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MULTIPLE SOLUTIONS

FOR SCHRÖDINGER–POISSON SYSTEMS

WITH CRITICAL NONLOCAL TERM

Zuji Guo

Abstract. This paper is concerned with the existence of positive bound
state solutions for Schrödinger–Poisson systems with critical nonlocal term:

(P)

{
−∆u = φ|u|3u+ λQ(x)|u|q−2u in R3,

−∆φ = |u|5 in R3.

Under certain assumptions on Q and λ, we prove that (P) has multiple

positive bound state solutions by decomposition the Nehari manifold and

fine estimates.

1. Introduction and main results

In the last two decades the following Schrödinger–Poisson systems

(1.1)

−∆u+ V (x)u+ φu = |u|q−2u in R3,

−∆φ = ε|u|2 in R3,

have been intensively studied by a lot of researchers, due to the fact that solutions

(u(x), φ(x)) of (1.1) correspond to standing wave solutions (e−iλtu(x), φ(x)) of
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the time-dependent systemsi
∂ψ

∂t
= −∆ψ + Ṽ (x)ψ + ψφ− |ψ|q−2ψ, (t, x) ∈ R+ × R3,

−∆φ = ε|ψ|2, (t, x) ∈ R+ × R3,

where i is the imaginary unit, R+ = [0,+∞), Ṽ = V + λ and ε takes value +1

or −1, depending whether the interaction between the particles is repulsive or

attractive. Systems of this type stem from many physical problems, especially

in quantum mechanics and semiconductor theory [7], [21], [24]. In particular,

(1.1) was introduced by Benci and Fortunato in [7] as a model describing stand-

ing waves for the nonlinear Schrödinger equations interacting with an unknown

electrostatic field. When the potential V is radially symmetric or even a positive

constant, many papers have been devoted to studying existence and multiplicity

of nontrivial solutions of (1.1) under various assumptions on the nonlinearities

(see e.g. [3], [4], [11], [15], [17], [26]). In such a case, one can search solutions in

the subspace of H1(R3) × D1,2(R3) which consists of radially symmetric func-

tions. In the case that the potential V is not radially symmetric, (1.1) was also

widely investigated (see e.g. [6], [10], [16], [27], [30], [32]).

Recently Schrödinger–Poisson systems with critical nonlocal term have been

paid much attention to. For example, in [5] Azzollini and Avenia had obtained

Brezis-Nirenberg type’s results of the system:
−∆u+ λu = qφ|u|3u in Br,

−∆φ = q|u|5 in Br,

u = φ = 0 on ∂Br.

In [23] Liu had studied periodic solutions of the system:−∆u+ V (x)u−K(x)φ|u|3u = f(x, u) in R3,

−∆φ = K(x)|u|5 in R3.

The existence, nonexistence and the multiplicity of positive radially symmetric

solutions to the system−∆u+ u+ λφ|u|3u = µ|u|p−2u in R3,

−∆φ = |u|5 in R3,

were studied by variational methods in [19].

Partially motivated by the works of [5], [18], [19], [23], [27], we are concerned

with the following Schrödinger–Poisson system with critical nonlocal term:

(P)

−∆u = φ|u|3u+ λQ(x)|u|q−2u in R3,

−∆φ = |u|5 in R3.
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Such a system is related to the well-known Choquard equation

−∆u+ V (x)u = (Iα ∗ |u|p)|u|p−2u in RN ,

which was introduced as an approximation to the Hartree–Fock theory of one

component plasma in [20]. Here, Iα : R3 \ {0} → R denotes the Riesz potential,

1 < α < N and p > 1. A quick and comprehensive understanding of Choquard

equation is available in [25]. The conditions of Q we may use in this paper are

as follows:

(Q1) Q ∈ C(R3,R) ∩ L6/(6−q)(R3) for 1 < q < 2;

(Q2) for some x0 ∈ R3 we have Q(x0) > 0;

(Q3) for all x ∈ R3 we have Q(x) ≥ 0.

Now let us state our main results:

Theorem 1.1. Assume (Q1) and (Q2) hold. Then there exists a constant

λ∗ =
8(2− q)(2−q)/8S(6−q)/4

(10− q)(10−q)/8|Q+|6/(6−q)

such that for all λ ∈ (0, λ∗) the problem (P) possesses a positive ground state

solution.

Theorem 1.2. Assume (Q1)–(Q3) hold. Then the problem (P) possesses two

positive solutions if λ ∈ (0, q(12− q)λ∗/20).

Remark 1.3. Our conclusions have generalized the classical results of classi-

cal Schrödinger equation with combined concave and convex nonlinearities in [1]

to Schrödinger–Poisson systems with nonlocal critical term. Furthermore, we

improved those results because we can give a concrete estimate of λ∗ and Q

may change sign (see Theorem 1.1). On the other hand, we complete the re-

sults of [19], [27] in the sense that we study Schrödinger–Poisson systems with

a sublinear perturbation.

