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ON THE TOPOLOGICAL PRESSURE

OF THE SATURATED SET WITH NON-UNIFORM

STRUCTURE

Cao Zhao — Ercai Chen

Abstract. We derive a conditional variational principle of the saturated

set for systems with the non-uniform structure. Our result applies to
a broad class of systems including β-shifts, S-gap shifts and their subshift

factors.

1. Introduction

Most results in multifractal analysis are applied to study the local asymptotic

quantities, such as Birkhoff averages, Lyapunov exponents, local entropies, and

pointwise dimensions, which reveal information about a single point or trajectory.

It is of interest to study the level set for these quantities. A topological dynamical

system (X, d, σ) (or (X,σ) for short) consists of a compact metric space (X, d)

and a continuous map σ : X → X. For a continuous function ψ : X → R, we

always consider the following set:

X(ψ, α) =

{
x ∈ X : lim

n→∞

1

n

n−1∑
i=0

ψ(σix) = α

}
.
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The level set X(ψ, α) is the multifractal decomposition set of ergodic averages

of ψ. There are fruitful results about the descriptions of the structure (Hausdorff

dimension or topological entropy or topological pressure) of these level sets in

topological dynamical systems. We refer the reader to [1], [2], [7]–[9], [11], [13],

[12], [16] and the references therein. In [11], Pfister and Sullivan consider the

saturated sets and obtain a conditional variational principle. Let C(X) be the

space of continuous functions from X to R. For ϕ ∈ C(X) and n ≥ 1, denote

Snϕ(x) :=
n−1∑
i=0

ϕ(σix). Denote by M(X),Mσ(X) and Me
σ(X) the set of Borel

probability measures on X, the collection of all σ-invariant Borel probability

measures and all σ-ergodic invariant Borel probability measures, respectively. It

is well-known that M(X) and Mσ(X) equipped with weak∗ topology are compact

metrizable spaces. There exists a countable and separating set of continuous

functions {f1, f2, . . .} with 0 ≤ fi(x) ≤ 1 on X such that

D(µ, ν) := ‖µ− ν‖ =
∑
k≥1

1

2k

∣∣∣∣ ∫ fk dµ−
∫
fk dν

∣∣∣∣,
defines a metric for the weak∗ topology on M(X). Denote the limit point set of

{xn}n≥1 by A(xn). Define

En(x) :=
1

n

n−1∑
i=0

δσix.

The generic set for µ ∈Mσ(X) can be denoted by

Gµ(X,σ) := {x ∈ X : A(En(x)) = {µ}}.

For any compact connected subset K ⊂ Mσ(X), define the saturated set for K

as follows:

GK(X,σ) := {x ∈ X : A(En(x)) = K}.

We define the multifractal spectrum for ψ ∈ C(X) to be Lψ := {α ∈ R :

X(ψ, α) 6= ∅}. In [11], Pfister and Sullivan showed the following theorem.

Theorem 1.1. If (X,σ) satisfies the g-almost product property and the uni-

form separation property, then for any compact connected non-empty set K ⊂
Mσ(X),

inf {hµ(σ) : µ ∈ K} = htop(GK(X,σ)),

where htop( · ) denotes the Bowen topological entropy.

We can see that the above theorem needs two conditions: g-almost product

property and the uniform separation property. The g-almost product property

is a kind of specification property which holds for the case of β-shifts. In this

paper, we consider a class of symbolic systems which was studied in [5]. That is,

(X,σ) is a symbolic system with non-uniform structure: there exists G ⊂ L(X)
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which has (W )-specification and L(X) is edit approachable by G. The details of

definitions will be given in the next section. This can be considered as another

kind of specification property which holds for both β-shifts, S-gap shifts and

their subshift factors.

Our main results are the following.

Theorem 1.2. Let X be a shift space with L = L(X) and ϕ : X → R be

a continuous function. Suppose that G ⊂ L has (W )-specification and L is edit

approachable by G, then for any compact connected subset K ⊂ Mσ(X). We

have

PGK(X,σ)(ϕ) = inf
µ∈K

{
hµ(σ) +

∫
ϕdµ

}
,

where P•(ϕ) denotes the topological pressure.

Accordingly, we investigated the size of the irregular set. For ψ ∈ C(X), set

X̂(ψ) :=

{
x ∈ X : lim

n→∞

Snψ(x)

n
does not exist

}
.

Theorem 1.3. Let X be a shift space with L = L(X) and ϕ : X → R be

a continuous function. Suppose that G ⊂ L has (W )-specification and L is edit

approachable by G, then for any ψ ∈ C(X), either X̂(ψ) = ∅, or

PX̂(ψ)(ϕ) = PX(ϕ),

where P•(ϕ) denotes topological pressure.

2. Preliminaries

In this paper, we consider the symbolic space. Let p ≥ 2 be an integer and

A = {1, . . . , p}. Define

AN = {(wi)∞i=1 : wi ∈ A for i ≥ 1},

which is compact with the product discrete topology. We can define the metric

on AN, for any u, v ∈ AN, define

d(u, v) := e−|u∧v|,

where |u ∧ v| denotes the maximal length n such that u1 = v1, . . . , un = vn and

d(u, v) = 0 if u = v. We say that (X,σ) is a subshift over A if X is a compact

subset of AN, and σ(X) ⊂ X, where σ is the left shift map on AN defined by

σ((wi)
∞
i=1) = (wi+1)∞i=1, for all (wi)

∞
i=1 ∈ AN.

