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MULTIPLICITY RESULTS FOR NONLOCAL FRACTIONAL

p-KIRCHHOFF EQUATIONS VIA MORSE THEORY

Zhang Binlin — Giovanni Molica Bisci — Mingqi Xiang

Abstract. In this paper, we apply Morse theory and local linking to study

the existence of nontrivial solutions for Kirchhoff type equations involving
the nonlocal fractional p-Laplacian with homogeneous Dirichlet boundary

conditions:
[
M

(∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)]p−1

(−∆)spu(x) = f(x, u) in Ω,

u = 0 in RN \ Ω,

where Ω is a smooth bounded domain of RN , (−∆)sp is the fractional p-

Laplace operator with 0 < s < 1 < p < ∞ with sp < N , M : R+
0 → R+ is

a continuous and positive function not necessarily satisfying the increasing
condition and f is a Carathéodory function satisfying some extra assump-

tions.

1. Introduction

In this paper we are interested in the following fractional p-Laplacian equa-

tion of Kirchhoff type:

[
M

(∫∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dx dy

)]p−1

(−∆)spu(x) = f(x, u)

in Ω,

u = 0 in RN \ Ω,

(1.1)
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where 0 < s < 1 < p < ∞ with sp < N , (−∆)sp is the fractional p-Laplace

operator which (up to normalization factors) may be defined along a function

ϕ ∈ C∞0 (RN ) as

(−∆)spϕ(x) = 2 lim
ε→0+

∫
RN\Bε(x)

|ϕ(x)− ϕ(y)|p−2(ϕ(x)− ϕ(y))

|x− y|N+ps
dy

for x ∈ RN , where Bε(x) := {y ∈ RN : |x− y| < ε}, see [15], [18], [19], [22], [48]

and the references therein for further details on the fractional p-Laplacian. In

particular, the operator (−∆)sp can be reduced to the fractional operator (−∆)s

when p = 2. An intrinsic feature of such operator is the nonlocality, that is to

say, the operator (−∆)s cares for the entire space RN , instead of the boundary

∂Ω.

When p = 2 and M ≡ 1, problem (1.1) conduces to the following fractional

Laplacian equation: (−∆)su = f(x, u) in Ω,

u = 0 in RN \ Ω.
(1.2)

In recent years, a great attention has been focused on the study of the fractional

Laplacian equation (1.2). Indeed, the fractional and nonlocal operators of el-

liptic type arise in a quite natural way in many different applications, such as,

continuum mechanics, phase transition phenomena, population dynamics, mini-

mal surfaces and game theory, as they are the typical outcome of stochastically

stabilization of Lévy processes, see for example [2], [8]. In the context of frac-

tional quantum mechanics, nonlinear fractional Schrödinger equation has been

proposed by Laskin in [23], [24] as a result of expanding the Feynman path in-

tegral, from the Brownian-like to the Lévy-like quantum mechanical paths. The

literature on fractional and nonlocal operators and on their applications is quite

large, for example, we refer the reader to [3], [7], [31]–[36], for some recent results

in this direction and to [6], [13] for some recent results about another fractional

operators. For the differences between two fractional operators, the reader is

referred to [43]. For the basic properties of fractional Sobolev spaces, the reader

is referred to [14].

When p = 2 and s → 1−, problem (1.1) becomes the elliptic equation of

Kirchhoff type

−M
(∫

Ω

|∇u|2 dx
)

∆u = f(x, u) in Ω,(1.3)

where Ω ⊂ RN is a smooth domain, u satisfies some boundary conditions, see for

example [1], [30] for more information about equation (1.3). Note that equation
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(1.3) is related to the stationary analogue of the Kirchhoff equation

utt −M
(∫

Ω

|∇u|2 dx
)

∆u = f(x, u),(1.4)

where M(t) = a + bt for all t ≥ 0, here a, b > 0, see for instance [44], [45] for

recent results. It was proposed by Kirchhoff in 1883 as a generalization of the

well-known D’Alembert wave equation

ρ
∂2u

∂t2
−
(
p0

λ
+

E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx) ∂2u

∂x2
= f(x, u)

for free vibrations of elastic strings, see [21]. Kirchhoff’s model takes into account

the changes in length of the string produced by transverse vibrations. Here, L

is the length of the string, h is the area of the cross section, E is the Young

modulus of the material, ρ is the mass density and p0 is the initial tension.

