), a different schema, one representing
an alternative “failed” causal chain, will be the minimal refinement in which the
second conditional’s antecedent is supported, and the conditional will be false. This
raises a very important point. That is, the particular hierarchy of situation types,
and in addition, the particular refinement relation representing the truth conditions
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of subjunctive conditionals, is itself context dependent. It is sensitive to the actual
causal relationships holding in the described situation, not only to general causal laws.
This is analogous to the context dependence of the comparative similarity relation
in Lewis’s account of conditionals [39], albeit with a different underlying intuition.
Thus there is a difference between the true subjunctive conditionals in a situation and
those accepted by an agent.

Our approach can briefly be contrasted with the recent formulation of channel
theory by Barwise and Seligman [11] as follows. Most obviously, while both the
present theory and channel theory aim to formalize information flow and inference
based on constraints, our approach starts with Dretske’s intuitive picture of how infor-
mation flow arises out of a network of causal relations, whereas channel theory starts
by assuming the existence of “channels” that realize particular information-carrying
signals between senders and receivers. Each channel thus corresponds to a single
inference or possibly to a class of single inferences of the form ‘if the received signal
is of type σr then the original signal was of type σs . The basic problem in modeling
inference in channel theory then is to define theories about relationships between
channels, such as when two or more channels can be combined, when one channel
subsumes another, and so on. However, rather than relate this question to Dretske’s
background conditions on information flow, Barwise and Seligman assume that the
allowable combinations of channels are derivable from a structure of classifications
(of signal tokens into types). But although they recognize the importance of handling
exceptions to channel conditions, they do not realize that allowing any two channels
that “line up” ([11], p. 91) to be sequentially composed leads to incorrect instantia-
tions of transitivity (if A carries the information B and B carries the information C
then A carries the information C). These violations of transitivity occur when the
signal type A of the first channel is inconsistent with the background conditions on
the channel from B to C . For example, let A be ‘the doorbell is short circuited’, B
be ‘the doorbell is ringing’, and C be ‘someone is at the door’; that B carries the
information C is one of Dretske’s standard examples. Then, contrary to Barwise and
Seligman, it seems intuitively reasonable to accept that A carries the information B,
B carries the information C , but A does not carry the information C . Thus transitivity
should be rejected by any theory of information flow. Note here that the rule of tran-
sitivity, which operates at the level of types, should not be confused with Dretske’s
Xerox principle [21] which operates at the level of tokens: more precisely, the Xerox
principle is that when a token of A carries the information B and that token of B
carries the information C , the original token carries the information C . Our example
is not a counterexample to this principle because when the token is of type A (and
hence of type B), the token of B does not carry the information C since this relies on
the background condition ¬A.

Channel theory, in addition to being a specific theory of information flow, provides
a broad framework in which various logical questions can be considered. It is possible
to avoid the specific problem with transitivity in Barwise and Seligman’s theory
by adopting the approach of Cavedon. Cavedon [15] develops a theory in which
informational relations represented as channels are ordered in a hierarchy resulting in a
conditional logic similar to, but weaker than, the one provided in this paper. Cavedon’s
logic is also restricted to nonnested conditionals. Thus the main advantage we claim
for our approach is not in formal expressive power, although we do allow nested
conditionals, but in representational convenience. We claim that the use of schemata
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to group together informational relations with common background assumptions leads
to more efficient reasoners: this is why such representational schemes are used in AI
systems in the first place.

Our basic conclusion from the above discussion is that not only can schema-based
inference be taken as constraint-based inference, but that constraints as represented
in hierarchies of schemata are appropriate for modeling the semantics of subjunctive
conditionals. We can now turn to a logical formalization of this semantics. We first
present a theory of situations and information flow, after motivating our theory by
consideration of various alternative approaches in situation semantics. We then adapt
the Stalnaker-Lewis semantics of conditionals to provide a modeling of hierarchies
of situations. A sound and complete axiomatization enables us to compare our logic
to Pollock’s logic SS and Lewis’s logic VC. We then consider some further issues
in conditional reasoning and how they might be approached using our framework.

3. An Overview of Situation Semantics

A situation is a portion of space-time consisting of individuals, objects, properties,
relations, events, and space-time locations. Using the terminology of Devlin [20],
situations resolve issues: an issue is an ascription of a property to an object or a claim
that objects stand in some relation in some location or throughout some time period.
If an issue is resolved in a situation, it is resolved with some polarity: either positive
or negative. Issues with polarity are called basic infons (the basic units of informa-
tion). Compound infons may be formed as logical combinations of basic and other
infons, analogous to complex propositions formed using the standard conjunction,
disjunction, negation, and conditional operators. If an issue is resolved positively in
a situation, the situation supports the corresponding infon; if negatively, the situation
rejects the infon. The question of whether an infon holds at a situation is an entity
that can be true or false and is the analogue of the classical proposition. Such proposi-
tions can also be combined using the standard conjunction, disjunction, negation, and
conditional operators which, however, should not be confused with the operations on
infons. The logic of propositions is usually taken to be the standard propositional
calculus.

Situations are contrasted with possible worlds, although some authors, for example,
Cresswell [16], have argued that the notion of a possible world is broad enough to
include situations. The main difference between situations and possible worlds (as
understood by Kripke [36] or Lewis [41]) is that although every proposition must
be assigned a truth value in every possible world, a situation may leave some issues
unresolved. In Barwise and Perry [10], a distinction is also made between actual
situations and abstract situations. Put simply, an actual situation is an actually existing
part of the world, while an abstract situation is a set-theoretic object specified by a
set of infons which may or may not be supported by any actual situation (more like a
model of the propositional calculus than a possible world). So if there is a situation in
which John eats an apple (here and now), an abstract situation can be formed in which
Mary eats an apple at home on Tuesday, irrespective of whether this actually happens.
Barwise and Perry also define the notion of a situation type. A situation type is a set
of issues obtained by abstracting from specific space-time locations. Intuitively, it is
what two different parts of the world have in common when they resolve the same
issues in the same way except for the difference in their locations. For example, there
is a situation type of John eating an apple and Mary eating an orange. Situation types,
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like situations, do not necessarily resolve every issue. Of course, there is no formal
reason that only space-time locations can be abstracted in forming situation types
from situations: in more recent versions of situation theory (for example, Seligman
and Moss [61]), any parameter in a situation may be abstracted—that article also
presents a much richer theory of situations than that developed in [10].

Another fundamental notion is that of a constraint. A constraint is a relation
between event types. Just as situation types are formed by abstraction from situations,
event types are formed by abstraction from events, but importantly, in a more general
way. With an event type, in addition to the space-time location, the objects and
individuals taking part in the event may also be abstracted, giving rise to a parametrized
infon with indeterminates filling the roles in the event. For example, an event such
as John eating an apple here and now can be abstracted to form the event type of
John eating something, somewhere, some time. A constraint is a relation between
event types that is designed to capture the meaningfulness of signs, both natural and
nonnatural in the terminology of Grice [32]. Roughly, a constraint A ⇒ B is to be
interpreted as a condition to the effect that whenever some situation supports an event
of type A, some related situation supports an event of type B where corresponding
parameters in A and B are anchored to the same objects. For example, there could be
a constraint in which A is the event type of the doorbell ringing and B is the event type
of the someone being at the door. As this example is meant to illustrate, constraints
are what makes information flow possible. More precisely, information about B is
carried by A if there is a constraint A ⇒ B provided all the background or channel
conditions upon which that constraint depends hold.

We are now in a position to give a brief, necessarily selective, summary of the
development of situation theory which we will use below to place our approach in the
context of this research program. In [10], situations and situation types are modeled
as sets of basic infons and constraints are modeled as relations between events and
sets of event types. However, this allows only a limited treatment of disjunction: in
order to express a constraint of the form ‘A carries the information that B or C’ (such
as the coin-tossing example above), a relation between an event A and a set of events
types {B, C} is needed. Disjunction is thus implicit in that there is no “disjunctive”
piece of information B ∨C and hence no way to combine information acquired using
this constraint with other information.

Questions of the correct modeling of constraints and of the admissible ways of
compounding infons led Devlin [20], and especially Barwise and Etchemendy [9], to
consider the algebraic structure of the class of infons. Devlin simply allows, for any
two infons, their conjunction and disjunction to be formed as a compound infon: a
situation supports a disjunction if it supports either disjunct and rejects a disjunction if
it rejects both disjuncts; a situation supports a conjunction if it supports both conjuncts
and rejects a conjunction if it rejects either conjunct. Devlin’s approach here borrows
from that employed in partial logic (see the survey article by Blamey [12]) and this
is the approach we follow below.

Barwise and Etchemendy give a more general treatment of the algebraic structure
of infons. In their framework, compound infons can be formed from other infons using
conjunction, disjunction, negation, and conditional operations. In classical logic, the
set of propositions so constructed forms a Boolean algebra. That is, the class of
propositions has a lattice structure (with conjunction the meet operation of the lattice
and disjunction the join operation) and a complementation operation corresponding
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to negation in the logic. The ordering relation ≤ on the lattice reflects the entailment
of propositions, that is, A ≤ B if and only if A |H B. The simplest kind of lattice
structure suitable for modeling infons is the distributive lattice, which has only the
meet and join operations that distribute over each other. This structure is sufficient to
model the infon algebras from [20] which we also use.

As Barwise and Etchemendy argue, the lattice of infons is a distributive lattice
but not a Boolean algebra. For example, the infon A ∨ ¬A is not equal to the >

element of the lattice, because intuitively, the information A ∨¬A is stronger than no
information: it implies, for example, that A is defined. They postulate that the lattice
of infons should form a Heyting algebra, defined as follows.

Definition 3.1 A Heyting algebra 〈L, ∧, ∨, ¯ 〉 is a distributive lattice 〈L, ∧, ∨〉

containing elements ⊥ and > with a binary pseudo-complementation operation →

such that the following properties are satisfied for all a, b ∈ L.

(i) a ∧ (a → b) = b;
(ii) for any c ∈ L, if a ∧ c ≤ b then c ≤ a → b.

Note that for any given infons a and b, the infon a → b is a new piece of “conditional”
information: the weakest piece of information that produces the piece of information
b when combined with a. The infon ¬a can be defined as the weakest piece of
information which when combined with a gives ⊥. An important technical point is
that the basic infons are not here assumed to be issues with an assigned polarity, that
is, an issue with negative polarity is not equal to the negation of the original issue
with positive polarity. As a consequence, the infon ¬¬a is not always equal to the
infon a, as it is under Devlin’s approach. For example, for an element b not equal to
> or ⊥, the infon ¬(b ∨ ¬b) is equal to ⊥, but its negation ¬¬(b ∨ ¬b) is equal to
> which is different from b ∨ ¬b (in general, a ≤ ¬¬a but not the reverse).

In classical logic, propositions can be modeled formally as sets of possible worlds:
a proposition A corresponds to the set of worlds in which A is true. In this way, the
algebraic structure of sets of worlds is also a Boolean algebra with the meet, join, and
complementation operations as set-theoretic intersection, union, and complementa-
tion. Now to mimic this property with sets of situations, Barwise and Etchemendy
take a situation to be a closed coherent set of basic infons. A number of possible defi-
nitions of coherence are suggested, although the simplest one is sufficient: a situation
is coherent if it does not both support and reject the same infon. Closure operations
on sets of infons are used to model (deterministic) constraints. A set C of infons is
closed if, for any constraint A ⇒ B, whenever C contains A, C contains B. What
results is a Heyting algebra over closed coherent sets of basic infons.

Now Barwise and Etchemendy do not explicitly use their framework to define a
logic of constraints and information flow. But it may seem there are two candidates
for representing the constraint A ⇒ B: either as the conditional infon A → B or,
as Barwise and Etchemendy intend, as the condition that A ≤ B in the ordering
relation on the lattice (or equivalently, as the condition that A → B equals >).
The problem with the first definition is that this means there is a constraint relating
each pair of infons, giving no way to distinguish the lawlike constraints from the
incidental regularities. The problem with the second definition is that this places
constraints outside the structure of situations being modeled, so that it is impossible
for one situation to satisfy a constraint while another does not, meaning that the
varying background conditions that underpin different constraints are not captured.
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In addition, as noted by Barwise and Etchemendy ([9], p. 55), the class of Heyting
algebras properly contains the class of algebras generated from closed coherent sets
of infons, hence the logic of constraints in this framework is at least as strong as
intuitionistic logic, but is possibly stronger.