In particular, (X,σ) is called the full shift over A if X = AN. The language

of X, denoted by L = L(X), is the set of finite words that appear in some x ∈ X
that is,

L(X) = {w ∈ A∗ : [w] 6= ∅},
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where A∗ =
⋃
n≥0

An and [w] is the central cylinder for w, which is the set of

sequences x ∈ X that begin with the word w. For any collection D ⊂ L, let Dn
denote {w ∈ D : |w| = n}. Thus, Ln is the set of all words of length n that

appear in sequences belonging to X. Given words u, v, we use juxtaposition uv

to denote the word obtained by concatenation.

We give the definition of topological pressure for non-compact set in symbolic

systems.

Definition 2.1. LetX be a subshift space on a finite alphabet and Z ⊂ X be

an arbitrary Borel set. For N ∈ N and t ∈ R, we define the following quantities:

M(Z, t, ϕ,N) = inf

{ ∑
[w0...wm]∈S

exp

(
− t(m+ 1) + sup

w∈[w0...wm]

m∑
k=0

ϕ(σkx)

)}
,

where the infimum is taken over all finite or countable collections S of cylinder

sets [w0 . . . wm] with m ≥ N which cover Z. Define

M(Z, t, ϕ) = lim
N→∞

M(Z, t, ϕ,N).

The existence of the limit is guaranteed since the function M(Z, t, ϕ,N) does

not decrease with N . By standard techniques, we can show the existence of

PZ(ϕ) = inf {t : M(Z, t, ϕ) = 0},

and then, we define the topological pressure of Z by PZ(ϕ). If ϕ = 0, then

PZ(0) = htop(Z), where htop(Z) denotes the Bowen topological entropy.

Definition 2.2 ([5]). Given a shift space X and its language L, consider

a subset G ⊂ L. Given τ ∈ N, we say that G has (W )-specification with gap

length τ if for every v, w ∈ G there is u ∈ L such that v′uw′ ∈ G and |u| ≤ τ ,

whenever v′ is suffix of v, w′ is prefix of w.

Definition 2.3 ([5]). Define an edit of a word w = w1 . . . wn ∈ L to be

a transformation of w by one of the following actions, where uj ∈ L are arbitrary

words and a, a′ ∈ A are arbitrary symbols.

(a) Substitution: w = u1au2 7→ w′ = u1a′u2.

(b) Insertion: w = u1u2 7→ w′ = u1a′u2.

(c) Deletion: w = u1au2 7→ w′ = u1u2.

Given v, w ∈ L, define the edit distance between v and w to be the minimum

number of edits required to transform the word v into the word w: we will denote

this by d̂(v, w). The following lemma about describes the size of balls in the edit

metric.

Proposition 2.4 ([5]). There is C > 0 such that given n ∈ N, w ∈ Ln, and

δ > 0, we have

# {v ∈ L : d̂(v, w) ≤ δn} ≤ CnC(eCδe−δ log δ)n.



Topological Pressure of the Saturated Set with Non-Uniform Structure 317

Next we introduce the key definition, which requires that any word in L can

be transformed into a word in G with a relatively small number of edits.

Definition 2.5 ([5]). Say that a non-decreasing function g : N→ N is a mis-

take function if g(n)/n converges to 0. We say that L is edit approachable by G,

where G ⊂ L, if there is a mistake function g such that for every w ∈ L, there

exists v ∈ G with d̂(v, w) ≤ g(|w|).

Lemma 2.6 ([5]). For any continuous function ϕ ∈ C(X) and any mistake

function g(n) : N→ N, there is a sequence of positive numbers δn → 0 such that

if x, y ∈ X and m,n ∈ N are such that d̂(x1 . . . xn, y1 . . . ym) ≤ g(n), then∣∣∣∣ 1n Snϕ(x)− 1

m
Smϕ(y)

∣∣∣∣ ≤ δn.
Similarly to the above lemma, we can give another lemma for measures.

Lemma 2.7. For any mistake function g(n), there is a sequence of positive

numbers δn → 0 such that if x, y ∈ X and m,n ∈ N are such that d̂(x1 . . . xn,

y1 . . . ym) ≤ g(n), then D(En(x), Em(y)) ≤ δn.

Proof. Let {f1, f2, . . .} with 0 ≤ fi(x) ≤ 1 be a countable and separating

set of continuous functions on X and

D(µ, ν) := ‖µ− ν‖ =
∑
k≥1

1

2k

∣∣∣∣ ∫ fk dµ−
∫
fk dν

∣∣∣∣
for any µ, ν ∈ M(X). From Lemma 2.6, we can choose δin → 0 as n → ∞
for each fi with i ≥ 1. Hence, if x, y ∈ X and m,n ∈ N are such that

d̂(x1 . . . xn, y1 . . . ym) ≤ g(n), then

D(En(x), Em(y)) =
∑
k≥1

1

2k

∣∣∣∣ ∫ fk dEn(x)−
∫
fk dEm(y)

∣∣∣∣
=
∑
k≥1

1

2k

∣∣∣∣Snfk(x)

n
− Smfk(y)

m

∣∣∣∣2k ≤∑
k≥1

δkn
2k
.

