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Toward a Theory of Second-Order
Consequence

AGUST́IN RAYO and GABRIEL UZQUIANO

Abstract Wedevelop an account of logical consequence for the second-order
language of set theory in the spirit of Boolos’s plural interpretation of monadic
second-order logic.

There is little doubt that a second-order axiomatization of Zermelo-Fraenkel set the-
ory plus the axiom of choice (ZFC) is desirable. One advantage of such an ax-
iomatization is that it permits us to express the principles underlying the first-order
schemata of separation and replacement. Another is itsalmost-categoricity: M is
a model of second-order ZFC if and only if it is isomorphic to a model of the form
〈Vκ, ∈ ∩ (Vκ × Vκ)〉, for κ astrongly inaccessible ordinal.

Weobtain similar benefits when we allow for the existence of Urelemente. The
axioms of second-order ZFC with Urelemente (ZFCU) are not able to specify the
structure of the universe up to isomorphism, but McGee has recently shown that, pro-
vided one takes the range of its quantifiers to be unrestricted, the axioms of second-
order ZFCU plus the axiom that the Urelemente form a set will characterize the struc-
ture of the universe ofpure sets up to isomorphism.1 In sum, there is much to be
gained from the ability to employ second-order quantification in the context of set
theory.

What is much more controversial is that we can, with a clear conscience, develop
set theory within a second-order language. The standard interpretation of second-
order quantification takes second-order variables to range over the sets of individuals
which first-order variables range over. This interpretation may be convenient in con-
texts in which the domain forms a set but it will not do for the purpose of developing
set theory in a second-order language. The reason is not difficult to state. When we
do set theory, we take our first-order variables to range over all sets. But if we take our
second-order variables to range over sets of sets in the range of the first-order vari-
ables, then second-order comprehension will fail. A simple instance of second-order
comprehension such as∃X∀y (Xy ←→ y /∈ y) will be false on account of Russell’s
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paradox, according to which no set contains all and only those sets that are not mem-
bers of themselves.

A different approach would be to take the second-order variables of the language
to range not over sets but rather over classes. An instance of comprehension such as
∃X∀y (Xy ←→ y /∈ y) would then be taken to amount to the existence of a class of
all and only those sets that are not members of themselves. One difficulty with this
approach is that it would be in tension with the attitude of most set theorists, who
seem to regard their subject as the most comprehensive theory of collections. There
are no collections other than sets, and even if it is, on occasion, convenient to speak
of proper classes, that is, collections that are “too big” to form sets, such talk is not
to be taken literally.

An interpretation of second-order quantification that avoids commitment to
proper classes, and still makes second-order logic available for the development of set
theory, is therefore preferable to one that takes second-order variables to range over
classes. In [1], Boolos offered just such an interpretation. He proposed to understand
second-order quantification in terms of English plural quantification.2 Accordingly,
he read an instance of comprehension such as∃X∀y (Xy ←→ y /∈ y) as the truism
that there are some sets such that a set is one of them just in case it is not a member of
itself.3 The advantage of Boolos’s plural interpretation is that, as he argued, it veri-
fies all instances of second-order comprehension and legitimizes the development of
second-order set theory.

In a later article [2], he made use of the apparatus of plurals to give an account
of the truth- and validity-conditions of second-order formulas of set theory. He pro-
vided definitions of truth and of a notion of validity he called ‘supervalidity’, which
were aimed to show that commitment to classes is not necessary to develop a rigor-
ous semantics for the language of second-order set theory. But there was an important
drawback: Boolos’s definitions of truth and validity didn’t generalize to a definition
of logical consequence.

The purpose of this note is to present an account of the truth- and validity- condi-
tions of second-order formulas which can be generalized to an account of the condi-
tions under which a second-order formula is a logical consequence of a set of second-
order formulas.