Barwise [8] uses channel theory to formalize the flow of information. In channel
theory, each constraint has an associated labeled channel so that a constraint A ⇒ B
is represented as a formula such as c : A → B. Intuitively, the channel, which
in Dretske’s formulation is some lawlike connection between two infons, is itself
now construed as a situation c (Barwise uses the term ‘information site’). The main
property of such channels is, of course, that if a situation s1 is of type A and s1
is connected to s2 by means of a channel c of type A → B, then s2 is of type B,
here taking infons as types. The logical properties of information flow are captured
by rules allowing two (or more) channels to be combined into a single compound
channel. Conditional logics arising from this use of channel theory are discussed in
Cavedon [15] and Restall [54]. Channel theory is intended for modeling information
flow but what seems to have been lost is the way in which information flow relies on
lawlike regularities between infons, since the property of a situation being a channel
of type A → B is represented simply as an atomic formula. If a channel is just
one single connection between two information sites, what makes one connection
lawlike while another is not? What is missing in this approach is an account of how
constraints taken as relations between event types arise from a collection of channels.
It is this account that we attempt to formalize using our logics of information flow
and constraints presented in the following sections.

4. A Logic of Situations and Information Flow

In this section we present a formal semantics of situations and information flow and
define a logic corresponding to this semantics. Our logic, called Infon Calculus IC,
is a logic of information flow, that is, it includes formulas representing expressions
of the form ‘A carries the information B’. Our semantics is motivated by Dretske’s
discussion of the nomic nature of information flow [21], in particular, the requirement
that for A to carry the information that B in some situation, there can be no relevant
(nomically possible) alternatives to that situation in which A holds but B does not hold.
To formalize this idea, we adapt techniques familiar from modal logic, associating
with each situation a collection of possible alternatives. These possible alternatives
are situations, not possible worlds, that is, they may leave some issues unresolved.
By modeling situations as coherent sets of infons, we are able to adapt techniques
from modal and conditional logic. That is, whether a conditional infon holds at a
situation is determined by the infons holding in each of a number of possible alternative
situations, so is analogous to necessary truth in a Kripke model. Technically speaking,
what results is a logic of information flow that is closely related to logics of strict
implication and entailment.

Our modeling of situations comes from Devlin [20] and Barwise and Perry [10].
A situation is a set of infons which are themselves issues with an assigned polarity.
An issue is some basic property of an object or relation between objects which can
either hold (positive polarity) or not hold (negative polarity) at some situation. We
do not introduce the complexity of conditional infons that Barwise and Etchemendy
use to turn the algebra of infons into a Heyting algebra. Instead, we work only
with conjunction, disjunction, and negation of infons and follow Devlin in borrowing
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from data semantics (Veltman [67]) to define a supports and rejects relation between
situations and infons. We also impose a restriction on the logical language which
ensures that all legal infons are persistent, that is, guaranteeing that if a legal infon
holds at a situation, it holds at all extensions of that situation (Langholm [37] provides
a more thorough analysis of persistence).

We also define a logic of propositions, SPC. In situation semantics, a proposition
is the question of whether some situation s supports an infon A and is written s : A.
One way of looking at this is that what classically is the same proposition A becomes
different “situated” propositions when coupled with different situations. Each sit-
uation therefore provides a context in which the “truth values” of the infons A are
determined. That is, a situation generates a modality in the same way that possible
worlds generate a modality. As a result, SPC is also a kind of modal logic which,
as our name implies, can be thought of as a “situated” version of the propositional
calculus.

We begin with the basic definitions assuming a given collection of issues.

Definition 4.1 A basic infon is an issue together with a polarity (positive or
negative).

Definition 4.2 The simple infons are defined as follows. A basic infon is a simple
infon, and if A and B are simple infons then so are ¬A, A ∧ B, and A ∨ B.

Definition 4.3 The (persistent) infons are defined as follows. A simple infon is
a (persistent) infon, and if A and B are (persistent) infons then so are ¬¬A, A ∧ B,
A ∨ B, and A → B.

Definition 4.4 The dual A⊥ of a basic infon A is the issue of A with opposite
polarity. The dual operation can be extended to all simple infons by defining (A ∧ B)⊥

as A⊥ ∨ B⊥, (A ∨ B)⊥ as A⊥ ∧ B⊥, and (¬A)⊥ as A (this is justified by Lemma 4.8
below).

Definition 4.5 A situation is a set of basic infons.

Definition 4.6 A situation is coherent if it does not contain any basic infon and
its dual.

Definition 4.7 A coherent situation σ supports (rejects) a simple infon A, written
σ |H A (σ =| A), under the following conditions.

σ |H A if A ∈ σ for a basic infon A.
σ |H ¬A if σ =| A.
σ |H A ∧ B if σ |H A and σ |H B.
σ |H A ∨ B if σ |H A or σ |H B.

σ =| A if A⊥ ∈ σ for a basic infon A.
σ =| ¬A if σ |H A.
σ =| A ∧ B if σ =| A or σ =| B.
σ =| A ∨ B if σ =| A and σ =| B.

Lemma 4.8 A coherent situation supports a simple infon A if and only if it rejects
its dual A⊥.

The above definitions are standard in situation semantics and are closely related to
those of Devlin in [20]. If the infons are represented in a lattice by the sets of
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situations that support them, then the class of infons forms a De Morgan lattice, with
conjunction corresponding to the set intersection, disjunction corresponding to set
union, and negation corresponding to the dual operation, as in the relevant logic of
Anderson and Belnap [4]. The connection between information flow and relevant
logic has been emphasized by Restall in [54].

Definition 4.9 A De Morgan lattice 〈L, ∧, ∨, ¯ 〉 is a distributive lattice 〈L, ∧, ∨〉

with a unary complementation operation ¯ such that the following properties are
satisfied for all a, b ∈ L.

(i) a = a,

(ii) a ∧ b = a ∨ b,

(iii) a ∨ b = a ∧ b.

However, the above definitions are not enough to define an interesting logic: if a
theorem is to correspond to the simple infons which are supported by every situation
then there are no theorems at all! Any formula A fails to be supported by the sit-
uation which is the empty set of basic infons. A logic of situations can be defined
by incorporating a conditional connective corresponding to information flow: the
formula A → B stands for ‘A carries the information B’. Such a formula holds in a
situation σ if B is supported by all the relevant alternative situations to σ that support
A (Dretske [21]). To model this idea, we associate with each situation σ a collection
of alternative situations σ ∗: σ supports A → B if every situation in σ ∗ that supports
A also supports B (cf. [69]). The definition uses the following notion of an extension
of a situation.

Definition 4.10 A situation τ extends σ in an information flow model 6, denoted
σ v τ , if and only if σ |H A implies τ |H A for any (persistent) infon A. The set of
extensions of a situation σ (with a particular information flow model understood) is
denoted by σ+.

Note that σ v τ only if σ ⊆ τ . Thus our definition extends the standard situation
semantics definition.

Definition 4.11 An information flow model is a set 6 of coherent situations
together with a function ∗ assigning to each coherent situation σ ∈ 6 a nonempty set
of coherent situations σ ∗ ∈ 6 such that

1. σ ∗ ⊆ σ+;
2. σ ∈ σ ∗;
3. whenever τ ∈ σ ∗, τ ∗ = σ ∗ ∩ τ+.

Conditions 1 and 2 are straightforward. The effect of condition 3 is to ensure that
information accrual is cumulative. More precisely, suppose an agent is in some
situation σ . As information A is acquired, the situation σ “expands” into an extension
τ of σ which by definition supports all the infons supported by σ together with A (and
possibly other infons). The condition ensures that the information A is retained as
further information is gained in the situation τ . The technical condition to guarantee
this is that the alternative situations to τ are exactly those alternatives to σ that are
extensions of τ .

Definition 4.12 A coherent situation σ supports (rejects) an infon A → B under
the following conditions. The truth conditions given above are now understood to
apply to all (persistent) infons.
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σ |H A → B if for any situation τ ∈ σ ∗ with τ |H A, τ |H B.
σ =| A → B if for some situation τ ∈ σ ∗ with τ |H A, τ =| B.

Definition 4.13 An infon A is semantically persistent if for any situation σ in any
information flow model, if σ |H A then τ |H A for all situations τ ∈ σ ∗.

Lemma 4.14 A persistent infon is semantically persistent.

The following scheme defines the axioms of the infon calculus IC. We assume a
language in which primitive symbols denote basic infons. A ↔ B is used as an
abbreviation for (A → B) ∧ (B → A) and A ⊃ B as an abbreviation for ¬A ∨ B.
Note that we only allow instantiations of the axiom schemes that result in legal
(persistent) infons.

(I1) A → (A ∨ B), B → (A ∨ B)

(I2) (A ∧ B) → A, (A ∧ B) → B
(I3) A → (B → (A ∧ B))

(I4) A ↔ ¬¬A
(I5) (A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C))

(I6) ((A ∨ B) ∧ (A ∨ C)) → (A ∨ (B ∧ C))

(I7) ¬(A ∧ B) ↔ (¬A ∨ ¬B)

(I8) ¬(A ∨ B) ↔ (¬A ∧ ¬B)

(I9) (A ∧ (A ⊃ B)) → B
(I10) (A → B) ⊃ (A → B)

(I11) ((A → B) ∧ (A → C)) → (A → (B ∧ C))

(I12) ((A → C) ∧ (B → C)) → ((A ∨ B) → C)

(I13) ((A → B) ∧ (B → C)) → (A → C)

(I14) (A → (B → C)) ↔ ((A ∧ B) → C)

(RI1) From A and A → B infer B
(RI2) If ` B then infer A → B

The following are theorems or derived rules of IC.

A → A
(A ⊃ B) → (A → B)

(A → C) → ((A ∧ B) → C)

((A ∧ B) ∨ (A ∧ C)) → (A ∧ (B ∨ C))

(A ∨ (B ∧ C)) → ((A ∨ B) ∧ (A ∨ C))

(A → (B → C)) → ((A → B) → (A → C))

From A and A ⊃ B infer B
From A ∨ ¬A infer (A → B) → (A ⊃ B)

From A ∨ ¬A, B ∨ ¬B infer (A → B) → (¬B → ¬A)

Lemma 4.15 (Deduction Theorem) If 0 ∪ {A} ` B then 0 ` A → B.

The system IC captures the basic logical properties of situations and infons. In
particular, taken together these are just a statement of the fact that the algebra of sets
of situations is a De Morgan lattice (the ‘→’ operator plays the role of the ordering
relation ≤ on the lattice). The axiom schemes (I1) – (I8) and rule (RI1) represent
the De Morgan principles. Axiom scheme (I9) relates to the coherence property
of situations: this would not be valid if incoherent situations were admitted. Axiom
schemes (I3) and (I14) refer to the special (monotonicity) conditions on the ∗ function
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and are only valid because of the language restriction allowing only persistent infons.
The other axiom schemes and rules come from modal logics of strict implication.

Soundness and completeness of the logic IC is relatively straightforward.

Theorem 4.16 IC is sound and complete with respect to the class of information
flow models.

Dretske considers the following principles as ‘inherent in and essential to the ordinary
idea of information’ ([21], p. 57). These are both derived inference rules of IC.

(Xerox Principle) From A → B and B → C infer A → C .
(Conjunction Principle) From A → B, A → C infer A → (B ∧ C).

Finally in this section, we present a logic of propositions SPC. Propositions are
a coupling of a situation σ and an infon A: atomic SPC formulas are written as
c : A for a context symbol c denoting a situation in an information flow model.
Atomic formulas may be combined using the standard propositional calculus (PC)
connectives ∧, ∨, ¬, and ⊃ in the usual way.

Definition 4.17 A propositional interpretation is an information flow model 6

together with an assignment of a situation from 6 to each context symbol.

The following scheme defines the axioms of the logic SPC. Unless otherwise stated,
A and B range over IC formulas.

(P1) All truth functional tautologies over the language of SPC
(P2) c : A for A an axiom of IC
(P3) (c : ¬A) ⊃ ¬(c : A)

(P4) c : (A ⊃ B) ⊃ (c : A ⊃ c : B)

(P5) c : (A → B) ⊃ c : (A ⊃ B)

(P6) c : (A ∨ B) ⊃ (c : A ∨ c : B)

(MP) From α and α ⊃ β infer β

Axiom (P1), which generates formulas such as (c : A)∧(c : B) ⊃ (c : A), reflects the
fact that the propositional connectives apply to situated propositions in the same way
as to classical propositions. Axiom (P2) with (MP) ensures that every theorem of IC
holds at every situation. Axiom (P3) captures the property of coherence of situations,
and axioms (P4) and (P5) ensure that the set of facts holding at each situation is
logically closed.