We set δn :=
∑
k≥1

δkn/2
k > 0 and we have D(En(x), Em(y)) ≤ δn. Then

lim
n→∞

δn = lim
n→∞

∑
k≥1

δkn
2k

=
∑
k≥1

lim
n→∞

δkn
2k

= 0.

So we are done. �

We can get the following lemma, by applying [5, Proposition 4.2 and Lem-

ma 4.3].

Proposition 2.8 ([5]). If G has (W )-specification, then there exists F ⊂ L,

which has free concatenation property (for all u,w ∈ F , we have uw ∈ F) such

that L is edit approachable by F .
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3. Proof of Theorem 1.2

The upper bound is easy to get by Theorem 3.1 in [9]. To prove the lower

bound, we begin with a proposition about measures.

Proposition 3.1. Let αi, βi ≥ 0 with
k∑
i=1

αi = 1 and
k∑
i=1

βi = 1, for µi,mi ∈

M(X), then we have

D

( k∑
i=1

αiµi,

k∑
i=1

βimi

)
≤

k∑
i=1

αiD(µi,mi) +

k∑
i=1

|αi − βi|‖mi‖,

where

‖m‖ := sup
0<‖f‖≤1

1

‖f‖

∣∣∣∣ ∫ f dm

∣∣∣∣.
Proof.

D

( k∑
i=1

αiµi,

k∑
i=1

βimi

)
≤ D

( k∑
i=1

αiµi,

k∑
i=1

αimi

)
+D

( k∑
i=1

αimi,

k∑
i=1

βimi

)

≤
k∑
i=1

αiD(µi,mi) +

k∑
i=1

|αi − βi|‖mi‖. �

To estimate the lower bound, we need the following Horseshoe theorem given

in [5].

Theorem 3.2 ([5]). Let X be a shift space. Suppose that G ⊂ L has (W )-

specification and L is edit approachable by G. Then there exists an increasing

sequence {Xn} of compact σ-invariant subsets of X with the following properties:

(a) Each Xn is a topological transitive sofic shift.

(b) There is T ∈ N such that for every n and every w ∈ L(Xn), there are

u, v ∈ L with |u|, |v| ≤ n+ T such that uwv ∈ G.

(c) Every invariant measure on X is entropy approachable by ergodic mea-

sures on Xn: for any η > 0, any µ ∈ Mσ(X), and any neighborhood

U of µ in Mσ(X), there exists n ≥ 1 and µ′ ∈ Me
σ(Xn) ∩ U such that

hµ′(σ) > hµ(σ)− η holds.

Lemma 3.3 ([11]). Let K ⊂Mσ(X) be a compact connected non-empty set.

Then there exists a sequence {α1, α2, . . .} of K, such that

{αj : j ∈ N, j > n} = K, for all n ∈ N, and lim
j→∞

d(αj , αj+1) = 0.

Definition 3.4. Given µ ∈Mσ(X) and ε > 0, let

Lµ,εn := {w ∈ Ln : D(En(x), µ) < ε for all x ∈ [w]}.

By Proposition 1.1 in [11], we have the following result.
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Lemma 3.5. For any ergodic measure µ ∈ Me
σ(X) and ε, δ > 0, there exists

N(µ, ε, δ) ∈ N such that for n ≥ N(µ, ε, δ), we have

#Lµ,εn ≥ en(hµ(σ)−δ),

where # denotes the cardinality of a set.

Now we begin to show the lower bound of Theorem 1.2.

3.1. Choose a sequence {nj}j≥1. Let η > 0 and

h∗ = inf

{
hµ(σ) +

∫
ϕdµ : µ ∈ K

}
− η.

We only need to prove that PGK(X,σ)(ϕ) ≥ h∗. We choose ε0 small enough, such

that for any µ, α ∈M(X) with D(α, µ) < ε0, we have

(3.1)

∣∣∣∣ ∫ ϕdµ−
∫
ϕdα

∣∣∣∣ < η

2
.

By Horseshoe Theorem 3.2, we choose a sequence of measures {αj}j≥1 in K

satisfying Lemma 3.3. Then, for any j, there exist Xj ⊂ X, µj ∈ Me
σ(Xj) and

εj → 0 with εj < ε0 such that

D(µj , αj) <
εj
2

and hµj (σ) > hαj (σ)− η

2
.

It follows from Lemma 3.5 that there exists N̂j such that n > N̂j satisfies

#Lµj ,εj/2n ≥ en(hµj (σ)−η/2).

Thus, for any n > N̂j ,

#Lαj ,εjn ≥ #Lµj ,εj/2n ≥ en(hαj (σ)−η).

