346

Notre Dame Journal of Formal Logic
Volume 40, Number 3, Summer 1999

Powers of 2

KYRIAKOS KEREMEDIS and HORST HERRLICH

Abstract Itis shown that inZF Martin’s Xg-axiom together with the axiom

of countable choice for finite sets imply that arbitrary pow&fsof a 2-point
discrete space are Baire; and that the latter property implies the following: (a)
the axiom of countable choice for finite sets, (b) power sets of infinite sets are
Dedekind-infinite, (c) there are no amorphous sets, and (d) weak forms of the
Kinna-Wagner principle.

1 Introduction Asiswell known, inZF (i.e., Zermelo-Fraenkel set theory without
the axiom of choice) products of compact Hausdorff spaces may fail to be compact
or Baire. In fact the following hold.

Theorem 1.1 (Rubin and Scotfd], tos and Ryll-Nardzewsk[d]) Productsof com-
pact Hausdorff spaces are compact if and only if the Boolean prime ideal theorem
holds.

Theorem 1.2 (Herrlich and Keremedig)) Products of compact Hausdorff
spaces are Baire if and only if the axiom of dependent choice holds.

It is further known that Theoref Iremains valid if attention is restricted to powers
of the discrete spacgwhose underlying set is2 {0, 1}.

Theorem 1.3 (Mycielski [7]) Powers 2% are compact if and only if the Boolean
prime ideal theorem holds.

The natural question whether Theof&@remains valid, too, if attention is restricted
to powers2* has been left unanswered. In this paper we will show that the axiom of
countable choice for finite sets together with Martirgaxiom suffice to prove

Baire 2*: All powers 2 are Baire.

We will further present several set theoretic conditions that are necessary to deduce
Baire(2*); in particular, the axiom of countable choice for finite sets. However, we
are not able to present a set theoretic condition that is equival&dite (2*).
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2 Terminology
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Let 2 be the discrete topological space with underlying set 2

{0, 1}. For any setX let 2% be the topological product ok copies of2. LetY be
a ubset ofX: For f € 2% let fy be the restriction off to Y and letry: 2% — 2Y
be theYth projection, defined byty(f) = fy. Let|Y| be the cardinality ofy, if Y
is finite, andoo otherwise. LetP(2%) be the set of all partial mapk: X — 2. For
f € P(2%) let dom( f) be the domain of andB(f) = ngolm(f)(f). Let Pin (2%) be
the set of allf € P(2%X) with finite domain. Let8 = {B(f) | f € P, (2%)} be the
canonical base fa*.

Definition 2.1  Consider the following axioms irZF (form numbers refer to
Howard and Rubir{gJ).

Baire(2*)
BPI

DC

DMC

AC(Ro)

CMC

AC(No, < No)

MA (Ro)

Ded(2%)

All powers2* are Baire.

Boolean prime ideal theorem [Form 14]; that is, every Boolean al-
gebra with G 1 has a prime ideal.

Axiom of dependent choice [Form 43]; that is, for each relation
on a nonempty seX that satisfies the condition

¥xe X dy e X Xoy

there exists a sequenc®,) in X with X,0x,.1 for eachn.

Axiom of dependent multiple choice [Form 106]; that is, for each
relatione on a nonempty seX that satisfies the condition

Vx e X3y e X Xoy

there exists a sequenck,) of nonempty finite subsets of satis-
fying the condition

Ynew VXe Fy Ay € Frp1 Xoy.

Axiom of countable choice [Form 8]; that is, producf$ X, of
neN
sequencesX,) of nonempty sets are nonempty.

Axiom of countable multiple choice [Form 126]; that is, for each
sequencé X,) of nonempty set¥, there exists a sequencgy)
of nonempty finite subsets, of X,.

Axiom of countable choice for finite sets [Form 10]; that is,

products [ | F, of sequencesgF,) of nonempty finite sets are
N
nonempt@?

Martin's Rg-axiom: for every nonempty partially ordered set
(P, <) with the property that any subset in which any 2 different
elements have no common lower bound is at most countable, and
for any sequenceDy,) of subsets oP such thatvn Vxe P Jy e

Dy y < xholds there exists afilter dathat meets everip, [Form

8F; cf. RemarkB Zlbelow].

If X is infinite then % is Dedekind infinite [Form 82].
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KW(Rg, 00) For every sequenceX,) of infinite sets there exists a sequence
(Yn) of nonempty proper subseYs of X, [cf. Form 357].
PKW Partial Kinna-Wagner Selection Principle [Form 379]; that is, for

each infinite family(X;)ic; of setsX; with | X;| > 2 there exist an
infinite subseK of | and a family(Yy)kek of nonempty proper
subsetsy| of Xy.

A There are no amorphous sets [Form 64]; that is, each infinite set is
the disjoint union of two infinite sets.

Definition 2.2 A topological spaceX is calledBaire provided thatX is either
empty or inX countable intersections of dense, open sets are nonempty.

3 Results
Theorem 3.1  The conjunction of AC(Rg, < 8p) and MA(Rg) implies Baire(2*).

Proof: AssumeAC(Xg, < Rg) andMA(Rp), let X be a set, and letD,) be a se-
quence of dense, open subset2df Call elementsf andg of P(2X) compatible

provided that they have a common extension: that is, if and onfygihtndomg =

Gdomfndomg- We claim

() Any set A of pairwise incompatible elements &, (2%) is at most count-
able.