In fact, the above system illustrates a general scheme for turning any logic of
situations into a logic of propositions. All that is needed are the axiom schemes
of the subsidiary logic encoded as propositions, as in (P2), together with the infer-
ence rules encoded using material implication, here following from (P3) – (P5), and
each property needed to ensure completeness, such as primeness, encoded here as
(P6). Finally, the propositional calculus is embedded in the system by way of the
propositional tautologies and modus ponens.

Theorem 4.18 SPC is a sound and complete inference system with respect to the
propositional interpretations.
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5. A Logic of Conditionals and Constraints

The logic IC captures the properties of inference based on information flow, that is,
inference which is nondefeasible, whereas schema-based inferences are defeasible.
In this section we present a conditional logic of constraints SC extending IC in which
the connective ⇒ is understood as indicating schema-based defeasible inference.
We also lift the restriction limiting the language of IC to persistent infons. Under our
formulation of constraints, a constraint A ⇒ B holds at a situation type σ if B holds
at the minimal refinements of σ that support A (if there is no such situation type, the
conditional holds trivially). This definition allows us to adapt standard methods from
conditional logic to formalize our approach because of the close analogy between
refinement and Lewis’s comparative similarity.

Note that although the place of constraints in recent versions of situation semantics
is not fully clear (cf. [61]), the notion that constraints hold with respect to a situation
type is not standard. The difficulty, as described above, is that either a constraint
holds with respect to a situation, in which case the lawlike nature of constraints is not
captured, or else constraints lie outside a logical structure of situations (the approach
taken in [10]), in which case the logic of constraints is difficult to formulate. As
we have discussed, the situation type with respect to which a constraint holds is the
denotation of a schema; it is a semantic object that supports a set of parametrized
infons in the same way a situation supports a set of ordinary infons. That is, we make
an assumption that the question of whether a situation type supports a parametrized
infon is primitive in the semantics. Part of the reason this is nonstandard is that in
recent versions of situation semantics, it has become customary to conflate a situation
type with an abstract parametrized infon that the situation supports. This notion of
type is more “extensional” to the extent that the set of types classifying a situation
is determined purely by the set of parametrized infons it supports. In contrast, our
notion is more “intensional” to the extent that there is a separate class of situation
types of which a situation may be an instance, and relationships between such types
play a significant role in the formulation of a set of constraints.

The logic of constraints turns out to be identical to the logic of conditionals,
although the truth conditions for constraints and conditionals differ. This is because
we take the logic of conditionals to be the logic of constraints as applied to situations.
In this way, a conditional is true with respect to a situation in virtue of inheriting a
constraint from a situation type of which it is an instance or, as described in Section 2,
in virtue of the absence of a condition blocking the constraint’s applicability. In either
event, the formal properties of hierarchies of situations are the same as those of the
hierarchies of situation types that represent constraints.

Our formal semantics of conditionals is based on total preorders of situations
analogous to the possible worlds semantics for conditionals given by Lewis [39].
We briefly describe the motivation behind our definitions. As described above, a
conditional A ⇒ B holds at a situation σ if B holds at all minimal refinements of
σ that support A. The natural requirements on orderings of situations are reflexivity,
antisymmetry, and transitivity, so that the ordering forms a partial order. But in
addition, we require a property known as almost-connectedness (see below) which,
in the context of the other conditions, is similar in power to totality, that is, the
condition that all pairs of situations are comparable. Some support for this strong
condition follows from the intuition that if a situation supports A ∨ B, it must support
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either A or B. To see this, say that B is exceptional with respect to A if some minimal
A-supporting refinement of σ is strictly less refined than some minimal B-supporting
refinement of σ . Without comparability, it would be possible to have a structure of
situations in which both A and B were exceptional with respect to A ∨ B, that is, a
scenario in which the minimal refinements of σ that support A ∨ B neither contain
all the minimal A refinements nor all the minimal B refinements. In such a structure,
it is consistent to have (A ∨ B) ⇒ C but neither A ⇒ C nor B ⇒ C . Yet when the
constraint (A∨ B) ⇒ C is applied in any actual situation, the minimal refinements of
that situation which support A∨B must support either A or B and, given the truth of the
constraint, also C , in which case either A ⇒ C or B ⇒ C should hold at the original
situation. Comparability naturally ensues because, following Stalnaker [63], given
any two situations σ1 and σ2 that are minimal A and B refinements of σ (respectively),
a total preorder of situations �σ with respect to σ can be defined by setting σ1 �σ σ2
if and only if σ1 is a minimal A ∨ B-supporting refinement of σ .

We now proceed to the technical definitions.

Definition 5.1 The infons are defined as follows. A simple infon is an infon, and
if A and B are infons then so are ¬A, A ∧ B, A ∨ B, A → B, and A ⇒ B.

Definition 5.2 An almost-connected partial order on a set S is a binary relation
� that satisfies the following conditions (for all α, β, γ ∈ S).

1. reflexive, that is, α � α;
2. antisymmetric, that is, α � β and β � α implies α = β;
3. transitive, that is, α � β and β � γ implies α = γ ;
4. almost-connected, that is, α � β implies α = β, α � γ or γ � β.

Note that the condition of almost-connectedness implies that for any two elements
α and β of S which are incomparable (i.e., α 6� β and β 6� α), the set of elements
γ such that α � γ is the same as the set of elements γ such that β � γ , and the
set of elements γ such that γ � α is the same as the set of elements γ such that
γ � β. Thus the ordering induces a set of equivalence classes in S: for each element
of s ∈ S, there is an equivalence class containing s and the elements with which s is
incomparable. This is already very similar to the “sphere” semantics of [39] based on
total preorders of possible worlds, and moreover, this connection can be made precise
by noting that, given an almost-connected partial order � , the ordering �′ defined
by α �′ β if and only if β 6� α or α = β is a total preorder.

The following presents two analogous definitions of constraint models which are
equivalent for technical purposes,one understood as applying to situations (for model-
ing subjunctive conditionals) and the other as applying to situation types (for modeling
constraints).

Definition 5.3 A situation σ is minimal in a set of situations (situation types) 6

ordered by � if σ ∈ 6 and for all σ ′ ∈ 6, σ ′ � σ implies σ ′ = σ .

Definition 5.4 A constraint model 〈6, V, ∗, �〉 is a set 6 of coherent situations
(situation types) together with (i) a valuation function V that assigns to each element σ
of 6 a set of basic infons (parametrized infons) V (σ ), (ii) an accessibility function ∗

that assigns to each element σ of 6 a set of situations (situation types) σ ∗ ⊆ 6, and
(iii) an ordering function � that assigns to each element σ of 6 an ordering �σ on
σ ∗ that satisfies the following conditions.

1. �σ is an almost-connected partial order on σ ∗;
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2. every nonempty subset of σ ∗ has an element minimal in �σ ;
3. σ �σ σ ′ for all σ ′ ∈ σ ∗.

Condition 1 represents our standard structural requirements on the ordering of ele-
ments in 6. Condition 2 amounts to a well-ordering principle: there can be no set
of elements which form an infinitely descending chain according to the ordering ≺σ

(defined as A ≺σ B if and only if A �σ B but not A = B). This is used to simplify
the semantics. Condition 3 is the “centering” condition of [39]: σ is a minimal el-
ement in the ordering and hence by antisymmetry is the unique least element in σ ∗

under the ordering �σ .
We can now define the semantics for a logic of conditionals based on constraint

models. The semantic rules for SC are identical to those for IC over their common
language. The truth rule for infons A ⇒ B is similar to that for A → B except that
σ ∗ (the set of relevant alternatives to σ ) is replaced by minσ(A), the set of minimal
refinements of σ that support A. The precise definitions are as follows.

Definition 5.5 Given a constraint model 〈6, V, ∗, �〉, let [A] denote the set of
situation (types) in 6 that support A. For a situation σ ∈ 6, the set of minimal
refinements of σ that support A, minσ(A), is defined as {σ ′: σ ′ is minimal in [A]∩σ ∗

ordered by �σ }.

Definition 5.6 A situation (type) σ supports (rejects) an infon A ⇒ B under the
following conditions.

σ |H A ⇒ B if for any situation (type) τ ∈ minσ(A), τ |H B.
σ =| A ⇒ B if for some situation (type) τ ∈ minσ(A), τ =| B.

The logic SC is defined by the following axiom schemes and inference rules with
corresponding axioms and rules from IC repeated for convenience. Note that because
we no longer assume persistence, (I3), (I13), and (I14) of IC are not theorems of SC.
This will also mean (see below) that the deduction theorem for SC is not valid.

The axiom schemes for the modified IC are as follows.

(I1) A → (A ∨ B), B → (A ∨ B)

(I2) (A ∧ B) → A, (A ∧ B) → B
(I3′) From A and B infer A ∧ B
(I4) A ↔ ¬¬A
(I5) (A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C))

(I6) ((A ∨ B) ∧ (A ∨ C)) → (A ∨ (B ∧ C))

(I7) ¬(A ∧ B) ↔ (¬A ∨ ¬B)

(I8) ¬(A ∨ B) ↔ (¬A ∧ ¬B)

(I9) (A ∧ (A ⊃ B)) → B
(I10) (A → B) ⊃ (A → B)

(I11) ((A → B) ∧ (A → C)) → (A → (B ∧ C))

(I12) ((A → C) ∧ (B → C)) → ((A ∨ B) → C)

(I13′) (A → (B → C)) → ((A → B) → (A → C))

(RI1) From A and A → B infer B
(RI2) If A ` B then infer A → B

The axiom schemes relating to the conditional arrow are as follows.

(C1) (A → B) → (A ⇒ B)

(C2) (A ⇒ (B ∧ ¬B)) → (A → (B ∧ ¬B))
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(C3) (A ∧ (A ⇒ B)) → B
(C4) (A ∧ B) → (A ⇒ B)

(C5) (A ⇒ B) ⊃ (A ⇒ B)

(C6) ((A ⇒ B) ∧ (B → C)) → (A ⇒ C)

(C7) ((A ⇒ B) ∧ (A ⇒ C)) → (A ⇒ (B ∧ C))

(C8) ((A ⇒ C) ∧ (B ⇒ C)) → ((A ∨ B) ⇒ C)

(C9) ((A ⇒ B) ∧ (A ⇒ C)) → ((A ∧ B) ⇒ C)

(C10) ((A ⇒ B) ∧ ((B ∧ A) ⇒ C)) → (A ⇒ C)

(C11) (¬((A ∨ B) ⇒ B) ∧ ((A ∨ B) ⇒ C)) → (A ⇒ C)

(RC1) From A and A ⇒ B infer B

The following are theorems or derived rules of SC.

A ⇒ A
((A ⇒ B) ∧ (A ⇒ (B ⊃ C))) → (A ⇒ C)

(A ⇒ B) → ((A ∨ C) ⇒ (B ∨ C))

((A ⇒ B) ∧ ((A ∨ B) ⇒ C)) → (B ⇒ C)

((A ⇒ B) ∧ (B ⇒ A) ∧ (A ⇒ C)) → (B ⇒ C)

If ` B → C then infer (A ⇒ B) → (A ⇒ C)

From A ∨ ¬A infer (A ⇒ B) → (A → B)

From A ∨ ¬A, B ∨ ¬B infer (A → B) → (¬B → ¬A)

Soundness and (weak) completeness of SC can be proven. The completeness proof
involves showing that for any infon A, there is a situation (type) σ whose minimal
refinements support all and only the infons B such that A ⇒ B. To prove this,
we show that any infon has a unique prime decomposition. Since the prime infons
correspond to situations (situation types), it is easy to construct a model for any given
prime infon. It is then verified that this gives rise to a constraint model and that all
and only the intended infons are supported in this model. The proof, however, works
only when the number of distinct infons to be supported by the model is finite (in
fact, with infinitely many distinct infons, some sets of infons only have models which
violate the well-foundedness condition).

Theorem 5.7 SC is sound and (weakly) complete with respect to the class of
constraint models.

We now briefly compare SC to well-known conditional logics such as SS [49] and
VC [39]. One difficulty in comparing SC to these systems is that both these logics
contain the propositional equivalences whereas SC is based on structures of situations.
However, as has already been noted, the conditions placed on constraint models
effectively mean that the situation (types) form a total preorder so that SC is similar
to VC. Thus most of the axiom schemes of VC have analogues in SC. In fact, were
PC to be added to SC, the characteristic (CV) axiom would follow from (C11).

