Rejection and Truth-Value Gaps

FRED JOHNSON

Abstract

A theorem due to Shoesmith and Smiley that axiomatizes twovalued multiple-conclusion logics is extended to partial logics.

Rumfitt [1] extends Smiley's [3] discussion of rejection by axiomatizing a calculus where truth values of sentences are given by truth tables that admit truth-value gaps. "The Smiley multiple-conclusion consequence relation" for the calculus is defined over assertions and rejections. Rumfitt gives a complex Henkin-style proof of completeness for this calculus. Our goal is to show that there is a simple procedure for axiomatizing calculi of the sort that he considers. We do this by imitating Shoesmith and Smiley's 2 proof of a similar result (their Theorem 18.1) where truth tables do not admit truth-value gaps and the consequence relation is defined without using rejections.

Let A_{1}, A_{2}, \ldots be sentences. And let $+p$ and $* p$ be assertions and rejections, respectively, given that p is a sentence. Assertions and rejections are judgments. We let $+J, \ldots, * J, \ldots$, and J, \ldots range over sets of assertions, sets of rejections, and sets of judgments, respectively.

Let a valuation v be a function that maps sentences into $\{t, n, f\}$ (true, neither true nor false, and false) and judgments into $\{c, i\}$ (correct and incorrect), where $v(+p)=c$ if and only if $v(p)=t$ and $v(* p)=c$ if and only if $v(p)=f$. The Smiley multiple-conclusion consequence relation, \models, is defined as follows: $J \models K$ if and only if, for every valuation v, v assigns i to a member of J or c to a member of K (so \models preserves correctness).

Assume a language with connectives c_{1}, \ldots, c_{n} where valuations are determined by truth tables for the connectives. To define $J \vdash K(K$ is deducible from $J)$ we use the following structural rules together with the truth-table rules:

Structural Rules

Overlap: $\quad J \vdash K$ if J and K have a common member .
Dilution: $\quad J \vdash K$ if $J^{\prime} \vdash K^{\prime}$ given that $J^{\prime} \subseteq J$ and $K^{\prime} \subseteq K$.

Cut: $\quad J \vdash K$ if for every partition L_{1}, L_{2} of a set L of judgments, $J, L_{1} \vdash L_{2}, K$.
Ex falso quodlibet (EFQ): $\quad+p, * p \vdash \varnothing$.

Truth-table Rules

```
t-rules: If \(v\left(+c_{r}\left(p_{1}, \ldots, p_{m}\right)\right)=t\) then \(\left\{+p_{i}: v\left(p_{i}\right)=t\right\}\),
        \(\left\{* p_{j}: v\left(p_{j}\right)=f\right\} \vdash+c_{r}\left(p_{1}, \ldots, p_{m}\right)\),
        \(\left\{+p_{k}: v\left(p_{k}\right)=n\right\},\left\{* p_{k}: v\left(p_{k}\right)=n\right\}\).
n-rules: If \(v\left(+c_{r}\left(p_{1}, \ldots, p_{m}\right)\right)=n\) then \(\left\{+p_{i}: v\left(p_{i}\right)=t\right\}\),
        \(\left\{* p_{j}: v\left(p_{j}\right)=f\right\},+c_{r}\left(p_{1}, \ldots, p_{m}\right) \vdash\)
        \(\left\{+p_{k}: v\left(p_{k}\right)=n\right\},\left\{* p_{k}: v\left(p_{k}\right)=n\right\}\),
        and \(\left\{+p_{i}: v\left(p_{i}\right)=t\right\},\left\{* p_{j}: v\left(p_{j}\right)=f\right\}, * c_{r}\left(p_{1}, \ldots, p_{m}\right) \vdash\)
        \(\left\{+p_{k}: v\left(p_{k}\right)=n\right\},\left\{* p_{k}: v\left(p_{k}\right)=n\right\}\).
f-rules: If \(v\left(+c_{r}\left(p_{1}, \ldots, p_{m}\right)\right)=f\) then \(\left\{+p_{i}: v\left(p_{i}\right)=t\right\}\),
        \(\left\{* p_{j}: v\left(p_{j}\right)=f\right\} \vdash * c_{r}\left(p_{1}, \ldots, p_{m}\right)\),
        \(\left\{+p_{k}: v\left(p_{k}\right)=n\right\},\left\{* p_{k}: v\left(p_{k}\right)=n\right\}\).
```

$L \vdash M$ if and only if the relationship between L and M is generated by using the structural rules or the truth-table rules.