There are two desiderata our semantics should satisfy. First, in the spirit of the
plural interpretation of second-order set theory, it should commit us to no entities
other than sets, which are the objects in the range of the first-order variables of the
language. The second desideratum concerns the connection between truth, satisfac-
tion, and validity and will require some explanation.4

A standard model for the language of first-order set theory is an ordered pair
〈D, I〉. Its domain,D, is anonempty set and its interpretation function,I, assigns a
set of ordered pairs to the two-place predicate ‘∈’. A sentence is true in〈D, I〉 just
in case it is satisfied by all assignments of first-order variables to members ofD and
second-order variables to subsets ofD; a sentence is satisfiable just in case it is true
in some standard model; finally, a sentence is valid just in case it is true in all standard
models.

The stipulation thatD and I be sets is not without consequence. An immediate
effect of this stipulation is that no standard model provides the language of set theory
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with its intended interpretation. In other words, there is no standard model〈D, I〉 in
which D consists of all sets andI assigns the standard element-set relation to ‘∈’.
For it is a theorem of ZFC that there is no set of all sets and that there is no set of
ordered-pairs〈x, y〉 for x an element ofy.

Therefore, on the standard definition of model, it is not at all obvious that the
validity of a sentence is a guarantee of its truth; similarly, it is far from evident that
the truth of a sentence is a guarantee of its satisfiability in some standard model. If
there is a connection between satisfiability, truth, and validity, it is not one that can
be “read off” standard model theory.

This is not a problem in the first-order case since set theory provides us with
two reassuring results for the language of first-order set theory. One result is the first-
order completeness theorem according to which first-order sentences are provable, if
true in all models. Granted the truth of the axioms of the first-order predicate calculus
and the truth preserving character of its rules of inference, we know that a sentence
of the first-order language of set theory is true, if it is provable. Thus, since valid
sentences are provable and provable sentences are true, we know that valid sentences
are true. The connection between truth and satisfiability immediately follows: ifϕ is
unsatisfiable, then¬ϕ, its negation, is true in all models and hence valid. Therefore,
¬ϕ is true andϕ is false.5

The other comforting result is a principle of reflection, provable within first-
order ZFC. According to this principle, for each sentenceϕ of first-order set theory,
there is a standard model of the form〈Vκ, ∈ ∩ (Vκ × Vκ)〉, for some ordinalκ, such
thatϕ is true if and onlyϕ is true in that model. Thus, suppose a sentenceϕ of first-
order set theory is false. Then¬ϕ will be true, and, by the reflection principle, true
in some standard model of the form〈Vκ, ∈ ∩ (Vκ × Vκ)〉, for some ordinalκ. ϕ will
be false in that model and hence not valid.

The situation changes drastically when we venture into a second-order language.
There is no completeness theorem for second-order logic. Nor do the axioms of
second-order ZFC imply a reflection principle which ensures that if a sentence of
second-order set theory is true, then it is true in some standard model. Thus there
may be sentences of the language of second-order set theory that are true but unsat-
isfiable, or sentences that are valid, but false. To make this possibility vivid, letZ
be the conjunction of all the axioms of second-order ZFC.Z is surely true. But the
existence of a model forZ requires the existence of strongly inaccessible cardinals.
The axioms of second-order ZFC don’t entail the existence of strongly inaccessible
cardinals, and hence the satisfiability ofZ is independent of second-order ZFC. Thus,
Z is true but its unsatisfiability is consistent with second-order ZFC.6

One could be tempted to opt for the advantages of theft over honest toil and pos-
tulate a second-order reflection principle. But it would be somewhat disappointing if
we had to rely on a hypothesis which—no matter how plausible—is not susceptible
of a proof from currently accepted axioms in order to establish what ought to be ob-
vious: that a sentence is true if it is valid and that it is satisfiable, if it is true.

The second desideratum of our theory is therefore this: it should make plain the
connection between validity, satisfiability, and truth. Boolos’s semantics satisfies this
desideratum. On his definition of supervalidity, a sentence of second-order set theory
is supervalid if it is true no matter what sets we take its quantifiers to range over and
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no matter what ordered pairs of sets we take ‘∈’ to denote. The definition, however,
is schematic: to each sentence of set theoryϕ he associated a second-order sentence
ϕ∗ such thatϕ is supervalid just in caseϕ∗ is true. It takes very little—universal in-
stantiation and substitution—to show that a sentenceϕ is true ifϕ∗ is true. This yields
an immediate connection between validity and truth. Unfortunately, as Boolos put it,
“it would seem that there is no obvious way to generalize the notion of supervalidity
to a notion of superconsequence or supersatisfiability” ([2], pp. 86–87).