By the assumptions and Proposition 2.8, L is edit approachable by some F which

has free concatenation property. We can define a map φF : L → F such that

d̂(w, φF (w)) ≤ g(|w|), and then we can define a map Φ: L∗ → F by editing then

gluing. That is

(w1, . . . , wn) 7→ φF (w1)φF (w2) . . . φF (wn),

where L∗ := {(w1, . . . , wn) : wj ∈ L, 1 ≤ j ≤ n, n ∈ N}. Let χ � η be small

enough with Cχ− χ logχ < η; one can pick M > 0 such that

CnC(eCχe−χ logχ)n < e(n−g(n))η(3.2)

for all n ≥ M . From Lemma 2.6, (3.1) and the fact g(n)/n→ 0, we can choose

nj →∞, such that nj > max{N̂j ,M},
g(nj)

nj
� χ� η,(3.3) ∣∣∣∣S|φF (wj)|ϕ(y)

|φF (wj)|
−
Snjϕ(x)

nj

∣∣∣∣ ≤ η

2
,

∣∣∣∣Snjϕ(x)

nj
−
∫
ϕdαj

∣∣∣∣ ≤ η

2
,(3.4)
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and

(3.5)
g(nj)htop(σ)

nj − g(nj)
≤ η,

for any wj ∈ Lαj ,εjnj , x ∈ [wj ], y ∈ [φF (wj)]. Moreover, by Lemma 2.7, we obtain

D(Enj (x), E|φF (wj)|(y))→ 0,(3.6)

for each wj ∈ Lαj ,εjnj and any x ∈ [wj ], y ∈ [φF (wj)]. By Proposition 2.4, (3.2)

and (3.3),

# {w ∈ Lαj ,εjnj : φF (w) = v} ≤ CnCj (eCχe−χ logχ)nj(3.7)

< e(nj−g(nj))η ≤ e|v|η.

3.2. Construction of the Moran set H. For brevity of notation, we write

Dj = Lαj ,εjnj . Moreover, we pick a strictly increasing sequence Nk → ∞ with

Nk ∈ N,

lim
k→∞

nk+1 + g(nk+1)
k∑
j=1

(nj − g(nj))Nj

= 0, lim
k→∞

k∑
j=1

(nj + g(nj))Nj

k+1∑
j=1

(nj − g(nj))Nj

= 0.(3.8)

We now define new sequences {n′j}, {α′j} and {D′j} by setting for j = N1 + . . .+

Nk−1 + q with 1 ≤ q ≤ Nk,

ε′j := εk, n
′
j := nk, α′j := αk,D′j := Dk.

Consider the map Φ:
∞∏
j=1

D′j → X, defined by editing then gluing. More pre-

cisely, given w = {wj}∞j=1 ∈
∞∏
j=1

D′j , let vj = φF (wj) ∈ F and Φ(w) = v1v2 . . .

Put H := Φ
( ∞∏
j=1

D′j
)

. Next we will prove the fact that H ⊂ GK(X,σ). For

any w = {wj}∞j=1 ∈
∞∏
j=1

D′j , we define lj = lj(w
j) = |φF (wj)| for the length of

the words associated to the index j. Clearly,

|lj − n′j | ≤ g(n′j).(3.9)

From the construction of α′j , we have A(α′j) = A(αj) = K. For any j =

N1 + . . . + Nk−1 + q, 1 ≤ q ≤ Nk, we define tj =
j∑
i=1

li. By (3.8) and (3.9),

we obtain
lj
tj
≤
n′j + g(n′j)

j∑
i=1

li

→ 0.
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Hence, A(Etj (Φ(w))) = A(En(Φ(w))). Then it is sufficient to show that

lim
j→∞

D(Etj (Φ(w)), α′j) = 0.

Assume that j = N1 + . . . + Nk−1 + q, 1 ≤ q ≤ Nk, we have α′j = αk. Define

ck := N1 + . . .+Nk. Then we can make the following estimate:

D(Etj (Φ(w)), α′j) ≤
tck−2

tj
D(Etck−2

(Φ(w)), α′j)

+
tck−1

− tck−2

tj
D(Etck−1

−tck−2
(σtck−2 Φ(w)), α′j)

+
tj − tck−1

tj
D(Etj−tck−1

(σtck−1 Φ(w)), α′j)

≤
tck−2

tj
D(Etck−2

(Φ(w)), α′j)

+
tck−1

− tck−2

tj
D(Etck−1

−tck−2
(σtck−2 Φ(w)), αk−1)

+
tck−1

− tck−2

tj
D(αk−1, αk)

+
tj − tck−1

tj
D(Etj−tck−1

(σtck−1 Φ(w)), αk).

From (3.8), (3.9) and Lemma 3.3, we obtain

(3.10)
tck−2

tj

≤ N1n1 + . . .+Nk−2nk−2 +N1g(n1) + . . .+Nk−2g(nk−2)

N1n1 + . . .+Nk−1nk−1 + qnk −N1g(n1)− . . .−Nk−1g(nk−1)− qg(nk)
→0,

D(αk−1, αk)→ 0.

For 1 ≤ i ≤ Nk−1, taking any xi ∈ [wck−2+i], we can make the following estimate:

D(Etck−1
−tck−2

(σtck−2 Φ(w)), αk−1)

≤D
(Nk−1∑

i=1

lck−2+i

tck−1
− tck−2

Elck−2+i(σ
tck−2+i−1Φ(w)),

Nk−1∑
i=1

nk−1

Nk−1nk−1
Enk−1

(xi)

)

+D

(Nk−1∑
i=1

nk−1

Nk−1nk−1
Enk−1

(xi), αk−1

)

≤
Nk−1∑
i=1

nk−1

Nk−1nk−1
D(Elck−2+i(σ

tck−2+i−1Φ(w)), Enk−1
(xi))
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+

Nk−1∑
i=1

∣∣∣∣ lck−2+i

tck−1
− tck−2

− nk−1

Nk−1nk−1

∣∣∣∣ ‖Elck−2+i(σ
tck−2+i−1Φ(w))‖

+

Nk−1∑
i=1

1

Nk−1
D(Enk−1

(xi), αk−1),

where the above inequality follows from Proposition 3.1. By (3.6), we have

Nk−1∑
i=1

nk−1

Nk−1nk−1
D(Elck−2+i(σ

tck−2+i−1Φ(w)), Enk−1
(xi))→ 0 (j →∞);

by the definition of D′j , we have

Nk−1∑
i=1

1

Nk−1
D(Enk−1

(xi), αk−1)→ 0.