Theorem $1 \quad J \models K$ if and only if $J \vdash K$.
Proof: (If) Straightforward. For example, for EFQ, note that $v(+p)=i$ or $v(* p)=i$.
(Only if) Suppose $J \nvdash K$. Then, by Cut, there is a partition $+L_{1}, * L_{2},+L_{3}, * L_{4}$ of the universal set of judgments such that $J,+L_{1}, * L_{2} \nvdash+L_{3}, * L_{4}, K$. By Overlap, $J \subseteq+L_{1} \cup * L_{2}$ and $K \subseteq+L_{3} \cup * L_{4}$. So, it will suffice to show that $+L_{1}, * L_{2} \not \vDash$ $+L_{3}, * L_{4}$.

Let v be a valuation that assigns t, n, or f to an atomic sentence A depending upon whether $+A \in+L_{1},+A \in+L_{3}$ or $* A \in * L_{4}$, or $* A \in * L_{2}$, respectively.

Lemma 2 For any sentence p,
(i) If $v(p)=t$, then $+L_{1}, * L_{2} \vdash+p,+L_{3}, * L_{4}$.
(ii) If $v(p)=n$, then $+L_{1}, * L_{2},+p \vdash+L_{3}, * L_{4}$.
(iii) If $v(p)=n$, then $+L_{1}, * L_{2}, * p \vdash+L_{3}, * L_{4}$.
(iv) If $v(p)=f$, then $+L_{1}, * L_{2} \vdash * p,+L_{3}, * L_{4}$.

Proof by induction: For the basis step, where p is an atomic sentence, use Overlap. For the induction step, use Dilution and Cut. Suppose $v\left(+\left(c_{i}(p, q, r)\right)=t\right.$, where p, q, and r may or may not be atomic. Suppose $v(p)=n, v(q)=t$ and $v(r)=f$. By the t -rules $+q, * r \vdash+c_{i}(p, q, r),+p, * p$. By the induction hypothesis $+L_{1}, * L_{2},+p \vdash+L_{3}, * L_{4} ;+L_{1}, * L_{2}, * p \vdash+L_{3}, * L_{4} ;+L_{1}, * L_{2} \vdash+q,+L_{3}, * L_{4}$, and $+L_{1}, * L_{2} \vdash * r,+L_{3}, * L_{4}$. So, by Dilution and Cut, $+L_{1}, * L_{2} \vdash+c(p, q, r)$, $+L_{3}, * L_{4}$.

Lemma 3 For any sentence p,
(i) $v(p)=t$ if and only if $+p \in+L_{1}$;
(ii) $v(p)=n$ if and only if $+p \in+L_{3}$ or $* p \in * L_{4}$; and
(iii) $v(p)=f$ if and only if $* p \in * L_{2}$.

Proof: For (i), suppose $v(p)=t$. If $+p \in+L_{3}$, then, by Overlap, $+L_{1}, * L_{2} \vdash$ $+L_{3}, * L_{4}$. Suppose $+p \in+L_{1}$. Suppose $v(p)=f$. Then $+L_{1}, * L_{2} \vdash * p,+L_{3}, * L_{4}$ by Lemma 1. If $* p \in * L_{2}$ then, by EFQ and Dilution, $+L_{1}, * L_{2} \vdash+L_{3}, * L_{4}$. If $* p \in * L_{4}$ then $+L_{1}, * L_{2} \vdash+L_{3}, * L_{4}$. For (iii) use similar reasoning. (ii) follows given (i) and (iii). So, given valuation $v,+L_{1}, * L_{2} \not \vDash+L_{3}, * L_{4}$.

Example 4 We illustrate the above theorem by axiomatizing a partial logic axiomatized by Rumfitt. Valuations of sentences are given by the following truth tables.

	\neg
t	f
n	n
f	t

$$
\begin{array}{lll}
\text { t-rule: } & (1.1) & +p \vdash * \neg p . \\
\text { n-rules: } & (1.2) & +\neg p \vdash+p, * p . \\
\text { and } & (1.3) & * \neg p \vdash+p, * p . \\
\text { f-rule: } & (1.4) & * p \vdash+\neg p .
\end{array}
$$

So, for example, Rumfitt's 'From $+\neg p$ infer $* p$ ' is generated as follows. $+\neg p$, $+p \vdash * \neg p$ by (1.1) and Dilution. $+p,+\neg p, * \neg p \vdash \varnothing$ by EFQ and Dilution. So $+p,+\neg p \vdash * p$ by Cut and Dilution. $+\neg p \vdash+p, * p$ by (1.3). So $+\neg p \vdash * p$ by Cut.