Weshall now present our alternative account of second-order validity, whichcan
be extended to an account of logical consequence while satisfying the two desiderata
we just laid down. Like Boolos, we shall understand second-order quantification in
terms of plural quantification. Moreover, we will make use of a primitive satisfaction
predicate which takes predicates in some of its argument places. In this respect, our
definitions will not be unlike Boolos’s definition of truth for the language of second-
order ZFC, as he himself made use of a satisfaction predicate which took predicates
in some of its argument places in his definition.

To a large extent, the success of our proposal depends on whether it is possible
to give an adequate account of the new sort of predicate it requires. Boolos made
a convincing case for the view that plural quantification can be used to understand
second-order quantification, but it is not obvious that English provides us with the re-
sources to make sense of predicates which take first-order predicates in their argument
places. We propose to understand them in terms of collective English predicates. In
‘The rocks rained down’, for example, ‘rained down’ is not predicated of a particular
object such as this rock or that rock. Nor is it predicated of some peculiar complex ob-
ject made up by these rocks or those. Rather, it is predicated of these rocks or those.7

Similarly, with ‘The ordinals do not outnumber the cardinals’ or ‘The sets possessing
a rank exhaust the universe’.8

An adequate justification of such predicates would take us far beyond the scope
of this paper but has been taken up elsewhere by one of us.9 A similar position has
been developed by Yi [13].

Shapiro has developed a semantics for the language of ZFC in a language aug-
mented with the primitive satisfaction predicate ‘sat(P, q, R, m)’, which takes class-
variables in some of its argument places.10 Our proposal will be equivalent to
Shapiro’s when his quantification over classes is interpreted as plural quantification
over sets and his predicate ‘sat(P, q, R, m)’ i s interpreted as a collective plural pred-
icate.

It is now time to explain the thought underlying our proposal. Even from the
standpoint of the standard model-theoretic semantics, this much is uncontroversial:
A standard model for the language of set-theory is determined by the individuals that
constitute its domain and by the ordered pairs of individuals that its interpretation
function assigns to ‘∈’. To require, in addition, that the individuals over which our
variables range (or that the ordered pairs assigned to ‘∈’) form a set strikes us as a
somewhat artificial feature of the standard definition of a model. The core of our pro-
posal is that we conceive of a model, not as a single set-theoretic object, but rather as
given by the values of a second-order variable ‘M’. Accordingly, we take satisfaction
to be a relation that a formulaϕ bears, not to a certain structured set, but to the values
of ‘ M’. These objects will encode a specification of the individuals over which our
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first-order quantifiers are to range and a specification of the ordered pairs that are to
be assigned to ‘∈’.11

There are several ways in which the proposal can be implemented. The option
we favor takes a model to be given by ordered pairs of two different types: (1) ordered
pairs of the form〈‘∀’ , x〉, which are taken to encode the fact thatx is to be within
the range of our quantifiers, and (2) ordered pairs of the form〈‘∈’ , 〈x, y〉〉, which are
taken to encode the fact that〈x, y〉 is part of the interpretation of ‘∈’. We impose the
requirement that if a model is given by some ordered pairs which include〈‘∈’ , 〈x, y〉〉,
then〈‘∀’ , x〉 and〈‘∀’ , y〉 must also be among these ordered pairs. Formally, we take
‘ M is a model’, where ‘M’ i s amonadic second-order variable, to abbreviate the fol-
lowing formula of second-order set theory:

∃x M 〈‘∀’ , x〉∧
∀x (Mx −→ (∃y x = 〈‘∀’ , y〉 ∨ ∃w∃z x = 〈‘∈’ , 〈w, z〉〉 )) ∧

∀w∀z (M 〈‘∈’ , 〈w, z〉〉 −→ M 〈‘∀’ ,w〉 ∧ 〈‘∀’ , z〉 ).