(CV) ¬(A ⇒ ¬B) ∧ (A ⇒ C) → ((A ∧ B) ⇒ C).

This derivation relies on the equivalence of A and (A ∧ B) ∨ (A ∧ ¬B) which
does not hold for SC. Indeed (CV) is invalid in SC. However, as we discuss below,
(C11) generates some similarly strong consequences that violate some intuitions about
simple subjunctive conditionals.
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Some other theorems of SS (and hence of VC) that are not theorems of SC also
rely on the propositional equivalences (i.e., reflect properties of possible worlds rather
than situations). The following axiom scheme is valid on the assumption that B is
defined at any minimal A-situation.

((A ∧ B) ⇒ C) → (A ⇒ (B ⊃ C)).

In addition, both SS and VC contain the centering axiom (MP1) which is invalid in
SC. A plausible alternative, (MP2), is also invalid.

(MP1) (A ⇒ B) ⊃ (A ⊃ B).
(MP2) (A ⇒ B) → (A → B).

The main reason these are invalid in SC is the modal treatment of information flow.
The possible worlds interpretation of (MP1) is that if A ⇒ B is true at a world w then
if A is also true at w, B must also be true at w. This follows from the fact that if w

satisfies A, w is always one of the closest A-worlds to itself. With situations, (MP1) is
clearly invalid: it is not supported by the “empty” situation which can support A ⇒ B
but need not support A ⊃ B. (MP2) is valid if B holds at all situations accessible to
all A-situations that are accessible to all (A ⇒ B)-situations accessible to an initial
situation. This is only true if A ⇒ B and A are persistent so that they both hold in
any situation at which B is required to hold.

However, one limitation of SC is that the deduction theorem is invalid. Recall
that for IC the deduction theorem follows from the persistence of infons, that is,
the condition that if A holds at a situation then A holds at all situations accessible
to that situation. More precisely, the proof of the deduction theorem for IC uses
axiom scheme (I14) which is not contained in SC. The problem, however, is (I13)
which involves nesting of the conditional operator: a counterexample to the deduction
theorem based on (I13) is that {A, B} ` A ⇒ B (for two simple infons A and B), but
{A} 6` B → (A ⇒ B), and similarly 6` A → (B → (A ⇒ B)). The main reason
for this is the lack of persistence when shifting between contexts in the logic SC, so
even though every situation satisfying A and B satisfies A ⇒ B, there is a situation
satisfying A but not B → (A ⇒ B). For the same reason, the deduction theorem
fails if ⇒ replaces → in the formulation of the theorem.

6. Discussion of the Theory

In this section we elaborate and evaluate our theory by discussing a number of issues
in conditional reasoning. These are the “paradoxes” of conditional implication, the
technical questions of disjunctive rationality and rational monotony, the difference
between truth conditions and assertability conditions for subjunctive conditionals,
the relationship between subjunctive and indicative conditionals, and some examples
from the literature concerning Quine’s competing conditionals and the conditional
excluded middle, and ‘might’ conditionals.

Some of the examples and counterexamples are from the artificial intelligence lit-
erature on nonmonotonic reasoning. Nonmonotonic (or default) reasoning variously
refers to the problem of inferring conclusions based on incomplete or partial infor-
mation, or to the problem of predicting the outcomes of plans of actions, and has a
close connection to conditional reasoning, particularly to the analysis of indicative
conditionals. In fact, the connections go further than this: Gabbay [27] initiated the
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study of nonmonotonic consequence relations (see also Makinson [43]), and condi-
tional logics were proposed as a formalism for default reasoning by Delgrande ([18]
and [19])—this work is extended by Boutilier [13] and Asher and Morreau [6].

The fundamental idea of Gabbay [27] is to characterize commonsense reason-
ing formalisms using a nonmonotonic consequence relation, that is, a consequence
relation, usually denoted by |∼ , that fails to satisfy the property of monotonicity.
Monotonicity is defined as the condition that whenever 0 ` A, 0 ∪ 1 ` A for any
sets of formulas 0 and 1 and formula A: note that classical (including conditional)
logics do satisfy monotonicity. In the case where 0 and 1 are formulas, Gabbay
shows how to define conditions on the consequence relation that correspond closely
to the “flat” (i.e., nonnested) formulas of conditional logic. For example, a condi-
tion called ‘cautious monotony’ is that if A |∼ B and A |∼ C then A ∧ B |∼ C which
clearly corresponds to our (C9). In artificial intelligence, a set of such properties
has been used to characterize systems for nonmonotonic reasoning based on partial
orders of states (Kraus et al. [35]) and wellfounded total preorders of states (Lehmann
and Magidor [38]) where a ‘state’ here is analogous to a possible world. It is thus no
surprise that the resulting logics correspond to the flat fragments of Pollock’s SS and
Lewis’s VC, respectively. Various authors have formalized translations between such
nonmonotonic consequence relations and conditional logics, for example, Arlo-Costa
and Shapiro [5], Crocco and Lamarre [17], and Fariñas del Cerro et al. [25].

Now although there is a close formal correspondence between nonmonotonic rea-
soning systems and conditional logics, the underlying intuitions are different. As a
rough general rule, however, stronger inferences are desired in nonmonotonic rea-
soning systems than in conditional logics, simply because commonsense reasoning
requires agents to jump to conclusions that may or may not be supported by valid pat-
terns of conditional reasoning. Thus any general property of conditional logic should
be a reasonable condition on a nonmonotonic consequence relation, and conversely,
any invalid property of a nonmonotonic consequence relation should correspond to an
invalid pattern of conditional reasoning. In this way, counterexamples from the liter-
ature on nonmonotonic reasoning provide prima facie counterexamples to purported
axioms of conditional logic and we discuss two such counterexamples in this sec-
tion. The particular conditions on nonmonotonic consequence operations of concern
are the rules of disjunctive rationality (DR) and rational monotony (RM), defined as
follows [35].

(DR) If A |∼/ C and B |∼/ C then A ∨ B |∼/ C .
(RM) If A |∼/ ¬B and A ∧ B |∼/ C then A |∼/ C .

It is evident that (DR) follows from the analogue of our (C11) while (RM) corresponds
to Lewis’s (CV) axiom scheme which is more powerful than (C11). That is, (DR)
follows from (RM) assuming other reasonable properties of the consequence relation.
(RM), and hence (DR), are valid in nonmonotonic reasoning systems such as those of
Gärdenfors [29] and Pearl [47] as well as in the system of Lehmann and Magidor [38]
mentioned above. However, (RM) and (DR) are not valid in many other formal
systems developed for nonmonotonic reasoning such as default logic (Reiter [53]).
Thus even in the literature on nonmonotonic reasoning, there is some debate about
the acceptability of these rules.
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6.1 The paradoxes of conditional implication Stalnaker and Lewis have both
argued that strengthening the antecedent (from A ⇒ C infer (A ∧ B) ⇒ C), transi-
tivity (from A ⇒ B and B ⇒ C infer A ⇒ C), and contraposition (from A ⇒ B
infer ¬B ⇒ ¬A) should all be invalid rules of inference in conditional logic: Lewis
calls these the ‘paradoxes’ of conditional implication, although they are, of course,
not paradoxes in the usual sense of that term. We note here that due to our use of
ordered structures of situations representing a refinement ordering, the three rules are
invalid in SC. As with the earlier systems, this can be illustrated with our favorite
simple ‘birds fly’ example. Suppose we have a situation supporting bird(tweety)
and fly(tweety) with one refinement supporting penguin(tweety), bird(tweety), and
¬fly(tweety). Then the following conditionals are supported in this structure, assum-
ing there are no relevant additional background conditions.

The exceptional “penguin” situation type accounts for the failure of strengthening
the antecedent and of transitivity. For strengthening the antecedent, the first condi-
tional is supported while the second is not.

If Tweety were a bird, then it would be able to fly.
If Tweety were a bird and a penguin, then it would be able to fly.

For transitivity, the first two statements are supported while the third is not.

If Tweety were a penguin, then it would be a bird.
If Tweety were a bird, then it would be able to fly.
If Tweety were a penguin, then it would be able to fly.

Contraposition fails because the first statement below is supported but the second is
not.

If Tweety were a penguin, then it would be a bird.
If Tweety were not a bird, then it would not be a penguin.

Interestingly, this counterexample to contraposition is not available for SS [49] and
stronger logics such as Stalnaker’s and Lewis’s due to the validity of the following
axiom scheme.

((A ∧ B) ⇒ C) ⊃ (A ⇒ (B → C)).

The next statement follows from this using the other axioms.

(A ⇒ C) ∧ ((A ∧ B) ⇒ ¬C) ⊃ (A ⇒ ¬B).

In default logic terms, this example can be interpreted as stating that if B is a reason
for revoking the inference of C from A (so that with B, ¬C follows from A), then
¬B follows by default from A. This is a valid rule of inference in many systems
of nonmonotonic reasoning, for example, Pearl’s System-Z and its descendants [47].
However, it is not valid in SC because its proof in those systems relies on the equiva-
lence of A and A∧(B ∨¬B). Thus the partiality of situations enables us to avoid one
of the well-known problems in nonmonotonic reasoning that arises from repeated use
of the original rule to infer that, since any kind of bird is exceptional in at least one
respect, birds are, by default, not penguins and not emus and not ostriches, but also
not robins and not hawks and not eagles, and so on. The opposite default conclusion,
that is, that a bird is typically either a robin or a hawk or an eagle or a penguin, and so
on, has some intuitive plausibility. However, SC does not sanction this conclusion
either. Intuitively, this conclusion should only follow under the assumption that every
bird is classified as an instance of a (known) subtype of birds: since there is no reason
to suppose this, we claim SC is correct in not admitting this conclusion.
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6.2 Disjunctive rationality In this section we examine a counterexample to dis-
junctive rationality taken from Rott [57]. Actually, Rott presents the counterexample
as one against a postulate of epistemic entrenchment derived from rational monotony
(see below), but the example also violates disjunctive rationality. In addition, Rott’s
conditionals are indicative rather than subjunctive but in this case the difference seems
to play no significant role.

The example concerns two possible indicators of a person’s health: blood pressure
and pulse. Take A to be ‘Henry’s blood pressure is not all right’, B to be ‘Henry’s
pulse is not all right’ and C to be ‘There is no serious danger to Henry’s life’. The
usual illnesses whose symptoms are an abnormal blood pressure or pulse rate are due
to a deficiency of minerals or proteins, and in such cases, there is no danger to life.
Thus we accept A ∨ B |∼ C . But under some circumstances, we may, says Rott, be
prepared to reject A |∼ C and B |∼ C . In particular, one possible reason for a high
blood pressure is an excess of minerals, in which case we should reject A |∼ C (this
is supposed to be a life threatening danger). Similarly, one possible reason for a
low pulse rate is an excess of proteins, in which case we should reject B |∼ C (again
supposed life threatening). To make these conclusions more plausible, the symptoms
of an excess of minerals (danger) are supposed to be exactly the same as those of a
deficiency of proteins (no danger) and vice versa. Thus on the basis of one particular
symptom, for example, low pulse rate, the patient could have a deficiency of minerals
or an excess of proteins, and so we cannot be sure there is no danger.

The counterexample turns on the intuition that when either A (high blood pressure)
or B (low pulse rate) is entertained separately, an excess of minerals or proteins is a
possibility serious enough to be considered, but when the possibility of either symptom
A∨ B is raised, an excess of either minerals or of proteins is implausible. The support
for this intuition is the idea that because, considered separately, an excess of minerals
or proteins is more implausible than a deficiency of the same substance, this should
not mean that an excess of minerals is as plausible as a deficiency of proteins, nor
that an excess of proteins is as plausible as a deficiency of minerals (the fact that they
have the same symptoms seems to us irrelevant). This much we can agree with. But
what Rott requires is that we agree to both of these statements at the same time: that
is, that an excess of minerals could be as plausible as a deficiency of proteins (so
that one default inference is blocked), and at the same time that an excess of proteins
could be as plausible as a deficiency of minerals (so that the other is blocked). Rott
([57], p. 57) seems to imply that we can do this since we don’t know anything further
to decide the question (according to the example). However, disjunctive rationality
allows only one of these statements to be true. The intuition underlying (C11) is
one of comparability of situations which means that (i) either both excesses are more
implausible than both deficiencies, in which case both A |∼ C and B |∼ C are accepted
rather than rejected, or (ii) an excess of one substance is as plausible as a deficiency of
the other, in which case one of A |∼ C and B |∼ C is accepted and the other rejected.
The way the example is described tends to favor (i) as the intended interpretation,
that is, given one symptom such as a low pulse rate, on this intuition, it should be
inferred that the patient is in no danger since this is probably due to a deficiency of
minerals rather than to an excess of proteins. In short, the counterexample seems
to rely on a confusion between ignorance and indeterminacy: in situation theoretic
terms, ignorance of which constraints hold is elevated to indeterminacy of a system
of constraints.2
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Thus we are inclined to reject the counterexample and conclude that the state of
affairs as described is appropriately modeled with ordered structures of situations.