The paper is organized as follows. In Section 2, we describe the notations

and preliminaries. In Section 3, we give the proof of Theorem 1.1. In Section 4,

we give the proof of Theorem 1.2.

2. Notations and preliminaries

Throughout the paper we will use the following notations:

• Br(z) denotes the open ball centered at z with the radius r and Bcr(z)

the outer ball. In particular, Br := Br(0) and Bcr = Br(0)c if z = 0;

• the domain for an integral is R3 without special explanation and we

omit it;
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• let H be the usual Sobolev space D1,2(R3) endowed with its standard

scalar product and norm

(u, v)H =

∫
∇u · ∇v, ‖u‖ =

(∫
|∇u|2

)1/2

;

• for any s ∈ [1,+∞], | · |s denotes the usual norm of the Lebesgue space

Ls(R3);

• u+ := max{u, 0} and u− := min{u, 0};
• S denotes the best constant of the embedding: D1,2(R3) ↪→ L6(R3), i.e.

S = inf
H\{0}

∫
|∇u|2(∫
|u|6
)1/3

;

• C, Ci, i ∈ N are intrinsic positive constants which can change from line

to line;

• O(1) and o(1) denote the bounded and vanishing quantities as n → ∞
or ε→ 0+, respectively.

First of all, for any fixed u ∈ H, the second equation of (1.1) is a Poisson

equation which is uniquely solvable. Then the system can be reduced to a single

elliptic equation with a nonlocal term. The idea of this reduction method is

originally due to Benci and Fortunato [7] and now is a basic strategy of studying

the Schrödinger–Poisson system. For each u ∈ H, define the linear operator

Tu : H → R by

Tu(v) =

∫
|u|5v.

The Hölder inequality and Sobolev inequality lead to

|Tu(v)| ≤ |u|56|v|6 ≤ S−1/2|u|56‖v‖,

which implies that Tu is continuous. Then by Riesz representation theorem [8]

it follows that for each u ∈ H, there is a unique φu ∈ H such that

−∆φ = |u|5 in R3

and φu is continuous with respect to u. Moreover, by the Calderon–Zygmund

inequality [14, Theorem 9.9] and the Sobolev embedding theorem we see that φu
can be written as

(2.1) φu(x) =
1

4π

∫
|u|5(y)

|x− y|
dy.

Hence, we can define the energy functional corresponding to the problem (P) as

I(u) =
1

2

∫
|∇u|2 − 1

10

∫
φu|u|5 −

λ

q

∫
Q(x)|u|q, u ∈ H.

More properties of φu are summarized in the next lemma.
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Lemma 2.1. For every u ∈ H, we have the following conclusions:

(a) φu ≥ 0;

(b) ‖φu‖2 =

∫
φu|u|5 ≤ S−1/2‖φu‖|u|56 ≤ S−6‖u‖10;

(c) for any t > 0, φtu = t5φu;

(d) if un ⇀ u weakly in H and un → u almost everywhere on R3, then

φun ⇀ φu in H;

(e) if u is radial, then φu is also radial.

Proof. The proofs are easy to obtain by (2.1). �

The following Hardy–Littlewood–Sobolev inequality [20], [22], [25] is vital for

convolution.

Lemma 2.2. Let 0 < α < N , p, q > 1 and 1 < r < s <∞ be such that

1

p
+

1

q
= 1 +

α

N
,

1

r
− 1

s
=

α

N
.

(a) For any f ∈ Lp(RN ) and g ∈ Lq(RN ), one has∫
RN

∫
RN

|f(x)g(y)|
|x− y|N−α

dx dy ≤ C(N,α, p)|f |Lp(RN )|g|Lq(RN ).

(b) For any f ∈ Lr(RN ), one has∣∣∣∣ 1

| · |N−α
∗ f
∣∣∣∣
Ls(RN )

≤ C(N,α, r)|f |Lr(RN ).

In particular, in our case we have for all u ∈ H(
1

4π

∫
R3×R3

|u|5(x)|u|5(y)

|x− y|
dx dy

)1/5

≤ S−6/5

∫
|∇u|2

and

|φu|6 ≤ S−1|u|56.
According to Lemma 2.2, we see I ∈ C1(H). Hence, in order to solve equation (P)

we only need to find critical points of I and powerful variational methods can

be applied.