It is worth pointing out that problem (1.4) received much attention only after

Lions [25] proposed an abstract framework to the problem. It was pointed out

in [1] that equation (1.4) models several physical systems, where u describes a

process which depends on the average of itself. Nonlocal effect also finds its

applications in biological systems.

In [17], Fiscella and Valdinoci first proposed a stationary Kirchhoff varia-

tional model in bounded regular domains of RN , which takes into account the

nonlocal aspect of the tension arising from nonlocal measurements of the frac-

tional length of the string. In [37], Nyamoradi studied a class of Kirchhoff nonlo-

cal fractional equations in a bounded domain Ω and obtained three solutions by

using three critical point theorem. Recently, Xiang, Zhang and Ferrara in [46]

investigated the existence of weak solutions for a Kirchhoff type problem driven

by a nonlocal integro-differential operator involving the fractional p-Laplacian by

using variational methods. See [4] for some recent results in a bounded domain.

Pucci and Saldi in [38] established the existence and multiplicity of nontrivial

solutions for a Kirchhoff type eigenvalue problem in RN involving a critical non-

linearity and the nonlocal fractional Laplacian. We refer also to [3] for some

recent development in the whole space.

Note that as s→ 1−, problem (1.1) reduces to the class of nonlocal problems

of p-Kirchhoff type−
[
M

(∫
Ω

|∇u|p dx
)]p−1

∆pu(x) = f(x, u) in Ω,

u = 0 on ∂Ω,

(1.5)

where Ω is a smooth bounded domain in RN and 1 < p < N . In [9], Corrêa

and Figueiredo investigated the existence of positive solutions to problem (1.5)

via variational methods. In [10], they dealt with the multiplicity of solutions

to problem (1.5) via Krasnoselskĭı genus. In [27], Liu and Zhao showed the
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existence of nontrivial solutions to problem (1.5) via Morse theory, see also [26]

for related discussions. For the applications of Morse theory to the existence of

solutions to the fractional Laplacian equations, we refer the reader to [16], [18]

and the references therein.

Motivated by the above works, we would like to investigate problem (1.1)

via Morse theory and local linking. To the best of our knowledge, there are no

papers dealing with the Kirchhoff problem using Morse theory in the fractional

Laplacian setting. According to the original meaning of the Kirchhoff function M

in (1.4), it is natural to assume that M is a continuous and increasing function.

However, in this paper we will drop the increasing assumption. More precisely,

we just assume the following:

(M) M : R+
0 → R+ is a continuous function and there exists a constant a0 > 0

such that M(t) ≥ a0 for all t ≥ 0.

Obviously, a typical example for M is given by M(t) = a + btm with m > 0,

a > 0, b ≥ 0 for all t ≥ 0. When M is of this type, problem (1.1) is said to be

non-degenerate if a > 0 and b ≥ 0, while it is called degenerate if a = 0 and

b > 0. For example, we refer to [9], [39], [46] for non-degenerate Kirchhoff type

problems and [11], [12], [40], [47] for degenerate Kirchhoff type problems.

Now we require that f is a Carathéodory function and satisfies the following

conditions:

(f1) There exist C > 0 and q ∈ [1, p∗s) such that |f(x, t)| ≤ C(1 + |t|q−1) for

almost every x ∈ Ω and all t ∈ R, where p∗s is the fractional Sobolev

critical exponent defined by p∗s = Np/(N − sp).
(f2) There exist r > 0 small and λ ∈ (λ1, λ̂) such that ap−1

1 λ1 < ap−1
0 λ̂ and

ap−1
1 λ1|t|p ≤ pF (x, t) = p

∫ t

0

f(x, ξ) dξ ≤ ap−1
0 λ|t|p,

for t ∈ R with |t| ≤ r, almost every x ∈ Ω, where a1 = max
0≤t≤1

M(t).

(f3) lim sup
|t|→∞

pF (x, t)/|t|p < ap−1
0 λ1 uniformly in x ∈ Ω.

(f4) lim sup
|t|→∞

pF (x, t)/|t|p = ap−1
0 λ1 uniformly in x ∈ Ω.

(f5) lim
|t|→∞

(pF (x, t)− ap−1
0 λ1|t|p) = −∞ uniformly in x ∈ Ω.

Here λ1 > 0 is the first eigenvalue of (−∆)sp, see Section 2 for more details. For

the number λ̂, see Remark 2.3 for more information. Note that condition (f5) is

weaker than the following condition:

(f′5) lim
|t|→∞

(pF (x, t)− f(x, t)t) = −∞ uniformly in x ∈ Ω.