6.3 Rational monotony We have motivated all the axiom schemes and rules of
SC. In this section we consider the converse question of whether SC is too strong.
We consider, in particular, the rule of rational monotony and the corresponding axiom
scheme (CV) in Lewis’s conditional logic VC.

One way to understand (RM) in the framework of constraints is that it enforces a
kind of independence of the effects of noninterfering background assumptions where
B’s noninterference with A is represented by the failure of the inference A |∼ ¬B.
If, in these circumstances, A allows the default inference of C , that is, A |∼ C , then
A ∧ B together must also allow the default inference of C , that is, A ∧ B |∼ C : thus
in a weak sense, the default conclusion C is “independent” of B. And conversely,
whenever B provides a reason to reject the default conclusion of C from A, ¬B must
follow by default from A. Intuitively, this seems too strong a rule since B could be, in
Pollock’s terms, an undercutting defeater for the connection between A and C even
when B does not interfere with A (Pollock [50]). Let us construct a counterexample
to (RM). Take A to be ‘the flight leaves on time’, B to be ‘there is a storm’, and C to
be ‘the flight arrives on time’. To make the example work, we have to suppose that
A |∼ C and A ∧ B |∼/ C are both true. The first, that is, ‘if the plane were to leave on
time, it would arrive on time’, is not problematic. For the second, suppose that with
modern technology, in a storm a plane is equally likely to land normally (on time) as
not (delayed), possibly according to other factors such as traffic, state of the runway,
and so on, so that A ∧ B |∼/ C . We claim that it should not follow that A |∼ ¬B, that
is, that the absence of a storm is in the normal course of events when planes leave on
time. For example, even in a city in the tropics that is frequently subject to storms so
that A |∼/ ¬B, the inferences A |∼ C and A ∧ B |∼/ C can still hold with B remaining
a defeater for the default conclusion of C from A.

It remains to check that the example can be modeled using ordered structures
of situations. Here we suppose an ordering with two situations, one supporting A
and C and a more refined situation supporting A and B. It is easy to verify that
A |∼ C , A ∧ B |∼/ C , and A |∼/ ¬B are all true in this model. Thus we conclude that
rational monotony is invalid and that Lewis’s logic VC is too strong. Note, however,
that we have used Lewis’s intuitions concerning comparability of states of affairs in
motivating SC, so the reason this example cannot be modeled in VC has more to do
with that system’s use of possible worlds than to its reliance on comparability.

More problematic is a counterexample to (CV) given by Pollock ([49], p. 43). His
example starts with three unrelated false statements S (my car is painted black), T
(my garbage can blew over), and U (my maple tree died). He then considers the
following formula (CV′) which follows from (CV) and which is also valid in SC.

(CV′) ¬((S ∨ T ) ⇒ S) ∧ ¬(((S ∧ U) ∨ T ) ⇒ T ) ⊃ ¬((S ∨ T ) ⇒ ¬U).

Pollock argues that both antecedents are true but the consequent is false. For the first
antecedent, since the disjuncts S and T are unrelated, there is no reason to conclude
that if the disjunction S ∨ T were true, the disjunct S would be true. Similarly for the
second antecedent, as S ∧ U and T are also unrelated, there is no reason to conclude
that T would be true if (S∧U)∨T were true. For the consequent, since ¬U is true (by
assumption), Pollock claims that ¬U would (still) be true if S ∨ T were true, making
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the consequent false. Now since (CV′) is valid in SC, this example also applies to our
logic. However, while we accept that the first antecedent is true and the consequent is
false, we think matters are less clear with the second antecedent. In particular, it could
be argued that under the notion of minimal change used to interpret the conditionals,
the change to the initial situation needed to support S∧U is an intuitively larger change
than that required to support T , so that the conditional ((S∧U)∨T ) ⇒ T is true in the
initial situation. This is the kind of response considered by Nute ([46], p. 69) who does
not find it satisfying, presumably because it presupposes that the different changes
to the initial situation are comparable—this is the assumption leading to (C11) and
thus is exactly the point being disputed. However, the model structures proposed by
Pollock violate the analogue of Disjunctive Rationality (DR), a principle for which
we have provided some intuitive support. The example does not violate (DR), so
one way out of the dilemma would be to define a condition on model structures that
validates the analogue of (DR) but not (C11). However, we doubt that such a set
of purely structural conditions on constraint (or possible world) models exists (as
noted above, following Stalnaker [63], the analogue of (DR) leads naturally, but not
necessarily, to comparability).3

6.4 Truth conditions and assertability conditions Those authors who argue
against truth theoretic accounts of conditionals, especially Adams [2], are perhaps
influenced by the fact that conditionals seem to incorporate an inherent ambiguity or
indeterminacy which makes one suspect that there can be no simple way to determine
the appropriate semantic structures for evaluating them. In place of a semantic theory,
Adams attempts to base a theory of conditionals on assertability conditions, the
conditions under which a rational agent is justified in uttering a particular statement.
Roughly, the assertability of a conditional ‘if A were the case then B would be the
case’ is the conditional probability of B on A.

The account we have proposed is truth theoretic and is based on the concept of
information. We accept that conditionals are highly ambiguous but we consider this
ambiguity to be pragmatic rather than semantic, following Lewis. If conditionals
express constraints in context, a major source of ambiguity is the determination of
that context and the determination of the background assumptions which can be taken
to underwrite the constraint. Once a context is determined, the truth or otherwise of
the conditional is fixed by whether or not the expressed constraint holds. Insofar
as these factors influence the assertability of a conditional, it is clear that the truth
conditions and assertability conditions of conditionals will diverge, and of course, if
an agent is ignorant of which constraints actually hold, a true conditional may not be
justifiably asserted. In fact, we have already seen an example of this in Rott’s putative
counterexample to disjunctive rationality. In addition, an assertion of a counterfactual
presupposes the falsity of the antecedent, so for a counterfactual to be assertable by
an agent, the antecedent’s falsity must be believed by the agent.

There is, however, a deeper concern. This is that the notion of information itself, or
at least our use of it, is defective. In situation semantics, constraints are informational
relations between types of facts or events, and as such, their formulation depends on
an agent’s conceptual scheme including the agent’s power to discriminate properties
and abstract types of objects. Recall that Dretske’s notion of information is similarly
relative to the purposes of agents. Could our conceptual scheme be so deficient that
hardly any of the constraints we take to hold actually hold? If so, this would not



124 WAYNE WOBCKE

mean that our semantic account of conditionals was wrong but it would render this
account less significant as an analysis of conditionals than one based on assertability
conditions. Assertability need not here be equated to conditional probability but
could instead be based on the evidence available for a constraint as considered part of a
scientific theory. Arguments for this perspective on scientific knowledge are advanced
by authors such as Dupré [24] who claims that in the sciences generally, “disorder”
is the norm rather than the exception and that there are multiple possible world views
acceptable in different contexts. This also squares well with the “pragmatic” view of
scientific explanation defended by van Fraassen [66].

This fragmentary nature of an agent’s conceptual scheme is taken as an accepted
part of situation theory, especially in Seligman’s discussion of perspectives [60] and
Devlin’s of agent schemes [20]. As a consequence, in situation semantics, the idea
that sentences unproblematically denote their truth conditions has already been aban-
doned in favor of a “relational” semantic theory in which the meaning of a sentence
is a relation between utterance situations and described situations as detailed in [10].
We have studied the application of these ideas to conditional reasoning in an earlier
examination of reasoning about action in artificial intelligence (Wobcke [70]), a prob-
lem in which the difference between “traditional” semantic theories and the situation
semantics view is clearly apparent. In brief, the problem of reasoning about action
as presented by McCarthy and Hayes [44] is to develop a formalism in which the
effects of everyday actions can be expressed. The traditional “semantic” view is that
an action denotes a function from world states (initial states) to world states (result-
ing states), and the dilemma is that no agent can be expected to predict the entire
world state resulting from the performance of a simple action. Thus a large body
of research in this area has concentrated on developing formalisms for representing
sample problems based not on any firm semantic foundation but on “epistemological”
assumptions, for example, Ginsberg and Smith [30], Shoham [62], Winslett [68]. To
give a specific example, a common intuition is that any changes be minimal: in the
possible worlds theory, minimality is captured by the use of some ordering on world
states, whereas in an epistemological theory, minimality refers to the change in an
agent’s belief state. While the former is often regarded as impossible to model, the
latter seems unmotivated: why should the results of my actions be determined only by
what I believe? More recently, authors such as Peppas et al. [48] and Sandewall [58]
have sought to establish connections between agent’s theories and world states where
these states are taken as complete descriptions of parts of the world, the “domain” of
the agent’s actions. What we argued is that this idea of relativizing reasoning about
actions to domains, the motivation of which comes from modeling and simulation and
engineering control theory, is analogous to taking a situated view of the semantics of
action.4

Thus we interpret the semantics of conditionals as being based on a collection of
fragmentary world models, views the agent has of the world which may vary from
context to context, each of which is dependent on a series of background assumptions
which it may be impossible to enumerate. This is a semantic view to the extent that
such models do or do not correspond to actual situations in the world, and although
this leaves much room for pragmatic ambiguity, we claim that this is because there is
this much ambiguity in interpreting conditional statements.
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6.5 Subjunctive and indicative conditionals It is widely accepted that sub-
junctive and indicative conditionals have different acceptance conditions. Adams [1]
uses the following pair of examples to illustrate the clear intuitive difference between
the two classes of statement.

If Oswald hadn’t killed Kennedy, then someone else would have.
If Oswald didn’t kill Kennedy, then someone else did.

Clearly the second statement is acceptable but the first statement may not be.
According to Stalnaker [64], indicative conditionals differ from subjunctives in

that indicatives refer to hypothetical changes in an agent’s epistemic state whereas
subjunctives hold in virtue of external facts irrespective of an agent’s knowledge
of those facts. Indicative conditionals are evaluated using a modified Ramsey test,
following Ramsey [52]. That is, underlying an indicative conditional is a hypothetical
change of belief so as to accept the antecedent of the conditional; the conditional is then
acceptable if its consequent holds in the resulting belief state. A common intuition is
that changes of belief state should be minimal, and much belief revision research is
concerned with giving precise formal conditions governing minimal changes of belief,
for example, Gärdenfors [28]. Given only this much, it is easy to see why subjunctives
differ from indicatives. For we can suppose that one rational principle of minimality
is that no belief held independently of the negation of the conditional’s antecedent
should be given up in hypothetically accepting the antecedent. For example, given that
there is overwhelming evidence for Kennedy’s dying when he did, all the alternative
belief states considered in evaluating the above indicative conditional should include
the belief that Kennedy died, so the conditional will be acceptable.

There are two questions we wish to consider further. First, do indicative condition-
als have truth conditions (or only acceptance or assertability conditions), and second,
does the logic of indicative conditionals differ from that of subjunctive conditionals?
We claim that indicatives have truth conditions, although these truth conditions are
different from acceptance conditions since many belief revision functions are equally
rational and an agent may not be aware of which one is the “correct” revision function
to use to change its beliefs. Such might be the case if an agent is unsure of the inde-
pendence of evidence supporting different beliefs. Continuing the Kennedy example,
suppose there are two possible pieces of evidence for Kennedy’s dying of a bullet
wound: a bullet wound to the head and a bullet wound to the lungs. Now consider
two agents, each of whom believes that Kennedy died of a bullet wound and was shot
in the head and the back, but one of whom believes that he died because of the head
wound while the other believes it was because of the back wound. Consider now the
following conditional.

If Kennedy wasn’t shot in the head, then he wouldn’t have died.

The agent who accepts the head wound account accepts this conditional while the
other agent does not. But even though both agents are rational and have the same
initial set of beliefs, they can’t both be right. We know that, in fact, Kennedy died
because of a head wound. So we see that the first agent is right, the second is
wrong, and that the conditional is true. In the sense that the revision function should
respect the informational relations obtaining between the described events, indicative
conditionals have truth conditions.