It is useful to note that a counterpart of the Brezis–Lieb lemma holds for

Riesz potential (see [18, Lemma 2.2] or [25]):

Lemma 2.3. If un ⇀ u weakly in H, then going to a subsequence, if neces-

sary, we have:

(2.2)

2|un|5 − |un − u|5 − |u|5 → 0 in L6/5(R3),

φun − φun−u − φu → 0 in H,∫
φun |un|5 −

∫
φun−u|un − u|5 −

∫
φu|u|5 → 0,
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and

(2.3)

∫
φun |un|3unη →

∫
φu|u|3uη for any η ∈ C∞0 (R3).

By (c) of Lemma 2.1 it is easy to see that for each u 6= 0 we have lim
t→+∞

I(tu) =

−∞. Hence, we obtain

inf
u∈H

I(u) = −∞.

It is useful to make use of well-known Nehari manifold:

N = {u ∈ H\{0} : 〈I ′(u), u〉 := N(u) = 0}.

Adopting the method used in [27], [29], N can be decomposed to three mutually

disjoint parts:

N+ = {u ∈ N | 〈N ′(u), u〉 > 0},

N 0 = {u ∈ N | 〈N ′(u), u〉 = 0},

N− = {u ∈ N | 〈N ′(u), u〉 < 0}.

In order to prove our main results, we introduce the following “limit problem”:

(P∞)

−∆u = φ|u|3u in R3

−∆φ = |u|5 in R3.

It is well known that the best embedding constant S is achieved at the function

U( · ) =
31/4

(1 + | · |2)1/2

(see [28]). Furthermore, U is a ground state solution of the equation:

(2.4) −∆u = |u|4u in R3.

Theorem 2.4. All positive solutions of (P∞) have the form

u( · ) = φ( · ) = ε−1/2 U

(
· − ξ
ε

)
for some ξ ∈ R3 and ε > 0.

Proof. Let u and φ be a pair of positive solution to (P∞). Then we have

−∆(u− φ) = (φ− u)|u|4 in R3.

Multiplying the equation by u− φ, and integrating by part, we obtain∫
|∇(u− φ)|2 +

∫
|u− φ|2|u|4 = 0.

Whence, we can conclude u = φ. Furthermore, u satisfies the equation (2.4).

Then, by standard argument, we can complete the proof. �
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3. Proof of Theorem 1.1

Lemma 3.1. I is coercive on N .

Proof. For any u ∈ N , by the Hölder and Sobolev inequalities we can

calculate

I|N (u) =
2

5
‖u‖2 −

(
1

q
− 1

10

)
λ

∫
Q(x)|u|q(3.1)

≥ 2

5
‖u‖2 −

(
1

q
− 1

10

)
λ|Q+|6/(6−q)|u|q6

≥ 2

5
‖u‖2 −

(
1

q
− 1

10

)
λS−q/2|Q+|6/(6−q)‖u‖q.

Hence, we draw the desired conclusion from 1 < q < 2. Moreover, setting

D = (1/5q)(2− q)2(4+q)/(q−2)(10− q)2/(2−q)S−q/(2−q) then we have

(3.2) I|N (u) ≥ −D[λ|Q+|6/(6−q)]2/(2−q). �

Lemma 3.2. There exists λ∗ > 0 such that for each u ∈ H with
∫
Q|u|q > 0

and λ ∈ (0, λ∗) there exists a unique pair t± such that t±u ∈ N±. Moreover, we

have

0 < t+ < t∗ :=

λ(2− q)
∫
Q(x)|u|q

8

∫
φu|u|5


1/(10−q)

< t− < +∞.

Proof. Set h(t) = I(tu) for 0 ≤ t < +∞. Then we can compute

h′(t) = t

(
‖u‖2 − t8

∫
φu|u|5 − λtq−2

∫
Q(x)|u|q

)
:= tg(t).

It is easy to see

g ∈ C2, g′′(t) < 0 for t ∈ (0,+∞) and lim
t→0+

g(t) = −∞ = lim
t→+∞

g(t).

Hence, we only need to prove max
t∈(0,+∞)

g(t) > 0. But we can calculate

max
t∈(0,+∞)

g(t) = g(t∗)

= ‖u‖2 − 10− q
2− q

(
2− q

8

)8/(10−q)

λ8/(10−q)

×
(∫

φu|u|5
)(2−q)/(10−q)(∫

Q(x)|u|q
)8/(10−q)

≥‖u‖2 − 10− q
2− q

(
2− q

8

)8/(10−q)

λ8/(10−q)(S−6‖u‖10
)(2−q)/(10−q)

×
(
|Q+|6/(6−q)S−q/2‖u‖q

)8/(10−q)
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= ‖u‖2
(
1− (10− q)(2− q)(q−2)/(10−q)8−8/(10−q)λ8/(10−q)

× S−(12−2q)/(10−q)|Q+|8/(10−q)
6/(6−q)

)
.

