Notre Dame Journal of Formal Logic Volume 40, Number 3, Summer 1999

Powers of 2

KYRIAKOS KEREMEDIS and HORST HERRLICH

Abstract It is shown that in **ZF** Martin's \aleph_0 -axiom together with the axiom of countable choice for finite sets imply that arbitrary powers 2^X of a 2-point discrete space are Baire; and that the latter property implies the following: (a) the axiom of countable choice for finite sets, (b) power sets of infinite sets are Dedekind-infinite, (c) there are no amorphous sets, and (d) weak forms of the Kinna-Wagner principle.

1 Introduction As is well known, in **ZF** (i.e., Zermelo-Fraenkel set theory without the axiom of choice) products of compact Hausdorff spaces may fail to be compact or Baire. In fact the following hold.

Theorem 1.1 (Rubin and Scott [8], Łos and Ryll-Nardzewski [6]) *Products of compact Hausdorff spaces are compact if and only if the Boolean prime ideal theorem holds.*

Theorem 1.2 (Herrlich and Keremedis [4]) *Products of compact Hausdorff spaces are Baire if and only if the axiom of dependent choice holds.*

It is further known that Theorem 1.1 remains valid if attention is restricted to powers of the discrete space 2 whose underlying set is $2 = \{0, 1\}$.

Theorem 1.3 (Mycielski [7]) Powers 2^X are compact if and only if the Boolean prime ideal theorem holds.

The natural question whether Theorem 1.2 remains valid, too, if attention is restricted to powers 2^X has been left unanswered. In this paper we will show that the axiom of countable choice for finite sets together with Martin's \aleph_0 -axiom suffice to prove

Baire 2*: All powers
$$2^X$$
 are Baire.

We will further present several set theoretic conditions that are necessary to deduce $\mathbf{Baire}(2^*)$; in particular, the axiom of countable choice for finite sets. However, we are not able to present a set theoretic condition that is equivalent to $\mathbf{Baire}(2^*)$.

Received September 2, 1999; revised November 20, 2000

2 *Terminology* Let **2** be the discrete topological space with underlying set $2 = \{0, 1\}$. For any set X let $\mathbf{2}^X$ be the topological product of X copies of **2**. Let Y be a subset of X: For $f \in 2^X$ let f_Y be the restriction of f to Y and let $\pi_Y : 2^X \to 2^Y$ be the Yth projection, defined by $\pi_Y(f) = f_Y$. Let |Y| be the cardinality of Y, if Y is finite, and ∞ otherwise. Let $P(2^X)$ be the set of all partial maps $f: X \to 2$. For $f \in P(2^X)$ let dom(f) be the domain of f and $B(f) = \pi_{\text{dom}(f)}^{-1}(f)$. Let $P_{\text{fin}}(2^X)$ be the set of all $f \in P(2^X)$ with finite domain. Let $\mathfrak{B} = \{B(f) \mid f \in P_{\text{fin}}(2^X)\}$ be the canonical base for $\mathbf{2}^X$.

Definition 2.1 Consider the following axioms in **ZF** (form numbers refer to Howard and Rubin [5]).

Baire(2^*) All powers 2^X are Baire.

BPI Boolean prime ideal theorem [Form 14]; that is, every Boolean algebra with $0 \neq 1$ has a prime ideal.

DC Axiom of dependent choice [Form 43]; that is, for each relation ϱ on a nonempty set X that satisfies the condition

$$\forall x \in X \ \exists y \in X \ x \varrho y$$

there exists a sequence (x_n) in X with $x_n \varrho x_{n+1}$ for each n.

DMC Axiom of dependent multiple choice [Form 106]; that is, for each relation ϱ on a nonempty set X that satisfies the condition

$$\forall x \in X \ \exists y \in X \ x \varrho y$$

there exists a sequence (F_n) of nonempty finite subsets of X satisfying the condition

$$\forall n \in \omega \ \forall x \in F_n \ \exists y \in F_{n+1} \ x \varrho y.$$

AC(\aleph_0) Axiom of countable choice [Form 8]; that is, products $\prod_{n \in \mathbb{N}} X_n$ of sequences (X_n) of nonempty sets are nonempty.

CMC Axiom of countable multiple choice [Form 126]; that is, for each sequence (X_n) of nonempty sets X_n there exists a sequence (F_n) of nonempty finite subsets F_n of X_n .