We estimate the following

Nk−1∑
i=1

∣∣∣∣ lck−2+i

tck−1
− tck−2

− nk−1

Nk−1nk−1

∣∣∣∣ ‖Elck−2+i(σ
tck−2+i−1Φ(w))‖

≤
Nk−1∑
i=1

∣∣∣∣ lck−2+i

tck−1
− tck−2

− nk−1

Nk−1nk−1

∣∣∣∣ =

Nk−1∑
i=1

∣∣∣∣ lck−2+i

tck−1
− tck−2

− 1

Nk−1

∣∣∣∣
=

Nk−1∑
i=1

∣∣∣∣ lck−2+iNk−1 − (tck−1
− tck−2

)

(tck−1
− tck−2

)Nk−1

∣∣∣∣
=

Nk−1∑
i=1

∣∣∣∣ (lck−2+i − nk−1)Nk−1 + nk−1Nk−1 − (tck−1
− tck−2

)

(tck−1
− tck−2

)Nk−1

∣∣∣∣
≤
Nk−1∑
i=1

∣∣∣∣ 2Nk−1g(nk−1)

(tck−1
− tck−2

)Nk−1

∣∣∣∣ ≤ Nk−1∑
i=1

∣∣∣∣ 2Nk−1g(nk−1)

N2
k−1(nk−1 − g(nk−1))

∣∣∣∣
=

2

Nk−1

Nk−1∑
i=1

∣∣∣∣ g(nk−1)

nk−1 − g(nk−1)

∣∣∣∣→ 0

as k →∞, since

lim
k→0

g(nk−1)

nk−1 − g(nk−1)
= lim
k→0

g(nk−1)

nk−1
→ 0.

So we have

D(Etck−1
−tck−2

(σtck−2 Φ(w)), αk−1)→ 0(3.11)

as k →∞.
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Likewise, choose any yi ∈ [wck−1+i+1], for 0 ≤ i ≤ q − 1, it follows that

D(Etj−tck−1
(σtck−1 Φ(w)), αk)

=D

( q−1∑
i=0

lck−1+i+1

tj − tck−1

Elck−1+i+1
(σtck−1+iΦ(w)), αk

)

≤D
( q−1∑
i=0

lck−1+i+1

tj − tck−1

Elck−1+i+1
(σtck−1+iΦ(w)),

q−1∑
i=0

nk
qnk
Enk(yi)

)

+D

( q−1∑
i=0

nk
qnk
Enk(yi), αk

)

≤
q−1∑
i=0

1

q
D(Elck−1+i+1(σtck−1+iΦ(w)), Enk(yi))

+

q−1∑
i=0

∣∣∣∣ lck−1+i+1

tj − tck−1

− 1

q

∣∣∣∣ ‖Enk(yi)‖+

q−1∑
i=0

1

q
D(Enk(yi), αk),

where the above inequality follows from Proposition 3.1. By (3.6), we have

q−1∑
i=0

1

q
D(Elck−1+i+1(σtck−1+iΦ(w)), Enk(yi)) (k →∞).

It follows from the definition of D′j that,

q−1∑
i=0

1

q
D(Enk(yi), αk)→ 0 (k →∞).

Next, we estimate the following:

q−1∑
i=0

∣∣∣∣ lck−1+i+1

tj − tck−1

− 1

q

∣∣∣∣ ‖Enk(yi)‖ ≤
q−1∑
i=0

∣∣∣∣ lck−1+i+1

tj − tck−1

− 1

q

∣∣∣∣
=

q−1∑
i=0

∣∣∣∣qlck−1+i+1 − (tj − tck−1
)

q(tj − tck−1
)

∣∣∣∣
=

q−1∑
i=0

∣∣∣∣q(lck−1+i+1 − nk) + qnk − (tj − tck−1
)

q(tj − tck−1
)

∣∣∣∣
≤
q−1∑
i=0

∣∣∣∣ 2qg(nk)

q2(nk − g(nk))

∣∣∣∣ =
2

q

q−1∑
i=0

∣∣∣∣ g(nk)

(nk − g(nk))

∣∣∣∣→ 0

as k →∞, since

lim
k→0

g(nk)

(nk − g(nk))
= lim
k→0

g(nk−1)

nk−1
→ 0.

Hence,

(3.12) D(Etj−tck−1
(σtck−1 Φ(w)), αk)→ 0
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as k →∞. By (3.10)–(3.12), one has

lim
j→∞

D(Etj (Φ(w)), α′j) = 0.

So we proved H ⊂ GK(X,σ).