Recall that, for us, a second-order variable such as ‘M’ i s aplural variable. Thus,
when we speak ofa model M, we are not to be taken to speak of an object of some
sort or another. Rather, we should be taken to speak of some sets (the values of the
variable ‘M’), which happen to satisfy the above formula. In a similar vein, we will
sometimes say thatthe domain of a model M consists of the Fs; this should be read:
‘for every x, 〈‘∀’ , x〉 is one of the values of ‘M’ i f and only if x is one of the Fs’.
Finally, when we saya model M assigns interpretation R to ‘∈’, this locution should
be read: ‘For everyx andy, 〈‘∈’ , 〈x, y〉〉 is one of the values of ‘M’ i f and only if x
bearsR to y’.

According to our definition, there is a model whose domain consists of all sets
and which assigns the standard element-set relation to ‘∈’. It is given by a second-
order variable whose values are the ordered pairs with ‘∀’ as their first-component, a
set as their second component, and the ordered pairs with ‘∈’ astheir first component
and an ordered pair〈x, y〉 for x an element ofy as their second component.

Although it is in the second-order case that the proposal deserves the most inter-
est, it is best for expository purposes to begin by giving definitions of first-order truth,
validity, and logical consequence, and later extend the proposal to the second-order
case.

A first-order variable assignment is a map from the first-order variables of the
language into the domain of a model. Since there are denumerably many first-order
variables in the language, the axioms of infinity and replacement guarantee that such
maps are sets. Accordingly, we may use a first-order variable to range over variable
assignments. Let us take ‘s is a variable assignment with respect to modelM’ to ab-
breviate the formula:

∀v j (v j is a variable−→ ∃!x
〈
v j, x

〉 ∈ s) ∧
∀x (x ∈ s −→ ∃vi∃y (vi is a variable∧ x = 〈vi, y〉 ∧ M 〈‘∀’, y〉 )).

Since variable assignments are functions, we shall say that ‘s(vi) = x’ holds when-
ever it is the case that〈vi, x〉 ∈ s. A vi-variant of a variable assignments is a variable
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assignmentt that agrees withs except perhaps in the value it assigns tovi. Thus, we
will take ‘t is avi-variant ofs’ to abbreviate the first-order formula:

s is a variable assignment∧ t is a variable assignment∧
∀v j ((v j is a first-order variable∧ v j �= vi) −→ t(v j) = s(v j)).

Weare now in a position to introduce the predicate: ‘s satisfiesϕ with respect toM’.
Note that this predicate takes first-order variables in two of its argument places and a
second-order variable in its third. Our satisfaction predicate is implicitly defined by
the following axioms:

0. s is a variable assignment with respect toM,
1. if ϕ is vi = v j, thens satisfiesϕ with respect toM iff: s(vi) = s(v j),
2. if ϕ is vi ∈ v j, thens satisfiesϕ with respect toM iff: M

〈
‘∈’ ,

〈
s(vi), s(v j)

〉〉
,

3. if ϕ is ¬ψ, thens satisfiesϕ with respect toM iff: s does not satisfyψ with
respect toM,

4. if ϕ is (ψ ∧ χ), thens satisfiesϕ with respect toM iff: s satisfiesψ with respect
to M ands satisfiesχ with respect toM,

5. if ϕ is ∃viψ, thens satisfiesϕ with respect toM iff: ∃t (t is avi-variant ofs ∧ t
satisfiesψ with respect toM).

With our implicit definition of satisfaction in place, we can provide an explicit defi-
nition for the predicate ‘ϕ is true inM’:

ϕ is true inM iff:

∀s (s is avariable assignment with respect toM −→
s satisfiesϕ with respect toM).

Truth is a special case oftruth in a model: a sentence is true just in case it is true in
the model whose domain consists of all sets and whose interpretation function assigns
the standard element-set relation to ‘∈’. Finally, we provide explicit definitions of
validity and logical consequence:

ϕ is valid iff:

∀M (M is a model−→ ϕ is true inM);

ϕ is a logical consequence of� iff:

∀M[M is a model−→ ∀ψ ∈ � (ψ is true inM −→ ϕ is true inM)].