 $\mathbf{AC}(\aleph_0, < \aleph_0)$ Axiom of countable choice for finite sets [Form 10]; that is, products $\prod_{n \in \mathbb{N}} F_n$ of sequences (F_n) of nonempty finite sets are nonempty.

MA(\aleph_0) Martin's \aleph_0 -axiom: for every nonempty partially ordered set (P, \leq) with the property that any subset in which any 2 different elements have no common lower bound is at most countable, and for any sequence (D_n) of subsets of P such that $\forall n \ \forall x \in P \ \exists y \in D_n \ y \leq x$ holds there exists a filter on P that meets every D_n [Form 8F; cf. Remark 3.2 below].

 $Ded(2^*)$ If X is infinite then 2^X is Dedekind infinite [Form 82].

PKW

A

KW(\aleph_0 , ∞) For every sequence (X_n) of infinite sets there exists a sequence (Y_n) of nonempty proper subsets Y_n of X_n [cf. Form 357].

Partial Kinna-Wagner Selection Principle [Form 379]; that is, for each infinite family $(X_i)_{i \in I}$ of sets X_i with $|X_i| \ge 2$ there exist an infinite subset K of I and a family $(Y_k)_{k \in K}$ of nonempty proper subsets Y_k of X_k .

There are no amorphous sets [Form 64]; that is, each infinite set is the disjoint union of two infinite sets.

Definition 2.2 A topological space X is called *Baire* provided that X is either empty or in X countable intersections of dense, open sets are nonempty.

3 Results

Theorem 3.1 The conjunction of $AC(\aleph_0, < \aleph_0)$ and $MA(\aleph_0)$ implies $Baire(2^*)$.

Proof: Assume $AC(\aleph_0, < \aleph_0)$ and $MA(\aleph_0)$, let X be a set, and let (D_n) be a sequence of dense, open subsets of $\mathbf{2}^X$. Call elements f and g of $P(\mathbf{2}^X)$ compatible provided that they have a common extension: that is, if and only if $f_{\text{dom } f \cap \text{dom } g} = g_{\text{dom } f \cap \text{dom } g}$. We claim

(*) Any set A of pairwise incompatible elements of $P_{\text{fin}}(2^X)$ is at most countable.

In fact, if the sequence (k_n) of natural numbers is defined by $k_0 = 1$ and $k_{n+1} = 1 + (n+1) \cdot k_n$, then for any set A of pairwise incompatible elements of $P_{\text{fin}}(\mathbf{2}^X)$ and for any natural number n the set $A_n = \{f \in A \mid |\text{dom}(f)| = n\}$ has at most k_n elements. This follows via induction, since for $f \in A_{n+1}$, and each $x \in \text{dom}(f)$ the set $\{g \in A_{n+1} \mid g(x) \neq f(x)\}$ has at most k_n elements, hence A_{n+1} at most $1 + (n+1) \cdot k_n$ elements. Thus, by $\mathbf{AC}(\aleph_0, < \aleph_0)$, the set A is—as a countable union of finite sets A_n —at most countable. Thus (*) holds.

For each $n \in \mathbb{N}$, define $E_n = \{ f \in P_{\text{fin}}(\mathbf{2}^X) \mid B(f) \subset D_n \}$. Then for each $n \in \mathbb{N}$ and for each $f \in P_{\text{fin}}(\mathbf{2}^X)$ there exists an extension of f in E_n . This fact, together with (*) implies via $\mathbf{MA}(\aleph_0)$ that there exists a subset F of $P_{\text{fin}}(\mathbf{2}^X)$ with the following properties:

- (1) Any two elements of F are compatible.
- (2) F meets each E_n .

In view of (1), there exists in $P(2^X)$ a common extension f of all elements of F. In view of (2), $B(f) \subset D_n$ for each n. Thus $g: X \to 2$, defined by

$$g(x) = \begin{cases} f(x), & \text{if } x \in \text{dom}(f) \\ 0, & \text{otherwise} \end{cases}$$

is an element of each D_n .

Remark 3.2 It has been claimed that $AC(\aleph_0)$ implies $MA(\aleph_0)$. (See Shannon [9], p. 382 and [5], Form 8 \iff Form 8F.) However, the relation between $AC(\aleph_0)$

and $MA(\aleph_0)$ is still unknown. Form 8F has been changed to Form 339. (See http:www.math.purdue.edu/ \sim jer/cgi-bin/changes.html, changes and additions.)