See [29, Lemma 3.2] for a direct proof.
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Definition 1.1. We say that u ∈W0 is a (weak) solution of problem (1.1), if[
M

(∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)]p−1

·
∫∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+ps
dxdy

=

∫
RN

f(x, u)ϕ(x) dx

for any ϕ ∈W0, where the space W0 will be introduced in Section 2.

Now we are in a position to state our main results as follows.

Theorem 1.2. Let (M) and (f1)–(f3) hold. Then problem (1.1) admits at

least two nontrivial solutions in W0.

Theorem 1.3. Let (M), (f1), (f2), (f4) and (f5) hold. Then problem (1.1)

admits at least two nontrivial solutions in W0.

Remark 1.4. In order to obtain the existence of solutions, many authors

often assumed that M is increasing, see for example [26] for the Laplacian setting

and [17], [38] for the fractional setting. To extend M to a larger class, the authors

in [1, 9] assumed that M̂(t) =
∫ t

0
M(s) ds ≥M(t)t for t ≥ 0 as p = 2, which is to

ensure the boundedness of the Palais–Smale sequences of the energy functional.

However, this assumption is far away from the original physical motivation of the

Kirchhoff problem. To the best of our knowledge, there have been few papers

dealing with the Kirchhoff problem without the increasing assumption in the

fractional context. Therefore, this paper will make some contribution in this

direction.

Remark 1.5. (a) Clearly, if M ≡ 1, then problem (1.1) becomes the usual

fractional p-Laplace problem. In addition to p = 2, problem (1.1) becomes the

usual fractional Laplace problem, and hence Theorem 1.2 extends Theorem 1.4

in [16]. Furthermore, we also assume that s → 1−, then Theorem 1.3 becomes

Theorem 1.2 in [20].

(b) In [27], Liu and Zhao considered the version of Theorems 1.2 and 1.3 in

the setting of p-Laplacian under the bounded assumption on M . Moreover, they

used condition (f′5) instead of condition (f5). Thus, our results and context are

more general than those of Liu and Zhao in [27].

This paper is organized as follows. In Section 2, we give some related defi-

nitions and fundamental properties of the space W0. In Section 3, we verify the

compactness conditions for our main results. In Section 4, we give the proofs of

Theorems 1.2 and 1.3.
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2. Preliminaries

We first give some basic results for our working space W0 which will be used

later.

The Gagliardo seminorm is defined for all measurable functions u : RN →
R by

[u]s,p =

(∫∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dx dy

)1/p

.

The fractional Sobolev space W s,p(RN ) is defined as

W s,p(RN ) = {u ∈ Lp(RN ) : [u]s,p <∞},

endowed with the norm

‖u‖s,p =
(
‖u‖p

Lp(RN )
+ [u]ps,p

)1/p
.

For a detailed account on the properties of W s,p(RN ), we refer to [14]. We shall

work in the closed linear subspace

W0 =
{
u ∈W s,p(RN ) : u(x) = 0 a.e. in RN \ Ω

}
.

From Theorem 6.5 in [14], it follows that ‖u‖W0
can be equivalently renormed

by [u]s,p. Thus W0 is a uniformly convex Banach space, especially a reflexive

Banach space, see for example [19] for a simple proof or [46] for another proof.

Furthermore, the embedding W0 ↪→ Lν(Ω) is continuous for ν ∈ [1, p∗s] and

compact for ν ∈ [1, p∗s), see [14, Theorem 6.5 and Corollary 7.2]. As p = 2, we

refer the interested readers to [35], [31], [41], [42] for some recent results in a

bounded domain.

Next we consider the eigenvalue of the operator (−∆)sp with homogeneous

Dirichlet boundary data, namely the eigenvalue of the problem(−∆)spu = λ|u|p−2u in Ω,

u = 0 in Rn \ Ω.
(2.1)

More precisely, the following weak formulation of (2.1) was discussed: there is

a function u ∈W0 such that

(2.2)

∫∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+ps
dx dy

= λ

∫
Ω

|u(x)|p−2u(x)ϕ(x) dx,

for any ϕ ∈ W0. We recall that λ ∈ R is an eigenvalue of (−∆)sp if there exists

a nontrivial solution u ∈W0 of problem (2.1) or its weak formulation (2.2), and

any solution will be called an eigenfunction corresponding to the eigenvalue λ.

The set of eigenvalues is referred to as the spectrum of (2.1) inW0 and denoted by
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σ(s, p), for a detailed discussion about higher eigenvalue we refer to [15] and [22].