We now extend the proposal to encompass second-order languages. Since the val-
ues assigned to second-order variables may encompass too many sets to form a set,
second-order variable assignments cannot be sets. Instead, we will use a second-order
variableS. The values ofS will be ordered pairs with a variable in their first compo-
nent and a member of the domain in their second component. Ifvk is a first-order
variable, we stipulate thatS is to be true of exactly one pair of the form〈vk, x〉; if Vk

is a second-order variableS may be true of several pairs〈Vk, x〉 (or none). We shall
say thatx is the assignment ofvk with respect toS if 〈vk, x〉 is among the values of
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S, and thatx is an assignment ofVk with respect toS if 〈Vk, x〉 is among the values
of S. Formally, we let ‘S is a variable assignment with respect toM’ abbreviate a
second-order formula:

∀vi (vi is a first-order variable−→ ∃!y S 〈vi y〉 ) ∧
∀x (Sx −→ [∃vi(vi is a first-order variable∧ ∃y (M 〈‘∀’ , y〉 ∧

x = 〈vi, y〉 )) ∨ ∃Vi (Vi is a second-order variable∧
∃y (M 〈‘∀’ , y〉 ∧ x = 〈Vi, y〉 ))].

Thus, when we say ‘S is a variable assignment with respect toM’ weare not speak-
ing of an object of some sort, as grammatical form would suggest. What we mean
is that the values of the second-order variable ‘S’ satisfy the above formula. We let
‘ S(vi) = x’ abbreviate ‘S 〈vi, x〉’. Moreover, we let ‘x is the value ofvi with re-
spect toS’ abbreviate ‘S 〈vi, x〉’, and ‘x is a value ofVi with respect toS’ abbrevi-
ate ‘S 〈Vi, x〉’. A vi-variant of a variable assignmentS is a variable assignment that
agrees withS except perhaps in the value it assigns tovi. Thus, we take ‘T is avi-
variant ofS’ to abbreviate the second-order formula:

S is a variable assignment∧ T is a variable assignment∧
∀v j ((v j is a first-order variable∧ v j �= vi) −→ T (v j) = S(v j)) ∧

∀Vi (Vi is a second-order variable−→ ∀x (T 〈Vi, x〉 ←→ S 〈Vi, x〉 )).

In a similar fashion, aVi-variant of a variable assignmentS is a variable assignment
that agrees withS except perhaps in the values it assigns toVi. Thus, we take ‘T is a
Vi-variant ofS’ to abbreviate the second-order formula:

S is a variable assignment∧ T is a variable assignment∧
∀vi (vi is a first-order variable−→ T(vi) = S(vi)) ∧

∀Vj ((Vj is a second-order variable∧ Vj �= Vi) −→
∀x (T

〈
Vj, x

〉 ←→ S
〈
Vj, x

〉
)).

We are now in a position to define satisfaction for the language of second-order set
theory. The new satisfaction predicate, ‘S satisfiesϕ with respect toM’, differs from
its first-order counterpart in that it takes two second-order variables as arguments in-
stead of one. It is implicitly defined by axioms analogous to (0) – (5):

0′. S is a variable assignment with respect toM,
1′. if ϕ is vi = v j, thenS satisfiesϕ with respect toM iff: S(vi) = S(v j),
2′. if ϕ is vi ∈ v j, thenS satisfiesϕ with respect toM iff: M

〈
‘∈’ ,

〈
S(vi), S(v j)

〉〉
,

3′. if ϕ is ¬ψ, thenS satisfiesϕ with respect toM iff: S does not satisfyψ with
respect toM,

4′. if ϕ is (ψ∧χ), thenS satisfiesϕ with respect toM iff: S satisfiesψ with respect
to M andS satisfiesχ with respect toM,

5′. if ϕ is ∃viψ, thenS satisfiesϕ with respect toM iff: ∃T (T is avi-variant of
S ∧ T satisfiesψ with respect toM).