$\&$	t	n	f
t	t	n	f
n	n	n	n
f	f	n	f

t-rule: \quad (2.1) \quad From $+p,+q$ infer $+(p \& q)$.
n-rules: $\quad(2.2) \quad$ From $+p,+(p \& q)$ infer $+q, * q$.
(2.3) From $+p, *(p \& q)$ infer $+q, * q$.
(2.4) From $+q,+(p \& q)$ infer $+p, * p$.
(2.5) From $+q, *(p \& q)$ infer $+p, * p$.
(2.6) From $+(p \& q)$ infer $+p, * p,+q, * q$.
(2.7) From $*(p \& q)$ infer $+p, * p,+q, * q$.
(2.8) From $* q,+(p \& q)$ infer $+p, * p$.
(2.9) From $* q, *(p \& q)$ infer $+p, * p$.
(2.10) From $* p,+(p \& q)$ infer $+q, * q$.
(2.11) From $* p, *(p \& q)$ infer $+q, * q$.
f-rules: (2.12) From $+p, * q$ infer $*(p \& q)$.
(2.13) From $* p,+q$ infer $*(p \& q)$.
(2.14) From $* p, * q$ infer $*(p \& q)$.

The rules may be simplified by replacing the ten n-rules with the following four rules:

$$
\begin{array}{ll}
\left(2.1^{\prime}\right) & +(p \& q) \vdash+p . \\
\left(2.2^{\prime}\right) & +(p \& q) \vdash+q . \\
\left(2.3^{\prime}\right) & *(p \& q) \vdash+p, * p . \\
\left(2.4^{\prime}\right) & *(p \& q) \vdash+q, * q .
\end{array}
$$

Rumfitt uses the first two of these rules to give his axiomatization.
The proof is simplified by using the following derived meta-rule: (Reversal) If $J \vdash+p, K$ then $J, * p \vdash K$; and if $J \vdash * p, K$ then $J,+p \vdash K$. Prove Reversal by using EFQ, Dilution, and Cut.

That (2.1') is a derived rule is shown as follows. $+(p \& q) \vdash+q, * q$ by (2.2), (2.10), (2.6), Dilution, and Cut. $* p,+q,+(p \& q) \vdash \varnothing$ by (2.13) and Reversal. So, $* p,+(p \& q) \vdash * q(\alpha)$ by Dilution and Cut. $+(p \& q) \vdash+p, * p$ by (2.4), (2.8), (2.6), Dilution, and Cut. $* p, * q,+(p \& q) \vdash \varnothing$ by (2.14) and Reversal. So $* q,+(p \& q) \vdash$ $+p(\beta)$ by Dilution and Cut. So, $* p,+(p \& q) \vdash+p$ by α, β, Dilution, and Cut. $+(p \& q) \vdash+p, * p$ as noted above. So $+(p \& q) \vdash+p$ by Cut.
(2.3') is derived from (2.5), (2.8), and (2.7) by using Dilution and Cut. Reasoning that shows that $\left(2.2^{\prime}\right)$ and $\left(2.4^{\prime}\right)$ are derived rules parallels the reasoning for $\left(2.1^{\prime}\right)$ and (2.3'), respectively.

By Dilution, the n-rules (2.1) to (2.11) follow from (2.1') to (2.4').

	T
t	t
n	f
f	f

$\begin{array}{lll}\text { t-rule: } & (3.1) & \text { From }+p \text { infer }+T p . \\ \text { f-rules: } & (3.2) & \text { From } \varnothing \text { infer } * T p,+p, * p \text {; and } \\ & (3.3) & \text { From } * \text { p infer *Tp. }\end{array}$
Acknowledgments I am grateful to Peter Woodruff for comments on the first draft and to Timothy Smiley for comments on the last draft of this paper.

REFERENCES

[1] Rumfitt, I., "The categoricity problem and truth-value gaps," Analysis, vol. 57 (1997), pp. 223-35. Zbl 0943.03586 MR 98m:03005
[2] Shoesmith, D. J., and T. J. Smiley, Multiple-conclusion Logic, Cambridge University Press, Cambridge, 1978.Zbl 0381.03001|MR 80k:03001|-
[3] Smiley, T. J., "Rejection," Analysis, vol. 56 (1996), pp. 1-9. Zbl 0943.03606|MR 97b:03012

Department of Philosophy

Colorado State University
Fort Collins CO 80523
email: ¡ohnsonf@lamar.colostate.edu