Moreover, it easily follows from continuous embedding that the Rayleigh quotient

λ1 = inf
u∈W0\{0}

‖u‖pW0

‖u‖pLp(Ω)

∈ (0,∞).(2.3)

Here we list some related results which will use in the sequel, see for example

[15], [19], [22].

Lemma 2.1. The eigenvalues and eigenfunctions of (2.1) have the following

properties:

(a) λ1 = minσ(s, p) is an isolated point of σ(s, p);

(b) λ1 is simple, i.e. all λ1-eigenfunctions are proportional;

(c) if u is a λ1-eigenfunction, then either u(x) > 0 or u(x) < 0 almost

everywhere in Ω;

(d) all eigenfunctions are in L∞(Ω).

Remark 2.2. From Lemma 2.1 (b)–(c) we know that V = span {φ} is an one-

dimensional eigenspace associated with λ1, where φ > 0 in Ω and ‖φ‖W0
= 1.

Taking one subspace Z ⊂ W0 completing V such that W0 = V ⊕ Z. By

Lemma 2.1 (a), the number

λ̂ = inf
u∈Z\{0}

‖u‖pW0

‖u‖pLp(Ω)

exists and satisfies λ̂ > λ1. Obviously, we have also ‖u‖pW0
≥ λ̂‖u‖pLp(Ω) for

u ∈ Z.

3. Compactness conditions

For u ∈W0, we define

J(u) =
1

p
M̃(‖u‖pW0

), H(u) =

∫
Ω

F (x, u) dx,

where M̃(t) =
∫ t

0
[M(y)]p−1 dy. Let I(u) = J(u)−H(u). Obviously, the energy

functional I : W0 → R associated with problem (1.1) is well defined.

Lemma 3.1. Let (M) holds. Then J : W0 → R is of class C1(W0,R) and

(3.1) 〈J ′(u), v〉 =
[
M(‖u‖pW0

)
]p−1

·
∫∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+ps
dx dy

for all u, v ∈W0. Moreover, J is weakly lower semi-continuous in W0.

Proof. It is easy to see that J is Gâteaux-differentiable in W0 and that

(3.1) holds for all u, v ∈ W0. Now, let {un}n ⊂ W0 and u ∈ W0 satisfy un → u
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strongly in W0 as n → ∞. Without loss of generality, we assume that un → u

almost everywhere in RN . Then the sequence{
|un(x)− un(y)|p−2(un(x)− un(y))

|x− y|(N+ps)/p′

}
n

is bounded in Lp
′
(R2N ), as well as

|un(x)− un(y)|p−2(un(x)− un(y))

|x− y|(N+ps)/p′
→ |u(x)− u(y)|p−2(u(x)− u(y))

|x− y|(N+ps)(p′)

almost everywhere in R2N . Thus, the Brézis–Lieb Lemma implies

lim
n→∞

∫∫
R2N

∣∣∣∣ |un(x)− un(y)|p−2(un(x)− un(y))

|x− y|(N+ps)/p′
(3.2)

− |u(x)− u(y)|p−2(u(x)− u(y))

|x− y|(N+ps)/p′

∣∣∣∣p′ dx dy
= lim

n→∞

∫∫
R2N

(
|un(x)− un(y)|p

|x− y|N+ps
− |u(x)− u(y)|p

|x− y|N+ps

)
dx dy.

The fact that un → u strongly in W0 yields that

lim
n→∞

∫∫
R2N

(
|un(x)− un(y)|p

|x− y|N+ps
− |u(x)− u(y)|p

|x− y|N+ps

)
dx dy = 0.

Moreover, the continuity of M implies that

(3.3) lim
n→∞

[M(‖un‖pW0
)]p−1 = [M(‖u‖pW0

)]p−1.

From (3.2) it follows that

(3.4) lim
n→∞

∫∫
R2N

∣∣∣∣ |un(x)− un(y)|p−2(un(x)− un(y))

|x− y|(N+ps)/p′

− |u(x)− u(y)|p−2(u(x)− u(y))

|x− y|(N+ps)/p′

∣∣∣∣p′ dx dy = 0.