Two further axioms have no first-order analogues:
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6′. if ϕ is Viv j, thenS satisfiesϕ with respect toM iff: S
〈
Vi, S(v j)

〉
,

7′. if ϕ is ∃Vi ϕ, thenS satisfiesϕ with respect toM iff: ∃T (T is aVi-variant ofS
∧ T satisfiesψ with respect toM).

With our implicit definition of satisfaction in place, we may explicitly definetruth in
a model andtruth as before. And our definitions of consequence and validity carry
over to the second-order case without incident. Since the result of extending second-
order ZFC with axioms(0′) – (7′) allows us to define a truth predicate for second-
order ZFC, it follows from Tarski’s Theorem on the undefinability of truth that axioms
(0′) – (7′) yield a genuine extension of second-order ZFC.

We have managed to give a formal semantics for the second-order language of
set theory without expanding our ontology to include classes that are not sets. The
obvious alternative is to invoke the existence of proper classes. One can then tinker
with the definition of a standard model so as to allow for a model with the (proper)
class of all sets as its domain and the class of all ordered-pairs〈x, y〉 (for x an ele-
ment ofy) as its interpretation function.12 The existence of such a model is in fact all
it takes to render the truth of a sentence of the language of set theory an immediate
consequence of its validity.

One difficulty with this move is that it requires us to countenance the existence
of proper classes.13 Another concerns theinstability of the semantics that results. For
once one takes the existence of proper classes at face value, class theory takes center
stage, and one must acknowledge that there is as much reason to provide a semantics
for the language of class theory as there is for the language of second-order set theory.
One may be tempted to postulate the existence of collections more encompassing than
classes. One could then use ‘superclasses’ to give a model theory for the first-order
theory of classes. But this is only to postpone the problem. It will arise again as soon
as one tries to give a model theory for the language of superclass theory.

What is worse, this sort of move is of no help at all if one tries to give a semantics
for a language whose variables range overall the classlike entities there are, not just
those lying below some level or other of a hierarchy of more and more encompassing
collections.

The semantics we have developed faces an analogous instability. The cost of
avoiding ontological expansion is ‘ideological’ expansion. In order to obtain a se-
mantics for the language of second-order ZFC we had to move into the realm of third-
order logic, by introducing a satisfaction predicate that takes first-order predicates as
arguments. In a similar way, we would be forced to resort to an even higher-order
satisfaction predicate in order to give a semantics for a language augmented with a
predicate that takes first-order predicates as arguments. The situation is quite gen-
eral. When ontological expansion is avoided and reflection principles are absent, the
logical resources that are needed to produce a model theory for a given language are
strictly greater than the logical resources of that language. This is problematic be-
cause there is no guarantee that the use of such logical resources can be made legit-
imate. In particular, it is doubtful that they can be interpreted in terms of English
locutions we antecedently understand.

It is a fact of life that higher-order languages are unstable in the above sense. The
present proposal does not tell us how to address this situation. But it does show how
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much can be done with the logical resources that the apparatus of plural quantification
and plural predication makes available.14

We have stressed the implicit character of our definition of satisfaction. But it
should be mentioned that our implicit definition of satisfaction can be transformed
into an explicit one if we help ourselves to quantification over predicates that take
first-order predicates as arguments, that is, if we help ourselves to third-order quan-
tifiers. Let�(R) be the result of conjoining axioms(0′) – (7′) and replacing the sat-
isfaction predicate by a suitable third-order variable ‘R’.15 We may then say thatS
satisfiesϕ with respect toM if and only if ∀R[�(R) −→ R(S, ϕ, M)] holds. Un-
fortunately, the apparatus of plurals does not seem to provide us with the resources
necessary to understand third-order quantification. An interpretation of third-order
quantification in terms of English nonnominal quantification is set forth in [9], but it
is sure to be somewhat controversial.

Weshould like to conclude by reporting three comforting results concerning our
implicit definition of satisfaction. The first result shows that the axioms that implicitly
define satisfaction uniquely pin down its extension. Suppose that suitable versions
of axioms(0′) – (7′) hold of the predicates ‘S satisfies1 ϕ with respect toM’ and ‘S
satisfies2 ϕ with respect toM’. Then, for every formulaϕ, every modelM, and every
variable assignmentS, S satisfies1 ϕ with respect toM just in caseS satisfies2 ϕ with
respect toM. The proof of this result is a straightforward induction on the complexity
of formulas.