3.3. To estimate the lower bound. Now we prove PGK(X,σ)(ϕ) ≥ h∗.

From the choice of Nj and the fact that |lj − n′j | ≤ g(n′j), one can readily verify

that lim
j→∞

tj/tj+1 = 1. For any j ∈ N, we have

#D′j = #Lα
′
j ,ε
′
j

n′j
≥ en

′
j(hα′

j
(σ)−η)

.(3.13)

Let w = (w1, w2, . . .) ∈
∞∏
i=1

D′j . Then, for any wj , by (3.4), we have

(3.14)

∣∣∣∣ ∫ ϕdElj (σtj−1Φ(w))−
∫
ϕdα′j

∣∣∣∣
=

∣∣∣∣Sljϕ(σtj−1Φ(w))

lj
−
Sn′jϕ(x)

n′j

∣∣∣∣+

∣∣∣∣Sn′jϕ(x)

n′j
−
∫
ϕdα′j

∣∣∣∣ ≤ η,
where j ≥ 1, x ∈ [wj ].

Clearly, H is a compact set. We can just consider finite cover C of H by

cylinder sets with the property that if [w] ∈ C, then [w] ∩ H 6= ∅. For each

[w] ∈ C, |w| > N , we define the cover C′, in which each cylinder [w] ∈ C is

replaced by its prefix [w|tj ] where tj ≤ |w| < tj+1. Then, for any ĥ < h∗ − 4η,

M(H, ĥ,ϕ,N)

= inf

{ ∑
[w0...wm]∈C

exp

(
− ĥ(m+ 1) + sup

x∈[w0...wm]

m∑
k=0

ϕ(σkx)

)}

≥ inf

{ ∑
[w0...wtj−1]∈C′

exp

(
− ĥtj+1 + sup

x∈[w0...wm]

m∑
k=0

ϕ(σkx)

)}
.

Consider a specific C′ and let s be the largest value of j such that there exists

[w|tj ] ∈ C
′
. In the following, we set

Wk :=

k∏
i=1

Φ(D′j), Ws :=

s⋃
k=1

Wk.

For any wj ∈ D′j and lj = lj(w
j), we can use (3.5) and (3.13) to get

#D′j ≥ e
n′j(hα′

j
(σ)−η) ≥ elj(hα′j (σ)−η)−g(n′j)(hα′

j
(σ)−η) ≥ elj(hα′j (σ)−η)−ljη

.(3.15)
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Furthermore, (3.7), (3.15) and (3.14) yield

# Φ(D′j) ≥ e
lj(hα′

j
(σ)−η)−2l̂jη

(3.16)

≥ exp

(
lj

(
hα′j (σ) +

∫
ϕdα′j − η

)
− Sljϕ(σtj−1Φ(w))− 3l̂jη

)
≥ exp(ljh

∗ − Sljϕ(σtj−1Φ(w))− 3l̂jη),

for any w = (w1, w2, . . .) ∈
∞∏
i=1

D′j and lj = lj(w
j), l̂j := max

wj∈D′j
lj . By (3.16), we

obtain

(3.17) |Wk| ≥ exp(tkh
∗ − 3t̂kη − Stkϕ(Φ(w))),

for any w = (w1, w2, . . .) ∈
∞∏
i=1

D′j and t̂k :=
k∑
i=1

l̂i. For 1 ≤ j ≤ k, we say the

word v1 . . . vj ∈ Wj is a prefix of w = w1 . . . wk ∈ Wk if vi = wi, i = 1, . . . , j.

Note that each w ∈ Wk is the prefix of exactly |Ws|/|Wk| words of Ws. If

W ⊂Ws contains a prefix of each word of Ws, then
s∑

k=1

|W ∩Wk||Ws|
|Wk|

≥ |Ws|.

If W contains a prefix of each word of Ws, we have
s∑

k=1

|W ∩Wk|
|Wk|

≥ 1.

It follows from (3.17) that∑
C′

exp(−tjh∗ + Stjϕ(Φ(w)) + 3t̂jη) ≥ 1.

By (3.8), we have tj/tj+1 → 1 and t̂j/tj+1 → 1, moreover, we claim that for any

w = (w1, w2, . . .) ∈
∞∏
i=1

D′j ,

(tjh
∗ − Stjϕ(Φ(w))− 3t̂jη)−

(
ĥtj+1 − sup

x∈[Φ(w)|(m+1)]

m∑
k=0

ϕ(x)

)
> 0.

Then, for N large enough,

M(H, ĥ, ϕ,N) ≥ inf

{ ∑
[w0...wtj−1]∈C′

exp

(
− ĥtj+1 + sup

x∈[w0...wm]

m∑
k=0

ϕ(σkx)

)}
≥
∑
C′

exp(−tjh∗ + Stjϕ(Φ(w)) + 3t̂jη) ≥ 1.

Moreover, M(H, ĥ, ϕ) ≥ 1, so we have PH(ϕ) ≥ ĥ. Hence, PGK(X,σ)(ϕ) ≥
PH(ϕ) ≥ ĥ. Together with ĥ < h∗ − 4η and η is arbitrary small, this completes

the proof. �
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Corollary 3.6. Let X be a shift space with L = L(X). Suppose that G ⊂ L
has (W )-specification and L is edit approachable by G, then for any µ ∈Mσ(X),

we have Gµ(X,σ) 6= ∅.

Proposition 3.7. Let X be a shift space with L = L(X). Suppose that G ⊂ L
has (W )-specification and L is edit approachable by G, then Lψ is a non-empty

bounded interval. Furthermore, Lψ = {
∫
ψ dµ : µ ∈Mσ(X)}.

