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MICHAEL’S SELECTION THEOREM

FOR A MAPPING DEFINABLE

IN AN O-MINIMAL STRUCTURE

DEFINED ON A SET OF DIMENSION 1

Ma lgorzata Czapla — Wies law Paw lucki

Abstract. Let R be a real closed field and let some o-minimal structure

extending R be given. Let F : X ⇒ Rm be a definable multivalued lower
semicontinuous mapping with nonempty definably connected values defined

on a definable subset X of Rn of dimension 1 (X can be identified with

a finite graph immersed in Rn). Then F admits a definable continuous
selection.

1. Introduction

Assume that R is any real closed field and an expansion of R to some o-

minimal structure is given. Throughout the paper we will be talking about

definable sets and mappings referring to this o-minimal structure. (For funda-

mental definitions and results on o-minimal structures the reader is referred to

[3] or [1].)

Let F : X ⇒ Rm be a multivalued mapping defined on a subset X of Rn;

i.e. a mapping which assigns to each point x ∈ X a nonempty subset F (x)

of Rm. F can be identified with its graph; i.e. a subset of Rn × Rm. If this

subset is definable we will call F definable. F is called lower semicontinuous if

for each x ∈ X and each u ∈ F (x) and any neighbourhood U of u, there exists
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a neighbourhood V of x such that U ∩ F (y) 6= ∅, for each y ∈ V . A mapping

ϕ : A → Rm, where A ⊂ X, is called a selection of F on A if ϕ(x) ∈ F (x), for

each x ∈ A.

The aim of the present article is the following version of Michael’s Selection

Theorem.

Theorem 1.1. (Main Theorem) Let F : X ⇒ Rm be a definable multivalued,

lower semicontinuous mapping with nonempty definably connected (1) values de-

fined on a definable subset X of Rn of dimension 1 (X can be identified with a

finite graph in Rn). Let ϕ : A→ Rm be any continuous definable selection of F

on a definable closed subset A of X. Then there exists a continuous definable

selection f : X → Rm of F on X such that f |A = ϕ.

Let us notice that our Main Theorem is independent of classical Michael’s

Selection Theorem (cf. [4, Theorem 1.2]). To see this, consider as an example the

following semialgebraic multivalued mapping F : R⇒ R2 defined by the formula

F (x) :=

{(y, z) ∈ R2 : y2 − zx2 = 0}, when x 6= 0,

{(y, z) ∈ R2 : y = 0, z ≥ 0}, when x = 0.

(The graph of F is the famous Whitney umbrella.) By our theorem, for any

semialgebraic closed subset A ⊂ R and any semialgebraic continuous selection

ϕ : A→ R2 of F on A there exists a semialgebraic continuous selection of F on R

extending ϕ. However, the family {F (x) : x ∈ R} is obviously not equi-LC0 in

the sense of Michael [4] and if we consider the following (non-semialgebraic)

continuous selection ϕ : A→ R2 on A = {1/n : n = 1, 2, . . .} ∪ {0} defined by:

ϕ(x) :=



(
1

n
, 1

)
when x =

1

n
, n is even,(

− 1

n
, 1

)
when x =

1

n
, n is odd,

(0, 1) when x = 0,

then it is easy to see that there is no extension of ϕ to a continuous selection of

F on a neighbourhood of 0.

As an application of Main Theorem we can see that in the counterexample

from [2] the dimension 2 of the domain is the smallest possible.