The second result is the derivability of all instances of Tarski’s schema T. A little
symbol manipulation should convince the reader that ifϕ is a sentence of the language
of second-order set theory and ‘p’ i s a translation ofϕ into the metalanguage, then

ϕ is true←→ p

is a derivable consequence of our definitions.

The third and last result is just that our semantics sanctions common deductive
systems for second-order languages. More precisely, given a standard axiomatic sys-
tem for second-order logic (e.g., the system indicated in Frege’sBegriffsschrift), it
can be shown that ifϕ is a sentence of the language of second-order set theory and�

is a set of such sentences, thenϕ is a consequence of� if it is a deductive consequence
of �. The proof proceeds by verifying the validity of the deductive axioms and the
fact that the rules of inference preserve validity.

It is a consequence of G̈odel’s Incompleteness Theorem that we cannot hope for
a converse of this proposition. Given any recursively axiomatizable axiom system for
second-order logic, we know how to construct second-order sentences that are valid
but not provable. The proof of this result is analogous to the incompleteness proof
for full second-order logic.16
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NOTES

1. This categoricity result is stated and proved in McGee [8]. A little inspection of the proof
reveals that what is required for the result to be provable is that one can prove that there
is a 1-1 correspondence between the universe ofpure sets and the universe of discourse.

2. [1] and [2] make use of English plural quantification to interpret monadic second-order
quantification but rely on the availability of ordered pairs to interpretpolyadic second-
order quantification. A more direct interpretation of polyadic quantification is given in
Rayo and Yablo [9].

3. More precisely, Boolos’s reading is “Either there are no sets that are not self-identical,
or there are some sets such that a set is one of them just in case it is not a member of
itself.”

4. The classical discussion of the connection between truth and second-order validity is
Kreisel [6]. Shapiro [11] (Sections 6.1 and 6.3) and Etchemendy [5] (Chapter 11) discuss
some of the issues raised by Kreisel.

5. See [6] (pp. 89–93), [3] (p. 84), and Cartwright [4]. The argument is discussed in [11]
and Shaprio [10] (Section 6.3).

6. For those who view the existence of strongly inaccessible cardinals as a very plausible
hypothesis and are thus not persuaded by the example, McGee described in [7] another
candidate to be a second-order sentence which is true, yet unsatisfiable. Very roughly,
McGee’s sentence is the result of conjoiningZ with an axiom to the effect that the set-
theoretic universe can’t be embedded into a strictly larger universe.

7. This is Boolos’s example. In [3] he hinted at the possibility of plural predication.

8. Another Boolosian example.

9. Agust́ın Rayo, “Word and Objects,” forthcoming inNoûs.

10. He develops this semantics in Section 6.1 of his [11].

11. This is an extremely natural move to make. In fact, similar ideas have been set forth
independently by two other philosophers concerned with English plurals and their re-
lation to standard logic: Josep Macià Fabrega and Byeong-Uk Yi. Their unpublished
manuscripts are “Plural quantification and second-order quantification,” and “The lan-
guage and logic of plurals,” respectively.

12. This sort of account is developed in [11], Section 6.1. See also [10]. Shapiro leaves open
the question of whether talk of classes is to be taken literally.

13. This is provided that one takes talk of proper classes literally; that is, one takes it to in-
volve singular reference to setlike entities other than sets. An alternative to this would
be, for example, to understand talk of classes in terms of plural reference to sets in which
case the move just described would collapse into a version of our own proposal. The
view that talk of classes is best understood in terms of plural reference to sets is defended
in Uzquiano, “A no-class theory of classes.”

14. For an interesting discussion of issues relating to instability, see Weir [12], Section 5.

15. Since ‘R’ i s to take the place of the satisfaction predicate, it must be a three-place third-
order variable taking second-order variables in its first and third argument places and a
first-order variable in its second argument place.

16. For a proof of the incompleteness of full second-order logic see Section 4.2 of [11].
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