Proof. Let Iψ := {
∫
ψ dµ : µ ∈ Mσ(X)}. Since Mσ(X) is compact, then

Iψ is bounded. We will show Iψ = Lψ. For any α ∈ Iψ, we can choose

µ ∈ Mσ(X) such that α =
∫
ψ dµ. By Corollary 3.6, there exists x ∈ Gµ(X,σ),

so α ∈ Lψ, this shows Iψ ⊂ Lψ. On the other hand, for any α ∈ Lψ, we can

choose x ∈ X(ψ, α). Let µ be any weak∗ limit point of the sequence En(x). It

is a standard result that µ ∈ Mσ(X), and it is easy to show that
∫
ψ dµ = α.

So we have Iψ = Lψ. Secondly, we show Iψ is an interval using the convexity of

Mσ(X). Assume Iψ is not a single point. Let α1, α2 ∈ Iψ. Let β ∈ (α1, α2), and

µi satisfying
∫
ψ dµi = αi for i = 1, 2. Let t ∈ (0, 1) satisfy β = tα1 + (1− t)α2.

If m := tµ1 + (1− t)µ2, then
∫
ψ dµ = β. �

We give the following conditional variational principle.

Proposition 3.8. Let X be a shift space with L = L(X) and ϕ : X → R be

a continuous function. Suppose that G ⊂ L has (W )-specification and L is edit

approachable by G, then for any ψ ∈ C(X), α ∈ R

PX(ψ,α)(ϕ) = sup

{
hµ(σ) +

∫
ϕdµ :

∫
ψ dµ = α

}
.

Proof. Let F (α) := {µ ∈ Mσ(X) :
∫
ψ dµ = α}. F (α) is a closed set. The

statement lim
n→∞

Snψ(x)/n = α is equivalent to the statement En(x) has all its

limit-points in F (α). Let

GF (α) := {x ∈ X : A(En(x)) ⊂ F (α)}.

For any µ ∈ F (α), we have Gµ(X,σ) ⊂ GF (α). So

hµ(σ) +

∫
ϕdµ = PGµ(X,σ)(ϕ) ≤ PGF (α)(ϕ),

and thus sup{hµ(σ) +
∫
ϕdµ : µ ∈ F (α)} ≤ PGF (α)(ϕ). On the other hand, the

upper bound can be verified by Theorem 3.1 in [9]. �

Finally, we can show the result about irregular set.

Proof of Theorem 1.3. Since the entropy map is upper semi-continuous,

there exists ergodic measure µ ∈Me
σ(X) such that PX(ϕ) = hµ(σ) +

∫
ϕdµ. By

Lemma 2.1 in [14], X̂(ψ) 6= ∅ implies that there exists another ergodic measure
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ν ∈ Me
σ(X) and

∫
ψ dν 6=

∫
ψ dµ. Let pn ∈ (0, 1) and pn → 0, we define

νn := pnν + (1− pn)µ. Clearly, νn → µ and

hνn(σ) +

∫
ϕdνn → PX(ϕ).

For any η > 0, choose N ≥ 1, such that for any n ≥ N ,

hνn(σ) +

∫
ϕdνn ≥ PX(ϕ)− η.

Furthermore, define the compact connected subset Kn := {tνn + (1 − t)µ : t ∈
[0, 1]} ⊂Mσ(X). For any n ≥ 1, we have

X̂(ψ) ⊃ {x ∈ X : A(Ej(x)) = Kn}.

It turns out that

PX̂(ψ)(ϕ) ≥ inf
m∈Kn

{
hm(σ) +

∫
ϕdm

}
= inf
t∈[0,1]

{
thνn + (1− t)hµ(σ) + t

∫
ϕdνn + (1− t)

∫
ϕdµ

}
≥ inf
t∈[0,1]

{t(PX(ϕ)− η) + (1− t)PX(ϕ)} = PX(ϕ)− η.

Since η can be arbitrary small, the proof is complete. �

4. Applications

4.1. Hausdorff dimension. In this section, we use the Hausdorff dimen-

sion to describe the level set. We use a metric defined by Gatzouras and Peres

in [6]. Given a strictly positive continuous function ϕ : X → R, we define a

metric dϕ on X by

dϕ(x, y) =

e
− sup
z∈[x∧y]

S|x∧y|ϕ(z)

if x 6= y,

0 if x = y.

Observe that dϕ induces the product topology on X, since the strict positivity

of ϕ implies that Snϕ(x) → ∞ for all x ∈ X. Furthermore, we can use the

metric dϕ to define Hausdorff dimension denoted by dimϕ( · ). Together with the

definition of topological pressure, we readily get that for any set Z ⊂ X, the

Hausdorff dimension of Z is a unique solution of Bowen equation PZ(−sϕ) = 0,

i.e. s = dimϕ(Z). Moreover, by Theorem 1.3 and Proposition 3.8, we have the

following conditional variational principles.

Proposition 4.1. Let X be a shift space with L = L(X). Suppose that G ⊂ L
has (W )-specification and L is edit approachable by G, then for any ψ ∈ C(X),

dimϕ(X(ψ, α)) = sup

{
hµ(σ)∫
ϕdµ

:

∫
ψ dµ = α

}
.
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Proposition 4.2. Let X be a shift space with L = L(X) and ϕ : X → R be

a strictly positive continuous function. Suppose that G ⊂ L has (W )-specification

and L is edit approachable by G, then for any ψ ∈ C(X), either X̂(ψ) = ∅, or

dimϕ(X̂(ψ)) = dimϕ(X).