Then we complete the proof if we set

(3.3) λ∗ =
8(2− q)(2−q)/8S(6−q)/4

(10− q)(10−q)/8|Q+|6/(6−q)
. �

Lemma 3.3. N 0 = ∅ if λ ∈ (0, λ∗).

Proof. If u ∈ N 0, then we have N(u) = 0 and 〈N ′(u), u〉 = 0. Thus, we

can obtain

λ =
8‖u‖2

(10− q)
∫
Q(x)|u|q

and

(3.4) (2− q)‖u‖2 = (10− q)
∫
φu|u|5.

According to the Hardy–Littlewood–Sobolev inequality, Lemma 2.2 and (3.4) we

can obtain

‖u‖ ≥
(

2− q
10− q

)1/8

S3/4.

Furthermore, by the Hölder inequality, Sobolev inequality and (3.3) we have

λ ≥ 8‖u‖2

(10− q)|Q+|6/(6−q)|u|q6
≥ 8Sq/2‖u‖2−q

(10− q)|Q+|6/(6−q)
≥ λ∗. �

Lemma 3.4. N+ is bounded in H.

Proof. By 〈I ′(u), u〉 = 0 and 〈N ′(u), u〉 > 0 we can calculate

8‖u‖2 < (10− q)λ
∫
Q(x)|u|q ≤ (10− q)S−q/2λ|Q+|6/(6−q)‖u‖q.

Hence, by 1 < q < 2, we obtain

‖u‖ ≤
(

10− q
8Sq/2

)1/(2−q)

[λ|Q+|6/(6−q)]1/(2−q). �

Lemma 3.5. There exists δ > 0 such that ‖u‖ ≥ δ for all u ∈ N−.

Proof. From u ∈ N− we have N(u) = 0 and 〈N ′(u), u〉 < 0. Whence, we

can derive

(2− q)‖u‖2 < (10− q)
∫
φu|u|5.

Furthermore, by the Hardy–Littlewood–Sobolev inequality, Lemma 2.2 we see

(3.5) ‖u‖ ≥
(

2− q
10− q

)1/8

S3/4 := δ. �
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From Lemma 3.2 and (Q1)–(Q2) we see N± 6= ∅ if λ ∈ (0, λ∗). Hence, we can

consider c± := inf
N±

I(u). By Lemma 3.1 it is easy to see c± > −∞. Furthermore,

we have the following estimates.

Lemma 3.6. For all λ ∈ (0, λ∗) we have c+ < 0 and c+ ≤ c−. Furthermore,

if λ ∈ (0, qλ∗/2) then we have c− ≥ 0.

Proof. By (Q1) and (Q2) we can pick certain u ∈ H such that∫
Q(x)|u|q > 0.

Then, by Lemma 3.2, there exists t+ > 0 such that t+u ∈ N+. Hence, we have

I(t+u) < 0 from the proof of Lemma 3.2. As a consequence, we see c+ < 0. On

the other hand, for each u ∈ N−, if
∫
Q(x)|u|q > 0, then by Lemma 3.2, we have

I(u) = max
t+≤t<+∞

I(tu) > I(t+u) ≥ c+.

Whereas, if
∫
Q(x)|u|q ≤ 0 it is easy to see, for any λ > 0,

I(u) =
2

5
‖u‖2 −

(
1

q
− 1

10

)
λ

∫
Q(x)|u|q > 0 > c+.

Furthermore, if λ ∈ (0, qλ∗/2) then by (3.1) and (3.5) we can obtain the desired

result. �

Lemma 3.7. If λ ∈ (0, λ∗) then there exists a sequence {un}⊂N+ (resp. N−)

such that :

(a) I(un) = c+(resp. c−) + o(1);

(b) I ′(un) = o(1).

Proof. By the well-known Ekeland variational principle [12] we see that

there exists a sequence {un} ⊂ N+ such that

(i) I(un) < c+ + 1/n;

(ii) for any v ∈ N+ we have

I(v)− I(un) ≥ − 1

n
‖v − un‖.

Now fix n. Let us consider the function F : R×H → R defined as

F (t, v) = t2‖(un + v)‖2 − t10

∫
φun+v|un + v|5 − tqλ

∫
Q(x)|un + v|q.

It is easy to see

F (1, 0) = N(un) = 0 and
∂F

∂t

∣∣∣∣
(1,0)

= 〈N ′(un), un〉 > 0.
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Hence, by implicit function theorem there exist εn > 0 and a C1 function tn
mapping from BHεn := {u ∈ H : ‖u‖ < εn} to R such that

tn(0) = 1, F (tn(v), v) = 0 and 〈t′n(0), ξ〉 = − 〈N
′(un), ξ〉

〈N ′(un), un〉
.

As a consequence, we can assume tn(v)(un + v) ∈ N+. Then we can obtain

I(tn(v)(un + v))− I(un) ≥ − 1

n
‖tn(v)(un + v)− un‖.