It is a separate question whether the truth conditions of subjunctives and indicatives
are the same. It is possible within the belief revision paradigm (the AGM paradigm)
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of Alchourrón et al. [3] to formulate a “semantic” model in which complete theories
play the role of possible worlds, as in Grove [33], and belief states are sets of complete
theories. In this way, the AGM belief revision postulates can be seen as analogous
to Lewis’s conditional logic VC. In a similar way, it is possible to define belief
revision functions based on ordered structures of situations, for example, Restall and
Slaney [55], although note that in that work, the coherence condition on situations is
not required. We believe that just as situations provide an appropriate modeling of
parts of the world, they provide an appropriate modeling of belief states, and further,
the reasons for insisting on comparability of parts of the world apply also to belief
states. As a consequence, the logic of subjunctive and indicative conditionals is SC,
even though the truth conditions for subjunctive-indicative pairs are different. The
differences between the two classes of conditionals result from the different structures
of situations used in evaluating them, the logical similarities from the fact that those
structures satisfy the same formal properties.

Subjunctives and indicatives are often interchangeable, and our account suggests
that this is so when the truth of the indicative is not dependent on the specific known
facts about the case in question so that the same class of alternative situations is
considered in each case. This is always the case if the negation of the consequent
of the conditional is not a known fact, for example, with future tensed conditionals.
Consider the following pair of statements.

If the battery were to be charged, then the car would start.
If the battery will be charged, then the car will start.

Suppose the normal backgroundconditions hold except that the battery is not charged.
Then both conditionals are true and the structures of situations used in their evaluation
are the same. Once it becomes known that the car does not start, for example, with
the analogous past tensed conditionals, the difference reappears.

If the battery had been charged, then the car would have started.
If the battery was charged, then the car started.

The first statement is presumably true while the second is false.

6.6 Two examples We close this section with discussion of two examples from
the literature on conditionals. Consider first Quine’s famous pair of “competing”
counterfactuals [51].

If Bizet and Verdi had been compatriots, then Bizet would have been Italian.
If Bizet and Verdi had been compatriots, then Verdi would have been French.

Quine thinks there is no way to decide between these statements but that they cannot
both be true. Lewis points out that the second statement entails the following.

If Bizet and Verdi had been compatriots, Bizet would not have been Italian.

Hence, with any system that has the law of conditional excluded middle (A ⇒ B)

∨ (A ⇒ ¬B), such as Stalnaker’s C2, exactly one of the pair must be true and the
other false. Which is which is determined by the possible world the selection function
treats as being closest to the actual world, and Lewis sees no way for such a decision
to be made on logical grounds. He therefore wants both examples to be false (they
are contradictory in Lewis’s VC assuming the antecedent to be possible). Stalnaker
defends the conditional excluded middle by advocating the use of supervaluations
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(van Fraassen [65]) in conjunction with his logic. This allows either or both (Stal-
naker doesn’t decide!) statements of the pair to be semantically indeterminate. The
conditional excluded middle is still valid because it holds in all ordinary valuations.

In contrast, we follow [7] in taking both conditionals to be true in appropriate
contexts, although we do not claim that these contexts can be derived from a collec-
tion of schemata. According to Barwise, both conditionals can be used to convey
information at different times (e.g., if you knew the nationality of Bizet but not of
Verdi, you could acquire that information from the first statement of the pair). Under
our theory, the conditionals are viewed as being separable pragmatically, giving rise
to two different evaluation contexts, one indicating that Bizet has the nationality Verdi
does (and so Bizet is Italian), the other indicating that Verdi has the nationality Bizet
does (and so Verdi is French). With respect to each context, one counterfactual is true
and the other false. Both statements only appear to be unequivocally true because
different contexts are used in evaluating them. What is confusing about the examples
is the further context dependence to do with the meaning of ‘compatriot’. Clearly,
whether two people are compatriots is context dependent if the nationality of the
people is part of the context which is allowed to vary.

Finally, consider ‘might’ conditionals, that is, conditionals of the form ‘if A were
the case then B might have been the case’. One advantage Lewis claims for his
analysis over Stalnaker’s is that his account can handle such conditionals while all
the obvious definitions for the might connective using Stalnaker’s semantics for the
standard operator lead to problems. We propose that ‘might’ conditionals can be
defined in terms of the standard subjunctive, as A ⇒ ♦B, where ♦B holds with
respect to a situation σ if and only if B holds at some situation refining σ . Lewis
considers this definition and says it fails on the following example.

If I had looked in my pocket, I might have found a penny.

This is supposing there to be no penny in my pocket so that the conditional should be
false (according to Lewis).

But we claim the example is ambiguous with respect to the type of modality in
force: whether it is ‘metaphysical’ or ‘epistemic’: Lewis clearly understands the
modality to be metaphysical. However, following our discussion of subjunctives and
indicatives, we suggest that there are two possible interpretations of the sentence and
the structures of situations used to evaluate the statement differ according to which
interpretation is considered (the example is presumably false under the ‘metaphysical’
reading but true under the ‘epistemic’ reading). Thus the example introduces a new
element to the context dependence of conditionals: not just in the determination of
the situation with respect to which a constraint is assessed but in the specification
of the structures of situations used in their evaluation. Indeed, the whole issue of
modality is one which deserves more careful analysis within situation semantics.

7. Conclusion

We have developed an account of a subclass of subjunctive conditionals which, on
the one hand, is logically formalized using a three-valued logic of situations, and on
the other, is suitable for an agent possessing a collection of schemata to use in eval-
uating certain kinds of conditionals. The theory is based on treating conditionals as
expressing constraints—informational relations between facts and events of the kind
that can be modeled using structures of situations. The “paradoxes” of conditional
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implication are explained as arising from the use of defaults and exceptions in schema
hierarchies, which in turn is understood in terms of how, in situation semantics, con-
straints hold only with respect to a series of background conditions which it may not
be possible to make explicit.

The present paper provides a more complex picture of conditional reasoning than
the early work of Ramsey [52] and Goodman [31], building on but significantly re-
working the previous semantic studies of [63], [39], and [49]. However, much more
is required before a complete solution to the problem of conditional reasoning can
be implemented because, as we have argued in this paper, information flow is highly
context dependent, involving multiple conceptual schemes, and moreover, is subject
to pragmatic concerns including the beliefs and motivations of agents. We believe
we have specified a framework in which issues in conditional reasoning (for a sub-
class of conditionals) are aligned with issues in knowledge representation in artificial
intelligence and defined a formalism whereby logical questions of conditionals in
contexts can be meaningfully discussed. However, it is not at all apparent how the
more pragmatic issues surrounding the interpretation of conditionals can begin to be
addressed within a computational setting.

Appendix A. Proofs

Lemma 4.8 A coherent situation supports a simple infon A if and only if it rejects
its dual A⊥.

Proof: By structural induction on simple infons: for basic infons, the result follows
from the definition of the supports and rejects relations. For infons of the form A∧ B,
(A ∧ B)⊥ is defined as A⊥ ∨ B⊥, and σ |H A ∧ B if and only if σ |H A and σ |H B
if and only if σ =| A⊥ and σ =| B⊥ (by the induction hypothesis), that is, if and only
if σ =| A⊥ ∨ B⊥. For infons of the form A ∨ B, (A ∨ B)⊥ is defined as A⊥ ∧ B⊥,
and σ |H A ∨ B if and only if σ |H A or σ |H B if and only if σ =| A⊥ or σ =| B⊥

(again by the induction hypothesis), that is, if and only if σ |H A⊥ ∧ B⊥. Finally, for
infons of the form ¬A, (¬A)⊥ is defined as A, and σ |H ¬A if and only if σ =| A
(once again, by the induction hypothesis), that is, if and only if σ =| A⊥. �

Lemma 4.14 A persistent infon is semantically persistent.

Proof: By structural induction on infons: the interesting case is that of the con-
ditional connective. Suppose σ |H A → B in some information flow model
(i.e., any situation in σ ∗ that supports A supports B) and suppose τ ∈ σ ∗. Since
τ ∗ = σ ∗ ∩ τ+, τ ∗ ⊆ σ ∗, hence any situation in τ ∗ that supports A also supports B,
that is, τ |H A → B. �

Lemma 4.15 (Deduction Theorem) If 0 ∪ {A} ` B then 0 ` A → B.

Proof: Following the standard proof for propositional logic using induction on IC
proofs: note first that the derived rule of transitivity, that is, from A → B and B → C
infer A → C , follows from (I3) and (RI1) twice (to infer (A → B) ∧ (B → C)),
and (I13) and (RI1) (to conclude A → C). Now consider any IC proof. If the line
of the proof involves instantiation of an axiom scheme B, A → B can be inferred as
follows: first B → (A → (B ∧ A)) is an instance of (I3) and A → (B ∧ A) follows
using (RI1), then since (B ∧ A) → B is an instance of (I2), A → B follows using
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transitivity. If the line of the proof involves the application of (RI1), say to B1 and
B1 → B2, then by the induction hypothesis, there are proofs from 0 of A → B1 and
A → (B1 → B2). Using (I11) amd (RI1), A → (A ∧ B1) follows from A → A
and A → B1 (A → A follows from (I4) and transitivity). But (A ∧ B1) → B2
follows from A → (B1 → B2) using (I14) and (RI1), so A → B2 follows using
transitivity again. Finally, if the line of the proof involves an application of (RI2)
to infer B1 → B2 when B2 is an IC theorem, a similar application of (RI2) can be
used to infer (A ∧ B1) → B2, from which A → (B1 → B2) follows using (I14) and
(RI1). �

The next series of definitions leads up to the proof of completeness for IC. The main
intermediate results concern a characterization of the coherent situations using prime
closed consistent sets of infons.

Definition A.1 A set of infons 0 is closed if A ∈ 0 whenever 0 ` A.

Definition A.2 A set of infons 0 is prime if whenever0 contains A∨B, 0 contains
A, or 0 contains B.

Lemma A.3 The set of infons supported by any situation in any information flow
model is prime and closed.

Proof: The fact that the set is prime follows directly from the definition of the
supports relation. The fact that it is closed amounts to the soundness of the system
IC. More precisely, let σ be a situation in an information flow model and let 0 be the
set of infons supported by σ . Suppose 0 ` A where A is an infon. We have to show
that σ |H A. This proof is by induction on proofs in IC. First, it is easy to verify
for each instance A of an axiom scheme that σ |H A (coherence is needed for (I9)
and persistence for (I3) and (I14)). Second, when an application of (RI1) and (RI2)
produce an infon A, the truth conditions ensure that σ |H A. �

Lemma A.4 If 0 is a consistent set of infons then there exists a prime closed
consistent set of infons containing 0.

Proof: As in the proof of Lindenbaum’s lemma, start with an enumeration of the
infons A1, A2, . . . in increasing order of complexity. Now given a consistent set of
infons 0, define an infinite sequence of sets of infons 01, 02, . . . as follows. First,
define 01 = 0. At step i , if 0i ∪ {Ai} 6` false (where false is an arbitrary contradic-
tion), define 0i+1 = Cn({0i ∪{Ai}}) (the smallest closed set of sentences containing
{0i ∪ {Ai}), otherwise define 0i+1 = 0i . We show that 0∞ is prime, closed, and
consistent. Clearly the construction guarantees that 0∞ is closed and consistent for
these properties hold at each stage of the process. For primeness, suppose that 0∞

contains B1 ∨ B2 but neither B1 nor B2. Then at step i when B1 ∨ B2 was consid-
ered, 0i ∪ {B1 ∨ B2} 6` false. But 0i ∪ {B1} ` false and 0i ∪ {B2} ` false since
B1 and B2 were inconsistent with subsets of 0i at steps before i and are therefore
both inconsistent with 0i . So by the deduction theorem, 0i ` B1 → false and
0i ` B2 → false. But since 0i is closed, (I12) together with these assertions implies
that 0i ` (B1 ∨ B2) → false, so that 0i ∪ {B1 ∨ B2} ` false, a contradiction. �

Corollary A.5 If 0 is a consistent set of infons and A is a simple infon such that
0 6` A then there exists a prime closed consistent set of infons containing 0 that does
not contain A.
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Proof: First note that this does not follow directly from Lemma A.4 since, given
such a set 0 and infon A, ¬A may not be consistent with 0 (e.g., in the case where
A is B ∨ ¬B), so Lemma A.4 cannot be applied to the set 0 ∪ {¬A}. However,
the construction of Lemma A.4 can be generalized in the following way: where in
Lemma A.4 the test at each stage is for whether 0i ∪ {Ai} 6` false, we replace this
with the test for whether 0i ∪ {Ai} 6` A. At the end of the process, the set 0∞ is
clearly closed and does not contain A and, using the same reasoning as in the proof
of Lemma A.4, this set is also prime. �

Lemma A.6 For any prime closed consistent set of infons 0, there is an information
flow model containing a coherent situation that supports all and only the infons in 0.