In fact, if the sequencék,) of natural numbers is defined oy = 1 andk, 1 = 1+
(n+ 1) - kn, then for any sef of pairwise incompatible elements Bf, (2%) and for
any natural numban the setA, = {f € A| |dom(f)| = n} has at mosk, elements.
This follows via induction, since foff € A, 1, and eachlx € dom(f) the set{g e
Ani1 | 9(X) # T(X)} has at mosk, elements, hencé,;; at most 14+ (n+ 1) - kj
elements. Thus, bRC(Rg, < 8p), the setA is—as a countable union of finite sets
An—at most countable. Thus (*) holds.

For eachn € N, defineE, = { f € Pin(2X) | B(f) C Dy}. Then for eacm e N
and for eachf € Pin (2%) there exists an extension 6in E,. This fact, together with
(%) implies viaM A (Rg) that there exists a subsEtof Py, (2%) with the following
properties:

(1) Any two elements of are compatible.
(2) F meets eaclk,.

In view of (1), there exists ifP(2X) acommon extensiori of all elements of. In
view of (2), B(f) c Dy for eachn. Thusg: X — 2, defined by

| f), if xedom(f)
9() = { 0, otherwise
is an element of eachy,. O

Remark 3.2 Ithas been claimed th&tC (Xq) impliesMA (Rp). (See Shannoi)],
p. 382 and[f], Form 8 —<= Form 8F.) However, the relation betwe&C (Xy)
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and MA(Rp) is still unknown. Form 8F has been changed to Form 339. (See
http:www.math.purdue.edwer/cgi-bin/changes.html, changes and additions.)

Theorem 3.3 Baire(2*) implies Ded (2*).

Proof: Let X be aninfinite set. Choode= X x N and conside?. Foreactn e N,
the set

Dh={fe2"|3k>nVm<n Ixe X f(x k) # f(x, m)}

is open and dense &'. By Baire(2*) there exists somé in ND,. Define, via in-
duction, a strictly increasing sequen@®) of natural numbers as follows:

ko =0
knyr = minfk> ky | YMm<k, Ixe X f(x, k) # f(x, m)}.

Then the mapgp: N — 2%, defined byp(n) = f(—, ka), isinjective. Thus, % is
Dedekind-infinite. O

Remark 3.4 The above theorem implies that the conditi®@sre(2*) (= powers
of 2 are Baire) and’ych(2*) (= powers of2 are compact= BPI) are independent
of each other. In Feferman’s model (M2 [&]] DC henceBaire(2*) hold, butBPI
and thusTych(2*) fail. In Mostowski’s Linearly Ordered Model (N3 if5}) BPI and
thusTych(2*) hold, butDed(2*) and thusBaire(2*) fail.

Theorem 3.5 Baire(2*) impliesAC(Rp, < Rp).

Proof: Let (X,) be a sequence of nonempty, finite sets. Assume, without loss of
generality, that the, are pairwise disjoint, and fort{ = UX,,. For eacln € N, the
set

Dh={fe2¥dIm=>n|XnN f 11 =1}

is open and dense &*. By Baire(2*) there exists somé in ND,. The setM =
{meN ‘ |XmN f71(1)| = 1} is unbounded and the produdi] X is nonempty.

meM
ThusPAC (Rg, < Xp), the partial axiom of countable choice for finite sets, holds.

Thus (BrunnerZ]) AC (R, < Ro) holds. a

Corollary 3.6  The following conditions are equivalent:

(1) Products of compact Hausdorff spaces are Baire.
(2) Compact Hausdorff spaces and spaces of the form 2% are Baire.

Proof: Obviously (1) implies (2). The reverse implication follows immediately
from Theoreni3.5land the following facts: (1) is equivalent ®&C ([4]. Compact
Hausdorff spaces are Baire if and on\DiVI C holds (Fossy and Morillorid]). DC

is equivalent to the conjunction &M C andAC(Ro, < Xo) (Blass [L]). O

Remark 3.7 In ZF°, set theory with atomsBaire(2*) is not implied byDMC.
This follows from Theorer®.5kince in the second Fraenkel Model (N2i})[DM C
(and thusCM C) holds, butAC(Rg, < 8g) and thusBaire(2*) fail.
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Theorem 3.8 Baire(2*) impliesKW (Rg, 00).

Proof: Let (X,) be a sequence of infinite sets. Assume, without loss of generality
that theX, are pairwise disjoint, and forrfk = UX,. For eachn € N, the set

Dn={f e2"| f[X] =2}

is open and dense &. By Baire(2*) there exists somé in ND,,. Thenfor each
neN, Y, = 0] is a nonempty, proper subset X O

Theorem 3.9 Baire(2*) implies PKW.

Proof: Let (X)ic be an infinite family of setg with | X;| > 2. Assume without
loss of generality that th¥; are pairwise disjoint. FornX = |_J X;. For eactmh € N

iel
the set '
Dn={fe2X|{i e I|f[X]=2}|>n)

is open and dense 2. By Baire(2*) there exists somé in ND,. ThenJ = {i €
| | f[X] = 2} is infinite, and for eache J the setf ~1(1) N X; is a nonempty, proper
subset ofX;. O

In view of the fact thaDed (2*) impliesA our next result follows immediately from
Theoren3.3] However, we supply a simple direct proof as well.

Theorem 3.10 Baire(2*) impliesA.

Proof: Let X be an infinite set. For eache N the set
D= {f €2*||f71(0)| = nand| f1(1)| > n}

is open and dense BX. By Baire(2*) there exists somé&in ND;,. ThusY = f~1(0)
andX\Y = f~1(1) are both infinite. O

Remark 3.11 Observe that all the consequence8aire(2*), exhibited in our re-

sultsB3) B.5)3.6/3.8)[3.9] and3 I0kre also consequencesAt (Ro).
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