Noting

tn(v)− 1 = tn(v)− tn(0) =

∫ 1

0

〈t′n(sv), v〉 ds,

since tn ∈ C1 by reselecting a proper εn, we can derive

‖tn(v)(un + v)− un‖ = ‖(tn(v)− 1)un + tn(v)v‖ ≤ C(1 + ‖t′n(0)‖)‖v‖.

Whence, we obtain

I(tn(v)(un + v))− I(un) ≥ −C
n

(1 + ‖t′n(0)‖)‖v‖, for all v ∈ BHεn .

On the other hand, by I ∈ C1 and tn ∈ C1, we can calculate

I(tn(v)(un + v))− I(un) =

∫ 1

0

dI(tn(sv)(un + sv))

ds
ds

=

∫ 1

0

〈I ′(tn(sv)(un + sv)), 〈t′n(sv), v〉(un + sv) + tn(sv)v〉 ds

= 〈I ′(un), v〉+ (tn(sv)− 1)

∫ 1

0

〈I ′(tn(sv)(un + sv)), v〉 ds

+

∫ 1

0

〈I ′(tn(sv)(un + sv))− I ′(un), v〉 ds.

Hence, since tn and I ′ is continuous, I ′ maps a bounded set into a bounded set

and {un}n is bounded we can obtain for certain εn > 0

I(tn(v)(un + v))− I(un) ≤ 〈I ′(un), v〉+
C

n
‖v‖, for all v ∈ BHεn .

Therefore, we can conclude for some εn > 0

〈I ′(un), v〉 ≤ C

n
(1 + ‖t′n(0)‖)‖v‖, for all v ∈ H, ‖v‖ < εn,

which means I ′(un)→ 0 as n→ +∞ if {t′n(0)}n is bounded.

In the following we show {t′n(0)}n is bounded. On one hand, by the bounded-

ness of {un} and N ′ mapping a bounded set into a bounded set we have

|〈N ′(un), ξ〉| ≤ C‖ξ‖.
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On the other hand, we will claim lim inf
n
|〈N ′(un), un〉| > 0. Then we can con-

clude

‖t′n(0)‖ ≤ sup
‖ξ‖≤1

‖N ′(un)‖‖ξ‖
|〈N ′(un), un〉|

≤ C.

At first, by c+ < 0 and I(un) = c+ + o(1) it is easy to obtain lim inf
n
‖un‖ > 0.

Then, by contradiction, up to a subsequence we assume lim
n
〈N ′(un), un〉 = 0.

Arguing as the proof of Lemma 3.3 we can derive

lim inf
n
‖un‖ ≥

(
2− q
10− q

)1/8

S3/4 = δ and λ ≥ λ∗.

However, we have assumed λ ∈ (0, λ∗), a contradiction. �

Lemma 3.8. c+ is attained on N+ if λ ∈ (0, λ∗). Furthermore, the prob-

lem (P) has a positive ground state solution.

Proof. Now let {un} ⊂ N+ be a (PS)c+ sequence of I in Lemma 3.7. Then

{un} is bounded since I is coercive on N by Lemma 3.1. Therefore, going to

a subsequence if necessary we can assume

(3.6)

un ⇀ u in H,

un → u in Lsloc(R3) for all 1 ≤ s < 6,

un → u a.e. on R3.

Hence, by (2.3), (3.6) and the definition of weak convergence we can derive

I ′(u) = 0. Now we set vn = un − u. Then we see vn ⇀ 0 weakly in H. In the

following we prove vn → 0 strongly in H. We observe that by (Q1) one can show

lim
n

∫
Q(x)|un|q =

∫
Q(x)|u|q.

In fact, by the Hölder inequality and boundedness of {un} we have∫
|Q(x)|

∣∣|un|q − |u|q∣∣ ≤ C|Q|L∞(BR)

∫
BR

∣∣|un|q − |u|q∣∣+ C|Q|L6/(6−q)(BcR).

For all ε > 0, by Q ∈ L6/(6−p)(R3) we can choose certain R large enough such

that

C|Q|L6/(6−q)(BcR) <
ε

2
.

Then, by (3.6), there exists N > 0 such that for all n > N we have

C|Q|L∞(BR)

∫
BR

∣∣|un|q − |u|q∣∣ < ε

2
.

Hence, by the Brezis–Lieb Lemma (Lemma 2.3) we can conclude

c+ − I(u) + o(1) =
1

2
‖vn‖2 −

1

10

∫
φvn |vn|5
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and

‖vn‖2 −
∫
φvn |vn|5 = o(1).

By Lemma 2.1 (b), we also have∫
φvn |vn|5 ≤ S−1/2‖φvn‖|vn|56 ≤ S−6‖vn‖10.