Proof: We define a mapping [ . ] from prime closed consistent sets of infons to
situations. For any such set of infons 0, define [0] to be the set of basic infons
{〈a, +〉 : a ∈ 0} ∪ {〈a, −〉 : ¬a ∈ 0} where a is a primitive symbol in the language
of 0. Fixing a particular such set 0, the information flow model consists of the set
6 of all extensions of [0]. For any situation σ contained in 6, define σ ∗ to be the
union of all [0◦

A] where 0◦
A is a prime closed consistent set of infons containing 0A,

defined for an infon A as {B : A → B ∈ 0}. We must check that the three conditions
on the ∗ function are satisfied. Condition 1, σ ∗ ⊆ σ+, follows from the fact that
B → (A → B) is a theorem of IC (this follows from the deduction theorem), so that
whenever B ∈ 0, B ∈ 0A for any A. Condition 2, σ ∈ σ ∗, follows from the fact
that 0A = 0 when A is an IC theorem, so that 0 is counted as one of the 0A (if A
is an IC theorem, B follows from A → B using (RI1), and A → B follows from B
using the deduction theorem, so B ∈ 0 if and only if A → B ∈ 0). Condition 3
is that whenever τ ∈ σ ∗, τ ∗ = σ ∗ ∩ τ+. This follows from (I14). More precisely,
suppose τ is derived from the set 0A = {C : A → C ∈ 0}. Then any situation in
τ ∗ is derived from a set {C : B → C ∈ 0A}. By (I14), any such set is identical
to the set {C : (A ∧ B) → C ∈ 0} so the corresponding situation is contained in
σ ∗. Similarly, for the converse, any situation υ in σ ∗ that extends τ derives from
a set {C : B → C ∈ 0} that also contains A, that is, B → A ∈ 0. But then
A → ((A ∧ B) → C) ∈ 0 if and only if B → C ∈ 0. Hence υ is in τ ∗, being
constructed from the set {C : (A ∧ B) → C ∈ 0A}.

Finally, we show by structural induction that for all infons A, σ |H A if and only
if 0 contains A. Consider the ‘if’ part of this claim and consider first the conditional
connective. If A → B ∈ 0 then once the induction is established and can be applied
to A, σ |H A → B follows by construction, here using the fact that A → B is
persistent (i.e., if A → B ∈ 0 then for any persistent infon C , (C ∧ A) → B ∈ 0 by
transitivity, so C → (A → B) ∈ 0 by (I14), hence A → B holds at all constructed
situations in σ ∗ because these correspond to sets that contain some such 0C ).

Conversely, suppose A → B 6∈ 0 and suppose that by applying (I14) repeatedly,
the consequent D of any subformula of B of the form C → D is a simple infon. We
have to construct a situation σA that supports the elements of 0A but rejects B. We
do this by induction on the subformulas of B. More precisely, we define a tree whose
nodes are labeled with consistent sets and infons; the root of the tree is labeled 0A and
B and the infons at the leaves of the tree are all simple infons. The tree is constructed
according to the following rules. Let 0C and D be the label of some node n in the tree.
Then the children of n are defined as follows: if D is of the form ¬¬D1 then n has one
child labeled 0C and D1; if D is of the form D1 ∧ D2 then n has one or two children
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labeled 0C and D1 or 0C and D2 depending on whether D1 and D2 are not contained
in 0C (at least one of these must be the case); if D is of the form D1 ∨ D2 then n has
two children labeled 0C and D1 and 0C and D2; if D is of the form D1 → D2 then n
has one child labeled Cn(0C ∪ {D1}) and D2 when D1 is consistent with 0C and one
child labeled 0C and D1 when D1 is inconsistent with 0C . The construction stops at
a node when it is labeled with a simple infon. The intuition is that corresponding to
each node with label 0C and D, there is a situation σC supporting 0C and rejecting
D, and this property we prove by induction on the structure of the tree. The desired
situation σA to complete the proof is then that corresponding to the root of the tree
which supports 0A but rejects B. For the proof, consider first the base case of the
induction. Note that the leaves of the tree are all labeled with a consistent set 0C

containing 0A and some simple infon D such that D is not contained in 0C . Hence by
Corollary A.5, for each leaf of the tree, there is some prime consistent set containing
0C that does not contain D, hence by construction, some situation supporting 0C that
rejects D.

We now have to verify that the constructed information flow model supports 0A but
rejects B. So let n be any nonleaf node in the tree labeled 0C and D. The induction
hypothesis gives, for each child m of n, a situation σm supporting the set of infons and
rejecting the infon with which m is labeled. We proceed by case analysis. First, if D
is of the form ¬¬D1 then the situation σn is σm where m is the child of n. Second,
if D is of the form D1 ∧ D2 then set σn to be either of the situations corresponding
to the children of n (these are identical). Third, if D is of the form D1 ∨ D2 then set
σn = σm where m is the child of n. Finally, if D is of the form D1 → D2 then when
D1 is inconsistent with 0C set σn to be σm where m is the child of n, and when D1 is
consistent with 0C set σn to be a new situation corresponding to 0C . In all cases but
the last, the desired result, that σn supports 0C and rejects D is clear. For the final
case (when D is of the form D1 → D2 and D1 is consistent with 0C ), it is apparent
that σm supports 0C and D1 but rejects D2, and since this situation is accessible to
σn , we have that σn supports 0C but rejects D1 → D2. Thus the induction step is
established and the situation corresponding to the root of the tree provides the desired
countermodel to A → B.

All this establishes the induction step for infons of the form A → B. It remains to
consider the other connectives. Here we show by induction on infons A in disjunctive
normal form that σ |H A if and only if 0 contains A: the atoms in the DNF are the
basic infons and the conditional infons and the axiom schemes of IC ensure that such
normal forms exist. If A is an atom or the negation of an atom then A ∈ 0 if and only
if σ |H A by definition or by the above argument (in the case of conditional infons).
If A is of the form A1 ∧ A2 then A ∈ 0 if and only if A1 ∈ 0 and A2 ∈ 0 if and only
if σ |H A1 and σ |H A2 if and only if σ |H A. Finally, if A is of the form A1 ∨ A2
then A ∈ 0 if and only if A1 ∈ 0 or A2 ∈ 0 (using primeness) if and only if σ |H A1
or σ |H A2 if and only if σ |H A. �

Example A.7 Let A = (p → q) → (q → r). First, by (I14) this is equivalent to
((p → q) ∧ q) → r . The countermodel will have at least three situations: σ0 =| A,
σ1 |H (p → q) ∧ q but σ1 =| r , and σ2 |H p ∧ q. The model can be pictured
as follows, where the basic infons supported and rejected by a situation are shown
inside the circle, those rejected written within square brackets for illustrative purposes.
Arrows show accessibility under the ∗ function.
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Lemma 4.16 IC is sound and complete with respect to the class of information
flow models.

Proof: Soundness is easy to check, noting that it relies heavily on the persistence
property. For completeness, suppose 0 6` A; we show that 0 6|H A. This follows
directly from Lemma A.6, which guarantees the existence of an information flow
model with a situation σ such that σ |H B if and only if 0 ` B, that is, σ 6|H A. �

Lemma 4.18 SPC is a sound and complete inference system with respect to the
propositional interpretations.

Proof: Soundness is easy to check. For completeness, given a consistent SPC
theory 0, for every context symbol c, Lemma A.6 can be used to assign to c an infor-
mation flow model. This is because (P2) – (P6) guarantee that each set of formulas
0c is closed and consistent, hence is contained in a prime closed consistent set of
infons, where 0c is defined as {A: (c : A) ∈ 0}. The situation denoted by c is then
the situation in the information flow model corresponding to 0c. �

The next series of definitions lead up to the proof of soundness and completeness
for SC. The initial results concern a characterization of the situations using prime
infons.

Definition A.8 Two infons A and B are provably equivalent, denoted A ≡ B, if
and only if A ` B and B ` A in SC.

Definition A.9 A conditional infon is an infon of the form A ⇒ B or A → B.

Definition A.10 A conditional literal is an infon of the form A or ¬A where A is
a conditional infon.

Definition A.11 An infon p is prime over a finite set S of conditional infons if
it is a finite conjunction of conditional literals l1 ∧ · · · ∧ ln such that for every infon
A ∈ S, either A or ¬A is one of the conjuncts li of p, and further, p contains no other
conjuncts.

Example A.12 Let S = {p ⇒ q, q → r}. Then (p ⇒ q) ∧ ¬(q → r) is a prime
infon over S.

Lemma A.13 If p and q are consistent prime infons over the same finite set of
infons, then p ` q only if p ≡ q.

Proof: Suppose p is not equivalent to q. Then p must contain (as one of its con-
juncts) some conditional literal r that is not a conjunct of q, that is, p ` r and q ` ¬r
(supposing here the literal r is nonnegated; if not, reverse the roles of p and q). Since
p ` q, p ` ¬r by transitivity, so p is inconsistent, contrary to hypothesis. �

Lemma A.14 If p, q, and r are consistent prime infons over a finite set S of infons,
then p ` q ∨ r implies p ` q or p ` r .
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Proof: Suppose that p ` q ∨ r but p 6` q and p 6` r . Since p ` q ∨ r , p ` q ′ ∨ r ′

for any literals q ′ in q and r ′ in r . But since p 6` q, there is some literal qi in q that
is not in p, hence ¬qi is in p and so p ` ¬qi . Similarly, there is some literal r j in r
such that p ` ¬r j . But since p ` qi ∨ r j , p is inconsistent, a contradiction. �

Definition A.15 A prime decomposition of an infon A is a finite disjunction of
infons p1 ∨ · · · ∨ pn, provably equivalent to A, in which each infon pi is prime (over
the same finite set of infons).

Lemma A.16 Any infon A is provably equivalent to a prime decomposition of A
over some finite set of infons.

Proof: By induction on infons, following the proof for PC, noting that conditional
infons are “propositional” in nature: first replace any basic infon p not within the
scope of an ‘⇒’ or ‘→’ operator by the infon true ⇒ p for an arbitrary SC theorem
true. This leaves an infon built up from conditional infons using the conjunction,
disjunction, and negation operators which (C4) guarantees is provably equivalent to
A. The IC axioms corresponding to the properties of De Morgan lattices ensure that
this is provably equivalent to a disjunction of infons. The set of conditional infons in
the prime decomposition is clearly finite. �

Example A.17 Let A = p∨ (¬q ∧ (q ⇒ r)). Then A ≡ (true ⇒ p)∨ (¬(true ⇒

q) ∧ (q ⇒ r)). A prime decomposition of A is ((true ⇒ p) ∧ ¬(true ⇒ q)) ∨

((true ⇒ p) ∧ (q ⇒ r)) which is prime over the set {true ⇒ p, true ⇒ q, q ⇒ r}.

Definition A.18 A prime decomposition p = p1∨· · ·∨ pn of a infon A is minimal
if A is not equivalent to p1 ∨ · · · [pi ] · · · ∨ pn for any i where this infon is p with the
prime pi omitted.

Corollary A.19 If a finite set S contains all conditional infons occurring as sub-
formulas of A then a minimal prime decomposition of A over S exists.

Proof: The construction of Lemma A.16provides a prime decomposition of A using
only the prime infons occurring as subformulas of A. It is easy to turn this into a prime
decomposition over S by conjoining the decomposition with all c ∨ ¬c contained in
S but not occurring in A, then repeatedly applying the distributive law. By ordinary
set theory, a minimal prime decomposition therefore exists. �

Lemma A.20 A minimal prime decomposition of any infon A over a finite set of
infons, if it exists, is unique up to provability.

