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MICHAEL’S SELECTION THEOREM
FOR A MAPPING DEFINABLE
IN AN O-MINIMAL STRUCTURE
DEFINED ON A SET OF DIMENSION 1

MALGORZATA CZAPLA — WIESLAW PAWLUCKI

ABSTRACT. Let R be a real closed field and let some o-minimal structure
extending R be given. Let F': X = R™ be a definable multivalued lower
semicontinuous mapping with nonempty definably connected values defined
on a definable subset X of R™ of dimension 1 (X can be identified with
a finite graph immersed in R™). Then F admits a definable continuous
selection.

1. Introduction

Assume that R is any real closed field and an expansion of R to some o-
minimal structure is given. Throughout the paper we will be talking about
definable sets and mappings referring to this o-minimal structure. (For funda-
mental definitions and results on o-minimal structures the reader is referred to
[3] or [1].)

Let F: X = R™ be a multivalued mapping defined on a subset X of R™;
i.e. a mapping which assigns to each point z € X a nonempty subset F(x)
of R™. F can be identified with its graph; i.e. a subset of R™ x R™. If this
subset is definable we will call F' definable. F is called lower semicontinuous if
for each x € X and each u € F(z) and any neighbourhood U of u, there exists
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a neighbourhood V of x such that U N F(y) # 0, for each y € V. A mapping
p: A — R™, where A C X, is called a selection of F' on A if p(z) € F(x), for
each x € A.

The aim of the present article is the following version of Michael’s Selection
Theorem.

THEOREM 1.1. (Main Theorem) Let F': X =2 R™ be a definable multivalued,
lower semicontinuous mapping with nonempty definably connected (*) values de-
fined on a definable subset X of R™ of dimension 1 (X can be identified with a
finite graph in R™). Let ¢: A — R™ be any continuous definable selection of F
on a definable closed subset A of X. Then there exists a continuous definable
selection f: X — R™ of F on X such that f|A = .

Let us notice that our Main Theorem is independent of classical Michael’s
Selection Theorem (cf. [4, Theorem 1.2]). To see this, consider as an example the
following semialgebraic multivalued mapping F: R = R? defined by the formula

{(y,2) € R? : y?> — z2? = 0}, when z # 0,

F(zx):=
{(y,2) € R? :y =0, 2>0}, whenz=0.

(The graph of F is the famous Whitney umbrella.) By our theorem, for any
semialgebraic closed subset A C R and any semialgebraic continuous selection
@: A — R? of F on A there exists a semialgebraic continuous selection of F' on R
extending . However, the family {F(z) : 2 € R} is obviously not equi-LC° in
the sense of Michael [4] and if we consider the following (non-semialgebraic)
continuous selection p: A — R? on A= {1/n:n=1,2,...} U{0} defined by:

1 1
<, 1) when x = —, n is even,

n n
p(r) == < l’ 1) when z = l, n is odd,

n n

(0,1) when z = 0,

then it is easy to see that there is no extension of ¢ to a continuous selection of
F on a neighbourhood of 0.

As an application of Main Theorem we can see that in the counterexample
from [2] the dimension 2 of the domain is the smallest possible.

2. Proof of Main Theorem

The proof is based on the following three fundamental tools of the o-minimal
geometry: Curve Selection Lemma (see [3, Chapter 6, (1.5)] or [1, Theorem 3.2]),

(1) In fact any definably connected subset is definably arcwise connected; i.e. arcwise
connected by definable arcs. Besides, if R is the field of real numbers R, then definable

connectedness coincides with usual connectedness.
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Trivialization Theorem (see [4, Chapter 9, (1.2)] or [1; Theorem 5.22]) and Tri-
angulation Theorem (see [3, Chapter 8, (2.9)] or [1, Theorem 4.4]). Replacing F'
by the mapping G defined by the formula

F(z) whenzeX\A,

G(x) =
(=) {e(x)} when z € A,

we reduce the general case to that with A = 0, so in what follows we assume
that A = 0.
Using the semialgebraic homeomorphism

T In
e e(—1,1)"
T o] 1+|:cn|) (=11)

we can assume without any loss of generality that X is bounded. By the Trian-

R"B(ml,...,xn)n—><

gulation Theorem, we can assume that there is a finite subset {zq,...,2z,} C R"
(with x;, # x;,, when i1 # i3) such that

S

X\ A{zo, s wry = J Wi 2),
j=1
where s € Z, s > 0, (y;,2;) = {ty; + (1 —t)z; : t € (0,1)}, yj,2; € {zo,-.., 2},
y; # zj;, for each j, and {y;,,2;,} # {¥j,.%j,}, when ji # jo. Moreover, by
the Trivialization Theorem, applied to the natural projection n: FF — X of
the graph of F onto its domain (%), we can assume that 7 is definably trivial
over every (y;, z;); i.e. there exists a definable subset L; of R™ and a definable
homeomorphism h;: F|(y;,2;) = (y;,%;) X L; such that the following diagram

is commutative:
h;
Fl(yj,2j) — (Y5, 25) % L;

(s> %) =——= (Wj> %),
where p;: (y;,2;) X Lj — (y;,%;) denotes the natural projection. Let w;(t) :=
ty; + (1 —t)z;, for each ¢ € [0, 1].

For each z; select arbitrarily a point u; € F(z;). Now we will extend this
selection to a selection f to every (y;, z;). There are four possibilities:

(I) y; ¢ X and z; ¢ X. Then fix any w; € L; and put f(§) := h;l(f,wj),
for each & € (y;, z5).

(II) y; € X and z; ¢ X. Then y; = z;, for some 7. By the assumption of
lower semicontinuity and by the Curve Selection Lemma there is a continuous
map f: w;([0,e]) = R™ such that € € (0,1), f(w;(t)) € F(w;(t)), for each
t € [0,¢], and ¢(w;(0)) = f(y;) = f(z;) = u;. Now we extend ¢ to the whole

(2) We identify a mapping with its graph and denote them by the same letter.
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(yj,zj) by putting f(w;(t)) = hj_l(wj(t),qj(f(s))), for each t € [e,1), where
g;: (y5,%;) x Lj = Lj is the natural projection.

(IIT) y; ¢ X and z; € X. The definition of f is symmetrical to case (II).

(IV) y;,2; € X. Theny; = x;, and z; = x;,, for some i1, i2. By the argument
from case (II), there exists ¢ € (0,1/2) and a continuous selection f: w;([0,e] U
[1—¢,1]) = R™ of F on w;([0,¢] U [l — ¢,1]) such that f(w;(0)) = u,;, and
f(w;(1)) = u;,. Since L; is definably arcwise connected (cf. [1, Corollary 3.10])
there is a definable continuous arc A: [e,1—¢] — L; such that A(e) = ¢;(f(w;(e))
and A(1 —¢) = ¢;(f(w;(1 —¢)). Put now f(w(t)) := hj_l(wj(t),/\(t)), for each
t € le,1—¢], in order to get a continuous selection on the whole (y;, z;).

Since f: X — R™ is continuous on the closure of every (y;,z;) in X it is
continuous.
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