Therefore, we infer that either ‖vn‖ = o(1) or ‖vn‖ ≥ S3/4 + o(1). If the latter

occurs, we have

(3.7) c+ − I(u) ≥ 2

5
S3/2.

At first, we can claim u ∈ N since we have obtained N(u) = 0 and we can obtain

u 6= 0 from (3.7) and Lemma 3.6. In the following we show u ∈ N+. By con-

tradiction, we assume 〈N ′(u), u〉 ≤ 0. By the Brezis–Lieb Lemma (Lemma 2.3)

again we can conclude that vn satisfies

‖vn‖2 =

∫
φvn |vn|5 + o(1),

(2− q)‖vn‖2 ≥ (10− q)
∫
φvn |vn|5 + o(1).

Hence, we can get ‖vn‖ = o(1), a contradiction.

Now by u ∈ N+, we have c+−I(u) ≤ 0, a contradiction with (3.7). Therefore,

we conclude that un → u strongly in H and u is a minimizer of c+ on N+ by

Lemma 3.3. At the same time, we see that u is a solution of (P). To obtain

a positive ground state solution of (P) we only need to note that I is even and

c+ = inf
v∈N+

I(v) = inf
v∈N

I(v). �

Remark 3.9. Let uλ be a minimizer of c+. Then from the proof of Lemma 3.4

or (3.2), we can conclude c+ → 0 and uλ → 0 strongly in H as λ→ 0+.

Corollary 3.10. We have c+ < c− if λ ∈ (0, λ∗).

Proof. Note we have proved c+ ≤ c− in Lemma 3.6. Arguing by contradic-

tion, we assume c+ = c−. By Lemma 3.7 we can obtain a sequence {un} ⊂ N−

such that I(un) = c− + o(1) and I ′(un) = o(1) as n → +∞. Repeating the

argument of Lemma 3.8 we see that there exists u ∈ H such that I ′(u) = 0.

Moreover, we have

‖vn‖ = o(1) or ‖vn‖ ≥ S3/4 + o(1).

We can rule out the latter case by (3.7) and c+ = c−. In fact, by Lemma 3.6

we see that for all u ∈ H such that I ′(u) = 0 we have I(u) ≥ c+. Then, from

assumption c+ = c−, we see c−−I(u) ≤ 0, a contradiction with (3.7). Therefore,

we conclude un → u strongly in H as n→ +∞. Since λ ∈ (0, λ∗) by Lemma 3.3
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we have u ∈ N−. At last, by Lemma 3.2 we see that if
∫
Q(x)|u|q > 0 then there

exists t+ > 0 such that t+u ∈ N+ and

c+ ≤ I(t+u) < I(u) = c− = c+.

If
∫
Q(x)|u|q ≤ 0 we have proved c− ≥ 0 > c+ in Lemma 3.6. In both cases we

derive a contradiction. �

4. Proof of Theorem 1.2

In order to find another solution of (P), it is a natural way to prove c− is

attained. We have made great efforts without success because we can’t obtain

an effective estimate of c−. Here we adopt the strategy in [1] and [9]. We find

solution with the form uλ+v, where uλ is a positive ground state solution of (P)

which we have obtained in Theorem 1.1.

Above all, we need some regularity results about uλ. Since uλ satisfies the

equation

−∆u = a(x)u+ f(x),

where a(x) = φuλu
3
λ(x) ∈ L3/2(R3) and f(x) = Q(x)uq−1

λ (x) ∈ L
6/(q−1)
loc (R3),

then by the Brezis–Kato type estimates (see [13, Lemma 5.5]) we can obtain

uλ ∈ Lsloc(R3) for all s ∈ [1,+∞). According to standard argument (see [13,

Theorem 5.3] or [14]) we obtain uλ ∈ Cαloc(R3) for some α ∈ (0, 1). Then, by

(Q3) and strong maximal principle ([14]), we see uλ(x) > 0 for all x ∈ R3.

By (Q1)–(Q2) and continuity of uλ there exists ρ > 0 such that

0 <
1

2
Q(x0) ≤ Q(x) ≤ 3

2
Q(x0) and 0 <

1

2
uλ(x0) ≤ uλ(x) ≤ 3

2
uλ(x0)

for all x ∈ B2ρ(x0). Let η be a standard cut-off function supported in the closure

of the ball B2ρ(x0). Then we consider the function

(4.1) vε( · ) = η( · )ε−1/2 U

(
· − x0

ε

)
= η( · ) 31/4ε1/2

(ε2 + | · −x0|2)1/2
.

It is easy to see that
∫
Q(x)|vε|q > 0. Thanks to the classical estimates due to

Brezis and Nirenberg [9], we have

(4.2) ‖vε‖2 = S3/2 +O(ε), |vε|66 = S3/2 +O(ε3).