Theorem 3.3 Baire (2^*) implies $Ded(2^*)$.

Proof: Let *X* be an infinite set. Choose $Y = X \times \mathbb{N}$ and consider 2^Y . For each $n \in \mathbb{N}$, the set

$$D_n = \{ f \in 2^Y \mid \exists k > n \ \forall m < n \ \exists x \in X \ f(x, k) \neq f(x, m) \}$$

is open and dense in 2^{Y} . By **Baire**(2^{*}) there exists some f in $\cap D_{n}$. Define, via induction, a strictly increasing sequence (k_{n}) of natural numbers as follows:

$$k_0 = 0$$

 $k_{n+1} = \min\{k > k_n \mid \forall m \le k_n \ \exists x \in X \ f(x,k) \ne f(x,m)\}.$

Then the map $\varphi: \mathbb{N} \to 2^X$, defined by $\varphi(n) = f(-, k_n)$, is injective. Thus, 2^X is Dedekind-infinite.

Remark 3.4 The above theorem implies that the conditions $Baire(2^*)$ (= powers of 2 are Baire) and $Tych(2^*)$ (= powers of 2 are compact; = BPI) are independent of each other. In Feferman's model (M2 in [5]) DC hence $Baire(2^*)$ hold, but BPI and thus $Tych(2^*)$ fail. In Mostowski's Linearly Ordered Model (N3 in [5]) BPI and thus $Tych(2^*)$ hold, but $Ded(2^*)$ and thus $Baire(2^*)$ fail.

Theorem 3.5 Baire (2^*) implies $AC(\aleph_0, < \aleph_0)$.

Proof: Let (X_n) be a sequence of nonempty, finite sets. Assume, without loss of generality, that the X_n are pairwise disjoint, and form $X = \bigcup X_n$. For each $n \in \mathbb{N}$, the set

$$D_n = \{ f \in 2^X \mid \exists m \ge n \mid X_m \cap f^{-1}(1) \mid = 1 \}$$

is open and dense in 2^X . By **Baire**(2^*) there exists some f in $\cap D_n$. The set $M = \{m \in \mathbb{N} \mid |X_m \cap f^{-1}(1)| = 1\}$ is unbounded and the product $\prod_{m \in M} X_m$ is nonempty.

Thus **PAC** $(\aleph_0, < \aleph_0)$, the partial axiom of countable choice for finite sets, holds. Thus (Brunner [2]) $AC(\aleph_0, < \aleph_0)$ holds.

Corollary 3.6 *The following conditions are equivalent:*

- (1) Products of compact Hausdorff spaces are Baire.
- (2) Compact Hausdorff spaces and spaces of the form 2^X are Baire.

Proof: Obviously (1) implies (2). The reverse implication follows immediately from Theorem 3.5 and the following facts: (1) is equivalent to **DC** ([4]. Compact Hausdorff spaces are Baire if and only if **DMC** holds (Fossy and Morillon [3]). **DC** is equivalent to the conjunction of **DMC** and $AC(\aleph_0, < \aleph_0)$ (Blass [1]).

Remark 3.7 In \mathbf{ZF}^0 , set theory with atoms, $\mathbf{Baire}(2^*)$ is not implied by \mathbf{DMC} . This follows from Theorem 3.5 since in the second Fraenkel Model (N2 in [5]) \mathbf{DMC} (and thus \mathbf{CMC}) holds, but $\mathbf{AC}(\aleph_0, < \aleph_0)$ and thus $\mathbf{Baire}(2^*)$ fail.

Theorem 3.8 Baire(2^*) implies KW (\aleph_0, ∞).

Proof: Let (X_n) be a sequence of infinite sets. Assume, without loss of generality that the X_n are pairwise disjoint, and form $X = \bigcup X_n$. For each $n \in \mathbb{N}$, the set

$$D_n = \{ f \in \mathbf{2}^X \mid f[X_n] = 2 \}$$

is open and dense in 2^X . By **Baire**(2^*) there exists some f in $\cap D_n$. Then for each $n \in \mathbb{N}$, $Y_n = f^{-1}[0]$ is a nonempty, proper subset of X_n .