4.2. Subshifts. In this section, we study the level set of two main examples

(S-gap shifts and β-shifts).

S-gap shifts. For a subshift of {0, 1}N, fixed S ⊂ {0, 1, . . .}, the number of 0

between consecutive 1 is an integer in S. That is, the language{
0n10n110n210n31 . . . 10nk10m : 1 ≤ i ≤ k and ni ∈ S, n,m ∈ N

}
,

together with {0n : n ∈ N}, and this subshift is denoted by ΣS .

β-shifts. Fix β > 1, write b = dβe and let wβ ∈ {0, 1, . . . , b − 1}N be the

greedy β-expansion of 1. Then wβ satisfies
∞∑
j=1

wβj β
−j = 1, and has the property

that σj(wβ) ≺ wβ for all j ≥ 1, where ≺ denotes the lexicographic ordering.

The β-shift is defined by

Σβ =
{
x ∈ {0, 1, . . . , b− 1}N : σj(x) ≺ wβ for all j ≥ 1

}
.

In fact, in [5], Climenhaga, Thompson and Yamamoto showed that all the sub-

shift factors of S-gap shifts and β-shifts satisfy the the conditions of Theorem

1.2 (i.e. these subshifts have non-uniform structure). Hence, for X = ΣS or Σβ ,

and ϕ,ψ ∈ C(X), ϕ > 0, α ∈ R, we have

dimϕ(X(ψ, α)) = sup

{
hµ(σ)∫
ϕdµ

:

∫
ψ dµ = α

}
,

and either X̂(ψ) = ∅ or dimϕ(X̂(ψ)) = dimϕ(X). Accordingly, we also can use

the topological pressure to describe these level set just like Theorems 1.2 and 1.3.

References

[1] L. Barreira and B. Saussol, Variational principles and mixed multifractal spectra,

Trans. Amer. Math. Soc. 353 (2001), 3919–3944.

[2] L. Barreira, B. Saussol and J. Schmeling, Higher-dimensional multifractal analysis,

J. Math. Pures Appl. 81 (2002), 67–91.

[3] L. Barreira and J. Schmeling, Sets of “non-typical” points have full topological entropy

and full Hausdorff dimension, Israel J. Math. 116 (2000), 29–70.

[4] E. Chen, T. Kupper and L. Shu, Topological entropy for divergence points, Ergodic

Theory Dynam. Systems 25 (2005), 1173–1208.

[5] V. Climenhaga, D. Thompson and K. Yamamoto, Large deviations for systems with

non-uniform structure, Trans. Amer. Math. Soc. 369 (2017), 4167–4192.

[6] G. Dimitrios and Y. Peres, Invariant measures of full dimension for some expanding

maps, Ergodic Theory Dynam. Systems 17 (1997), 147–167.



Topological Pressure of the Saturated Set with Non-Uniform Structure 329

[7] L. Olsen, Multifractal analysis of divergence points of deformed measure theoretical Birk-

hoff averages. IV Divergence points and packing dimension, Bull. Sci. Math. 132 (2008),

650–678.

[8] L. Olsen and S. Winter, Multifractal analysis of divergence points of deformed measure

theoretical Birkhoff averages. II Non-linearity, divergence points and Banach space valued

spectra, Bull. Sci. Math. 131 (2007), 518–558.

[9] Y. Pei and E. Chen, On the variational principle for the topological pressure for certain

non-compact sets, Sci. China. Math. 53 (2010), 1117–1128.

[10] Y. Pesin, Dimension Theory in Dynamical Systems, Contemporary Views and Applica-

tions, University of Chicago Press (1997).

[11] C.-E. Pfister and W. Sullivan, On the topological entropy of saturated sets, Ergodic

Theory Dynam. Systems 27 (2007), 929–956.

[12] F. Takens and E. Verbitskiy, On the variational principle for the topological entropy

of certain non-compact sets, Ergodic Theory Dynam. Systems 23 (2003), 317–348.

[13] D. Thompson, A variational principle for topological pressure for certain non-compact

sets, J. London Math. Soc. 80 (2009), 585–602.

[14] D. Thompson, Irregular sets, the β-transformation and the almost specification property,

Trans. Amer. Math. Soc. Ser. 364 (2012), 5395–5414.

[15] P. Walter, An Introduction to Ergodic Theory, Springer, Berlin, 1982.

[16] X. Zhou and E. Chen, Multifractal analysis for the historic set in topological dynamical

systems, Nonlinearity 26 (2013), 1975–1997.

Manuscript received March 9, 2017

accepted May 14, 2017

Cao Zhao

School of Mathematical Science

Nanjing Normal University
Nanjing 210023, Jiangsu, P.R. CHINA

E-mail address: izhaocao@126.com

Ercai Chen (corresponding author)

School of Mathematical Science

Nanjing Normal University
Nanjing 210023, Jiangsu, P.R. CHINA

and

Center of Nonlinear Science
Nanjing University,

anjing 210093, Jiangsu, P.R. CHINA

E-mail address: ecchen@njnu.edu.cn

TMNA : Volume 51 – 2018 – No 1