Proof: Suppose that A has two minimal prime decompositions P = p1 ∨ · · · ∨ pn

and Q = q1 ∨ · · · ∨ qm over S. Then pi ` q1 ∨ · · · ∨ qm so pi ` q1 or · · · or
pi ` qm for each i by Lemma A.14. By suitably reordering the q j , we can assume
that pi ` qi for each i . Thus m ≤ n since otherwise Q is not minimal. Similarly, for
each i , qi ` p j for some j , so qi ` p j ` q j , so i = j (by the minimality of Q) and
n ≤ m. Hence P is provably equivalent to Q. �

We are now in a position to prove completeness for SC. For ease in developing the
proof, we define A◦ to be the set of “nonmonotonic consequences” of A, that is, the
set of B such that A ⇒ B (relative to a given fixed SC theory) (cf. [35] and especially
Freund [26]). We also use this notation to refer to a conjunction of the elements of
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this set over a finite set of prime infons. The proof uses the prime decomposition of
the infon A◦ to define a model for a consistent SC formula A.

Definition A.21 Given a set 0 of SC sentences, for any infon A, the set A◦ is
defined as {B : A ⇒ B ∈ 0}.

Lemma A.22 For a fixed closed set 0 of SC sentences, for any infons A and B,
if 0 contains A ⇒ B and B ⇒ A then A◦ and B◦ are equal sets of infons.

Proof: Suppose 0 contains A ⇒ C ; by (I3′) it follows that 0 contains (A ⇒ B) ∧

(A ⇒ C), so (C9) and (RI1) give that (A ∧ B) ⇒ C is contained in 0. Also from
(I3′), it follows that 0 contains (B ⇒ A) ∧ ((A ∧ B) ⇒ C), so by (C10) and
(RI1), B ⇒ C is contained in 0. That is, we have shown that A ⇒ C ∈ 0 implies
B ⇒ C ∈ 0, so by a similar argument, B ⇒ C ∈ 0 implies A ⇒ C ∈ 0. Hence the
sets corresponding to A◦ and B◦ are equal. �

Corollary A.23 For a fixed closed set 0 of SC sentences, for any infons A and
B, if A ≡ B then A◦ ≡ B◦ assuming now that A◦ and B◦ are prime decompositions
over some finite set of infons.

Proof: If A ` B then ` A → B by (RI2), so ` A ⇒ B by (C1) and (RI1).
Similarly ` B ⇒ A. The result follows from Lemma A.22. �

Lemma A.24 For a fixed closed set 0 of SC sentences, for any infon A, A◦ ≡ A◦◦

assuming both are prime decompositions over some finite set of infons.

Proof: Since both A ⇒ A◦ ∈ 0 and A◦ ⇒ A ∈ 0, A◦ ≡ A◦◦ by Lemma A.22. �

Lemma A.25 For a fixed closed set 0 of SC sentences, for any infons A and B,
(A ∨ B)◦ ` A◦ ∨ B◦, again assuming all are prime decompositions over some finite
set of infons.

Proof: Clearly, A ⇒ A◦ ∈ 0 and B ⇒ B◦ ∈ 0, and since ` A◦ → (A◦ ∨ B◦) by
(I1), A ⇒ (A◦∨B◦) ∈ 0 using (I3′), (C6), and (RI1). Similarly B ⇒ (A◦∨B◦) ∈ 0.
Hence by (C8) and (RI1), (A ∨ B) ⇒ (A◦ ∨ B◦) ∈ 0. Thus by definition, A◦ ∨ B◦ is
contained in the set (A ∨ B)◦ and hence the infon A◦∨B◦ follows from (A ∨ B)◦. �

Lemma A.26 If p1 ∨ · · · ∨ pn is the minimal prime decomposition of A◦ over a
set S, then p◦

i ≡ pi for each i .

Proof: Since A◦ ≡ ((A◦ ∧ p1) ∨ · · · ∨ (A◦ ∧ pn)), by Lemmas A.22, A.24, and
A.25, A◦ ` A◦◦ ` ((A◦ ∧ p1) ∨ · · · ∨ (A◦ ∧ pn))

◦ ` (A◦ ∧ p1)
◦ ∨ · · · ∨ (A◦ ∧ pn)

◦

≡ p◦
1 ∨· · ·∨ p◦

n, that is, p1∨· · ·∨ pn ` p◦
1 ∨· · ·∨ p◦

n. So for each i , pi ` p◦
1 ∨· · ·∨ p◦

n
and so pi ` p◦

j and hence pi ` p j for some j (since for each j , p◦
j ` p j ). But

pi 6` p j unless i = j . This means that for each i , pi ` p◦
i , and since also p◦

i ` pi ,
it follows that p◦

i ≡ pi . �

Lemma A.27 For any consistent infon A, there is a constraint model containing a
coherent situation that supports A.

Proof: We follow the usual Henkin-style construction: for some consistent prime
closed theory 0 containing A, we associate a constraint model containing a situation σ

that supports all and only the infons in 0. As usual, it is fairly straightforward to define
an ordering on situations from the conditional infons contained in 0. However, the
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main complication is the well-orderedness condition. We guarantee well-orderedness
by applying the method of filtrations, that is, we identify situations in the model that
agree on some set T which contains A and all subformulas of A. This ensures that
there are only finitely many distinct situations in the model, so well-orderedness is
satisfied.

As in the proof of Lemma A.6, we define an interpretation mapping prime closed
consistent sets of infons to situations. The first step, following the filtration method,
is to identify such sets that agree over a set T containing A and all subformulas of A.
Begin by replacing any basic infon a in A by the infon true ⇒ a to give a provably
equivalent formula A′, then replace A′ with its minimal prime decomposition over a set
S that contains all conditional infons occurring as subformulas of A′: Corollary A.19
guarantees that this exists. A suitable set T is the set of all infons of the form B ⇒ C
where B and C are disjunctions of prime infons over S. Clearly S and so T are finite
and the relation ∼T on prime closed consistent sets of infons defined by 01 ∼T 02 if
and only if 01 ∩T = 02 ∩T is an equivalence relation with finitely many equivalence
classes.

Let [0] be an equivalence class under ∼T . We define its interpretation to be a
situation whose basic infons are the basic infons contained in all elements of [0].
The constraint model consists of the set 6 of all such interpretations of prime closed
consistent sets of infons. For any such situation σ = [0], we define σ ∗ to consist of
the set of all situations σp which are the interpretation of an equivalence class [0p] as
p varies over the prime infons over S and 0p varies over the prime closed consistent
sets containing p◦ ∩ S (which exist whenever p◦ is consistent). The situations in
σ ∗ are ordered by setting σp �σ σq (for any σp , σq deriving from some 0p, 0q)
if and only if p ≤ q ∈ 0, where p ≤ q is the infon (p ∨ q) ⇒ p, as is standard
in conditional logic. This is well defined because T contains all infons of the form
p ≤ q where p and q are prime over S. In addition, σ ∗ contains situations that reject
B → C when this infon is not contained in 0 but when p ⇒ C ∈ 0 for all primes p
in S such that p ⇒ B ∈ 0. In such a case, σ ∗ contains a situation σ ′ corresponding
to an equivalence class derived from a prime closed consistent theory containing B◦

when B◦ is consistent. These situations are all ordered maximally in the ordering
centered on σ , that is, σp �σ σ ′ for all the situations σp defined above.

We now show that the above construction defines a constraint model. We first show
that the ordering �σ is an almost-connected partial order. Reflexivity is straightfor-
ward as p ≤ p is an axiom of SC. Antisymmetry follows from the fact that when
p ≤ q ∈ 0 and q ≤ p ∈ 0, p◦ ≡ (p ∨ q)◦ ≡ q◦ from Lemma A.22. For tran-
sitivity, suppose p ≤ q ∈ 0 and q ≤ r ∈ 0. Since q ≤ r means (q ∨ r) ⇒ q,
(p ∨ q ∨ r) ⇒ (p ∨ q) ∈ 0 by (C6) and (C8), hence (p ∨ q ∨ r) ⇒ p ∈ 0

by (C9), since p ≤ q means (p ∨ q) ⇒ p. But (p ∨ q) ⇒ p ∈ 0 also implies
(p ∨ q ∨ r) ⇒ (p ∨ r) ∈ 0 by (C6) and (C8), so since (p ∨ q ∨ r) ⇒ p ∈ 0,
(p ∨ r) ⇒ p ∈ 0 by (C9), that is, p ≤ r ∈ 0. For almost-connectedness, suppose
p ≤ r ∈ 0 but p 6≤ q ∈ 0 and q 6≤ r ∈ 0. First, (p ∨ r) ⇒ p ∈ 0 implies
(p ∨ q ∨ r) ⇒ (p ∨ q) ∈ 0 by (C6) and (C8). But ¬((p ∨ q) ⇒ p) ∈ 0 implies
¬((p ∨ q ∨ r) ⇒ p) ∈ 0 by (C6) and (C9), and similarly, ¬((q ∨ r) ⇒ q) ∈ 0

implies ¬((p ∨ q ∨ r) ⇒ q) ∈ 0. These three conclusions contradict the analogue
of (DR) and hence the consistency of 0. Second, the well-orderedness condition
follows from the finiteness of the set of situations 6. Finally, the fact that σ is the
unique minimal element in the ordering �σ follows from (C3) and (C4).
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Let σ be a situation associated with the equivalence class deriving from a prime
closed consistent set 0 containing A. We show by structural induction on infons
that σ |H B if and only if B ∈ 0 for all B ∈ T . The only interesting cases are
the conditional connectives, for which we must show that minσ (B) |H C if and only
if B ⇒ C ∈ 0 and σ |H B → C if and only if B → C ∈ 0. For the first
assertion, we show that for any infon B, when the prime decomposition of B◦ over
S is p1 ∨ · · · ∨ pn, minσ (A) is the collection of all σpi . To do this, suppose σq ∈ 6

and σq |H B. Since q ⇒ B ∈ 0, B ≤ q ∈ 0, so B◦ ≤ q ∈ 0 (since B◦ ≤ B ∈ 0).
Hence (p1 ∨ · · · ∨ pn) ≤ q ∈ 0. By the analogue of (DR), pi ≤ q ∈ 0 for some i ,
that is, σq is not minimal unless it is one of the σpi . Note that in the special case that
B◦ is inconsistent, no situation supports B; none of the maximal situations support B
since if B ⇒ false ∈ 0 then B → false ∈ 0 by (C2). Now suppose B◦ ` C . Then
p1 ∨ · · · ∨ pn ` C , so for each i , pi ` C . Thus for each i , each σpi |H C , and since
minσ (B) is the collection of all such σpi , it follows that minσ (B) |H C , as required.
On the other hand, if B◦ 6` C , then for some i , pi 6` C . So by Lemma A.26, p◦

i 6` C .
Hence σpi 6|H C and so minσ (B) 6|H C , also as required.

Now let B → C ∈ 0. For any prime p, if any σp |H B then p ⇒ B ∈ 0 by
construction, but since B → C ∈ 0, p ⇒ C ∈ 0 by (C6), so σp |H C . Conversely,
suppose B → C 6∈ 0, so B◦ is consistent by (C2). If p ⇒ C 6∈ 0 for some prime p
such that p ⇒ B ∈ 0, then by the above argument, some situation σ p supports B but
not C , as required. If p ⇒ C ∈ 0 for all p such that p ⇒ B ∈ 0, some maximally
ordered situation supports B but not C . Hence in both cases, σ 6|H B → C , as
required. �

Theorem 5.7 SC is sound and (weakly) complete with respect to the class of
constraint models.

Proof: Soundness is easy to check. For completeness, given any nontheorem A, the
infon ¬(true ⇒ A) is consistent since otherwise A would be inconsistent (where true
is an arbitrary SC theorem). Lemma A.27 provides a model for this infon containing
a situation at which A is not supported. �

Notes

1. Although we construe schema-based inference as a kind of information extraction, the
typical case of information flow involves no reasoning (whether it involves inference
is another matter). In Dretske [23], the argument is advanced that certain biological
subsystems extract information through being selected for that purpose through evolu-
tion. Simple organisms or subsystems are presumably not capable of retracting such
information.

2. This is not meant to suggest that Rott is unaware of this potential confusion: semantic
concerns are generally not at issue in belief revision research within the AGM paradigm,
so there is arguably no need to distinguish ignorance and indeterminacy within that
framework.

3. Freund [26] presents one semantic characterization of disjunctive relations, but his main
‘filteredness’ condition refers specifically to the set of A-worlds for each A in a subclass
of ‘standard’ models, that is, it is not a condition on model structures themselves.
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4. The parallels between reasoning about action and conditional reasoning go further than
this, for example, Shoham’s theory of reasoning about change [62] is almost identical
in details, if not in motivation, to Pollock’s semantic account [49] of simple subjunctive
conditionals. Moreover, the qualification problem seems to be exactly the problem of
delineating the background conditions underlying the truth of a constraint in context
(cf. [70]).
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