2. Proof of Main Theorem

The proof is based on the following three fundamental tools of the o-minimal

geometry: Curve Selection Lemma (see [3, Chapter 6, (1.5)] or [1, Theorem 3.2]),

(1) In fact any definably connected subset is definably arcwise connected; i.e. arcwise

connected by definable arcs. Besides, if R is the field of real numbers R, then definable

connectedness coincides with usual connectedness.
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Trivialization Theorem (see [4, Chapter 9, (1.2)] or [1; Theorem 5.22]) and Tri-

angulation Theorem (see [3, Chapter 8, (2.9)] or [1, Theorem 4.4]). Replacing F

by the mapping G defined by the formula

G(x) :=

F (x) when x ∈ X \A,

{ϕ(x)} when x ∈ A,

we reduce the general case to that with A = ∅, so in what follows we assume

that A = ∅.
Using the semialgebraic homeomorphism

Rn 3 (x1, . . . , xn) 7→
(

x1
1 + |x1|

, . . . ,
xn

1 + |xn|

)
∈ (−1, 1)n

we can assume without any loss of generality that X is bounded. By the Trian-

gulation Theorem, we can assume that there is a finite subset {x0, . . . , xr} ⊂ Rn

(with xi1 6= xi2 , when i1 6= i2) such that

X \ {x0, . . . , xr} =

s⋃
j=1

(yj , zj),

where s ∈ Z, s > 0, (yj , zj) = {tyj + (1− t)zj : t ∈ (0, 1)}, yj , zj ∈ {x0, . . . , xr},
yj 6= zj , for each j, and {yj1 , zj1} 6= {yj2 , zj2}, when j1 6= j2. Moreover, by

the Trivialization Theorem, applied to the natural projection π : F → X of

the graph of F onto its domain (2), we can assume that π is definably trivial

over every (yj , zj); i.e. there exists a definable subset Lj of Rm and a definable

homeomorphism hj : F |(yj , zj) → (yj , zj) × Lj such that the following diagram

is commutative:

F |(yj , zj)
hj
//

π

��

(yj , zj)× Lj

pj

��

(yj , zj) (yj , zj),

where pj : (yj , zj) × Lj → (yj , zj) denotes the natural projection. Let ωj(t) :=

tyj + (1− t)zj , for each t ∈ [0, 1].

For each xi select arbitrarily a point ui ∈ F (xi). Now we will extend this

selection to a selection f to every (yj , zj). There are four possibilities:

(I) yj /∈ X and zj /∈ X. Then fix any wj ∈ Lj and put f(ξ) := h−1
j (ξ, wj),

for each ξ ∈ (yj , zj).

(II) yj ∈ X and zj /∈ X. Then yj = xi, for some i. By the assumption of

lower semicontinuity and by the Curve Selection Lemma there is a continuous

map f : ωj([0, ε]) → Rm such that ε ∈ (0, 1), f(ωj(t)) ∈ F (ωj(t)), for each

t ∈ [0, ε], and ϕ(ωj(0)) = f(yj) = f(xi) = ui. Now we extend ϕ to the whole

(2) We identify a mapping with its graph and denote them by the same letter.
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(yj , zj) by putting f(ωj(t)) := h−1
j (ωj(t), qj(f(ε))), for each t ∈ [ε, 1), where

qj : (yj , zj)× Lj → Lj is the natural projection.

(III) yj /∈ X and zj ∈ X. The definition of f is symmetrical to case (II).

(IV) yj , zj ∈ X. Then yj = xi1 and zj = xi2 , for some i1, i2. By the argument

from case (II), there exists ε ∈ (0, 1/2) and a continuous selection f : ωj([0, ε] ∪
[1 − ε, 1]) → Rm of F on ωj([0, ε] ∪ [1 − ε, 1]) such that f(ωj(0)) = ui1 and

f(ωj(1)) = ui2 . Since Lj is definably arcwise connected (cf. [1, Corollary 3.10])

there is a definable continuous arc λ : [ε, 1−ε]→ Lj such that λ(ε) = qj(f(ωj(ε))

and λ(1 − ε) = qj(f(ωj(1 − ε)). Put now f(ω(t)) := h−1
j (ωj(t), λ(t)), for each

t ∈ [ε, 1− ε], in order to get a continuous selection on the whole (yj , zj).

Since f : X → Rm is continuous on the closure of every (yj , zj) in X it is

continuous.
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