Moreover, we also have

(4.3)

∫
Q(x)|vε|s =


O(εs/2) if s ∈ [1, 3),

O(ε3/2| ln ε|) +O(ε3/2) if s = 3,

O(ε3−s/2) +O(εs/2) if s = 4, 5.

Now we show

(4.4)

∫
φvε |vε|5 = S3/2 +O(ε).
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On one hand, by (2.1), (4.1) and Theorem 2.4, it is easy to see∫
φvε |vε|5 ≤

∫
φUU

5 = S3/2 ≤ S3/2 +O(ε).

On the other hand, from the Poisson equation −∆φvε = |vε|5 and Cauchy’s

inequality we have∫
|vε|6 =

∫
∇φvε · ∇vε ≤

1

2
‖vε‖2 +

1

2
‖φvε‖2 =

1

2
‖vε‖2 +

1

2

∫
φvε |vε|5.

Hence, we get ∫
φvε |vε|5 ≥ 2

∫
|vε|6 − ‖vε‖2.

By estimates (4.2) we derive∫
φvε |vε|5 ≥ S3/2 −O(ε).

We also need to estimate
∫
φvεuλv

4
ε .

Lemma 4.1. For small ε > 0 we have

(4.5) C1ε
1/2 ≤

∫
φvεuλv

4
ε ≤ C2ε

1/2.

Proof. On one hand, by (2.1) and (4.1) we can calculate∫
φvεuλv

4
ε =

1

4π

∫
R3×R3

uλ(x)

|x− y|

(
31/4ε1/2η(x)

(ε2 + |x− x0|2)1/2

)4(
31/4ε1/2η(y)

(ε2 + |y − x0|2)1/2

)5

dx dy

≥ Cε1/2

∫
Bρ/ε×Bρ/ε

1

|x′ − y′|(1 + |x′|2)2(1 + |y′|2)5/2
dx′ dy′

≥ Cε1/2

∫
R3×R3

1

|x′ − y′|(1 + |x′|2)5/2(1 + |y′|2)5/2
dx′ dy′

= Cε1/2

∫
φUU

5 = Cε1/2|U |66 = Cε1/2.

On the other hand, making similar argument, we have∫
φvεuλv

4
ε ≤ Cε1/2

∫
B2ρ/ε×B2ρ/ε

1

|x′ − y′|(1 + |x′|2)2(1 + |y′|2)/2
dx′ dy′

≤ Cε1/2

∫
R3×R3

U4(x′)U4(y′)

|x′ − y′|
dx′ dy′

≤ Cε1/2|U4|26/5 (by (a) of Lemma 2.2)

= Cε1/2. �

The following estimate is significantly important to obtain the compactness

of a (PS)c sequence of I for c < I(uλ) + (2/5)S3/2.

Lemma 4.2. There exists ε0 > 0 such that

sup
t≥0

I(uλ + tvε) < I(uλ) +
2

5
S3/2 for all ε ∈ (0, ε0).
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Proof. By (2.1) and direct computation we see that for all t > 0∫
φuλ+tvε(uλ + tvε)

5 =
1

4π

∫
R3×R3

(uλ + tvε)
5(x)(uλ + tvε)

5(y)

|x− y|
dx dy

=

∫
φuλu

5
λ + 10t

∫
φuλu

4
λvε + . . .+ 10t9

∫
φvεuλv

4
ε + t10

∫
φvεv

5
ε

≥
∫
φuλu

5
λ + 10t

∫
φuλu

4
λvε + 10t9

∫
φvεuλv

4
ε + t10

∫
φvεv

5
ε .

Then, by the equation of uλ and convexity of the function xq, we can calculate

I(uλ + tvε) =
1

2
‖uλ + tvε‖2 −

1

10

∫
φuλ+tvε(uλ + tvε)

5 − λ

q

∫
Q(x)|uλ + tvε|q

≤ I(uλ) +
t2

2
‖vε‖2 −

t10

10

∫
φvεv

5
ε − t9

∫
φvεuλv

4
ε

− λ

q

∫
Q(x)[(uλ + tvε)

q − uqλ − tqu
q−1
λ vε]

≤ I(uλ) +
t2

2
‖vε‖2 −

t10

10

∫
φvεv

5
ε − t9

∫
φvεuλv

4
ε .

For t ∈ [0,+∞) define

h(t) =
t2

2
‖vε‖2 −

t10

10

∫
φvεv

5
ε − t9

∫
φvεuλv

4
ε .

It is easy to see h(0) = 0, h(t) > 0 for small t and lim
t→+∞

h(t) = −∞. Hence,

there exists tε > 0 such that h(tε) = max
t≥0

h(t). Moreover, by direct calculation,

we see that h′ only has one positive zero tε for ε small enough.