Theorem 3.9 Baire(2*) implies PKW.

Proof: Let $(X_i)_{i \in I}$ be an infinite family of sets X_i with $|X_i| \ge 2$. Assume without loss of generality that the X_i are pairwise disjoint. Form $X = \bigcup_{i \in I} X_i$. For each $n \in \mathbb{N}$ the set

$$D_n = \{ f \in \mathbf{2}^X \middle| |\{i \in I | f[X_i] = 2\}| \ge n \}$$

is open and dense in 2^X . By **Baire**(2^*) there exists some f in $\cap D_n$. Then $J = \{i \in I \mid f[X_i] = 2\}$ is infinite, and for each $i \in J$ the set $f^{-1}(1) \cap X_i$ is a nonempty, proper subset of X_i .

In view of the fact that $\mathbf{Ded}(2^*)$ implies \mathbf{A} our next result follows immediately from Theorem 3.3. However, we supply a simple direct proof as well.

Theorem 3.10 Baire (2^*) implies A.

Proof: Let *X* be an infinite set. For each $n \in \mathbb{N}$ the set

$$D_n = \{ f \in \mathbf{2}^X \mid |f^{-1}(0)| \ge n \text{ and } |f^{-1}(1)| \ge n \}$$

is open and dense in 2^X . By **Baire**(2^*) there exists some f in $\cap D_n$. Thus $Y = f^{-1}(0)$ and $X \setminus Y = f^{-1}(1)$ are both infinite.

Remark 3.11 Observe that all the consequences of **Baire**(2^*), exhibited in our results 3.3, 3.5, 3.6, 3.8, 3.9, and 3.10 are also consequences of $AC(\aleph_0)$.

Acknowledgments We gratefully acknowledge several helpful suggestions by the referee which led in particular to a strengthening of our main result (Theorem 3.1) and a simplification of its proof.

REFERENCES

- Blass, A., "Injectivity, projectivity, and the axiom of choice," *Transactions of the American Mathematical Society*, vol. 255 (1979), pp. 31–59.
 Zbl 0426.03053 MR 81j:04004 3
- [2] Brunner, N., "Sequential compactness and the axiom of choice," *Notre Dame Journal of Formal Logic*, vol. 24 (1983), pp. 89–92. Zbl 0502.03030 MR 84f:04009 3

- [3] Fossy, J., and M. Morillon, "The Baire category property and some notions of compactness," *Journal of the London Mathematical Society*, vol. 57 (1998), pp. 1–19. Zbl 0922.03070 MR 99m:03096 3
- [4] Herrlich, H., and K. Keremedis, "Products, the Baire category theorem, and the axiom of dependent choice," *Commentationes Mathematicae Universitatis Carolinae*, vol. 40 (1999), pp. 771–75. MR 2001e:03089 1.2, 3
- [5] Howard P., and J. E. Rubin, "Consequences of the Axiom of Choice," American Mathematical Society, Mathematical Surveys and Monographs, vol. 59 (1998). Zbl 0947.03001 MR 99h:03026 2.1, 3.2, 3.4, 3.4, 3.7
- [6] Łos, J., and C. Ryll-Nardzewski, "Effectiveness of the representation theory for Boolean algebras," *Fundamenta Mathematicæ*, vol. 42 (1955), pp. 49–56. MR 16:439g 1.1
- [7] Mycielski, J., "Two remarks on Tychonoff's product theorem," *Bulletin L'Académie Polonaise des Science, Série des Sciences Mathématiques, Astronomiques et Physiques*, vol. 12 (1964), pp. 439–41. Zbl 0138.17703 MR 35:6566 1.3
- [8] Rubin, H. and D. Scott, "Some topological theorems equivalent to the Boolean prime ideal theorem," *Bulletin of the American Mathematical Society*, vol. 60 (1954), p. 389. 1.1
- [9] Shannon, G. P., "Provable forms of Martin's axiom," *Notre Dame Journal of Formal Logic*, vol. 31 (1990), pp. 382–88. Zbl 0731.03026 MR 91g:03107 3.2

Department of Mathematics University of the Aegean Karlovasi 83200 Samos GREECE email: kker@aegean.gr

Department of Mathematics

University of Bremen

Postfach 330440 28334 Bremen GERMANY

email: herrlich@math.uni-bremen.de