Now we give a fine estimate of tε. Define a function on R4 as

F (t, x, y, z) = t2x− t10y − t9z.

By a direct calculation we have

F (1, S3/2, S3/2, 0) = 0 and
∂F

∂t

∣∣∣
(1,S3/2,S3/2,0)

= −8S3/2 < 0.

Thus, by the implicit function theorem, we see that there exists a continuous

differentiable function t = t(x, y, z) in a neighbourhood of (S3/2, S3/2, 0) such

that

F (t(x, y, z), x, y, z) = 0, t(S3/2, S3/2, 0) = 1

and

∇t|(S3/2,S3/2,0) =
−1

∂F

∂t

(
∂F

∂x
,
∂F

∂y
,
∂F

∂z

)∣∣∣∣
(S3/2,S3/2,0)

=
1

8S3/2
(1,−1,−1).
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Therefore, by Taylor’s expansion in a neighbourhood of (S3/2, S3/2, 0), we have

t(x, y, z) = 1 +
1

8S3/2
(1,−1,−1) · (x− S3/2, y − S3/2, z − 0)

+ o(1)
√

(x− S3/2)2 + (y − S3/2)2 + z2.

As a consequence, if we set

x = ‖vε‖2, y =

∫
φvε|vε|

5, z = 9

∫
φvεuλv

4
ε ,

then, by the estimates (4.2) and (4.5), we have

(4.6) tε = 1−O
(
ε1/2

)
+ o
(
ε1/2

)
= 1 +O

(
ε1/2

)
.

On the other hand, by estimates (4.2) and (4.4) we can show that

sup
t≥0

t2

2
‖vε‖2 −

t10

10

∫
φvε |vε|5 =

2

5
(‖vε‖2)5/4

(∫
φvε |vε|5

)−1/4

=
2

5
S3/2 +O(ε).

Furthermore, by (4.5) and (4.6) we can calculate

sup
t≥0

h(t) = h(tε) ≤ sup
t≥0

t2

2
‖vε‖2 −

t10

10

∫
φvε |vε|5 − C

∫
φvεuλv

4
ε

≤ 2

5
S3/2 + C3ε− C4ε

1/2.

Thus we conclude, for small ε,

sup
t≥0

I(uλ + tvε) < I(uλ) +
2

5
S3/2. �

Lemma 4.3. I possesses the geometry structure of mountain pass as long as

λ ∈ (0, q(12− q)λ∗/20).

Proof. Let δ be the constant in Lemma 3.5 and note that if λ = 0 then we

have

I|‖u‖=δ ≥
2(12− q)
5(10− q)

δ2.

Hence, for all λ ∈ (0, q(12− q)λ∗/20), we have

I
∣∣
‖u‖=δ ≥

δq

qSq/2|Q+|6/(6−q)

[
q(12− q)

20
λ∗ − λ

]
:= bλ > 0.

On one hand, since λ ∈ (0, λ∗) by Lemma 3.4 we see ‖uλ‖ < δ. Noting uλ is

a minimizer of c+ and c+ < 0 we have I(uλ) < 0.

On the other hand, we see lim
t→+∞

I(uλ + tvε) = −∞. Hence, there exists an

element e = uλ + t0vε ∈ H for some t0 > 0 such that I(e) < 0 and ‖e‖ > δ. �
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Now we can define mountain pass level

cmp = inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)),

where Γ = {γ ∈ C([0, 1];H) : γ is a path connected uλ and e in H}.

Proof of Theorem 1.2. Applying the deformation lemma without (PS)c
condition([2], [31]) we see that there exists a (PS)cmp sequence {un} of I. By

standard argument we see that {un} is bounded in H. Then repeating the

proof of Lemma 3.8 we see that there exists u ∈ H satisfying formula (3.6) and

I ′(u) = 0. Moreover, if un 9 u strongly in H then the inequality (3.7) holds, i.e.

cmp − I(u) ≥ 2

5
S3/2.

Since uλ is a ground state solution and I(uλ) = c+ < 0 we obtain

cmp − I(uλ) ≥ cmp − I(u) ≥ 2

5
S3/2.

However, making use of Lemma 4.2 we have

cmp < I(uλ) +
2

5
S3/2.

Hence, we obtain a contradiction. Therefore, we conclude un → u strongly in H.

Furthermore, by Lemma 4.3, we see that cmp ≥ bλ > 0. As a consequence, we

have u 6= 0 and u 6= uλ. Hence, (P) has at least two solutions: one is a ground

state solution uλ, the other is mountain pass solution u. To obtain a positive

mountain pass solution, we only need to consider the modified functional

I+(u) =
1

2

∫
|∇u|2 − 1

10

∫
φu+ |u+|5 − λ

q

∫
Q(x)|u+|q, u ∈ H. �
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