Combining (3.3)–(3.4) with the Hölder inequality, we have

‖J ′(un)− J ′(u)‖W ′
0

= sup
ϕ∈W0, ‖ϕ‖W0

=1

|〈J ′(un)− J ′(u), ϕ〉| → 0

as n → ∞, where W ′0 is the dual space of W0. Hence, J ∈ C1(W0,R). Finally,

notice that the map v 7→ ‖v‖pW0
is lower semi-continuous in the weak topology of

W0 and M̃(t) is nondecreasing and continuous in R+, so that v 7→ M̃(‖v‖pW0
) is

lower semi-continuous in the weak topology of W0. Indeed, we define a functional

ψ : W0 → R as

ψ(v) =

∫∫
Q

|v(x)− v(y)|p|x− y|−(N+sp) dx dy.
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It is easy to see that ψ ∈ C1(W0) and ψ is a convex functional in W0. By

Corollary 3.8 in [5], we obtain ψ(v) ≤ lim inf
n→∞

ψ(vn), and hence the desired claim

follows. �

Lemma 3.2. Let (f1) holds. Then the functional H is of class C1(W0,R) and

for any fixed u ∈W0

〈H ′(u), v〉 =

∫
RN

f(x, u(x))v(x) dx for all v ∈W0,

and H ′(u) ∈ W ′0. Furthermore, if vn ⇀ v weakly in W0, then 〈H ′(u), vn〉 →
〈H ′(u), v〉 and hence the functional H is weakly continuous in W0.

Proof. We only need to prove that H is weakly continuous in W0 and is

of class C1. Let {un}n ⊂ W0 and u ∈ W0 satisfy un ⇀ u weakly in W0 as

n → ∞. Without loss of generality, we assume that un → u strongly in Lq(Ω)

for 1 ≤ q < p∗s and almost everywhere in Ω. Then it easily follows from (f1) and

the continuity of Nemytskĭı operator that

lim
n→∞

∫
Ω

|f(x, un)− f(x, u)|q
′
dx = 0.

Thus it is easy to verify that H is weakly continuous in W0 and also of class C1.�

Combining Lemmas 3.1 and 3.2, we get that I ∈ C1(W0,R) and I is weakly

lower semi-continuous in W0.

Definition 3.3. We say that I satisfies the (PS) condition in W0, if any

(PS) sequence {un}n ⊂W0, i.e. {I(un)}n is bounded and I ′(un)→ 0 as n→∞,

admits a strongly convergent subsequence in W0.

Lemma 3.4. Let (M) holds. Then any bounded sequence {un}n ⊂ W0 such

that I ′(un)→ 0 as n→∞ has a strongly convergent subsequence in W0.

Proof. Assume that {un}n is bounded in W0. Going if necessary to a sub-

sequence, we have

(3.5)

un ⇀ u in W0,

un → u in Lq(Ω),

un → u a.e. in Ω.

To show that {un}n converges strongly to u in W0, we first introduce a simple

notation. Let ϕ ∈ W0 be fixed and denote by Bϕ the linear functional on W0

defined by

Bϕ(v) =

∫∫
R2N

|ϕ(x)− ϕ(y)|p−2(ϕ(x)− ϕ(y))

|x− y|N+ps
(v(x)− v(y)) dx dy

for all v ∈W0. Clearly, by the Hölder inequality, Bϕ is also continuous, being

|Bϕ(v)| ≤ ‖ϕ‖p−1
W0
‖v‖W0

for all v ∈W0.
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Hence, (3.5) and the boundedness of M on closed interval give that

(3.6) lim
n→∞

(
[M(‖un‖pW0

)]p−1 − [M(‖u‖pW0
)]p−1

)
Bu(un − u) = 0.

Now, by (f1) and the Hölder inequality, we get∫
Ω

|(f(x, un)− f(x, u))(un − u)| dx

≤
∫

Ω

[C + C(|un|q−1 + |u|q−1)]|un − u| dx

≤ C|Ω|(p−1)/p‖un − u‖Lp(Ω) + C(‖un‖q−1
Lq(Ω) + ‖u‖q−1

Lq(Ω))‖un − u‖Lq(Ω).

Then (3.5) implies that

(3.7) lim
n→∞

∫
Ω

(f(x, un)− f(x, u))(un − u) dx = 0.

Obviously, 〈I ′(un) − I ′(u), un − u〉 → 0 as n → ∞, since un ⇀ u in W0 and

I ′(un)→ 0 in W
′

0. Hence, (3.5)–(3.7) give as n→∞

o(1) = 〈I ′(un)− I ′(u), un − u〉

= [M(‖un‖pW0
)]p−1Bun(un − u)− [M(‖un‖pW0

)]p−1Bu(un − u)

+
(
[M(‖un‖W0

)]p−1 − [M(‖u‖pW0
)]p−1

)
Bu(un − u)

−
∫

Ω

(f(x, un)− f(x, u))(un − u) dx

= [M(‖un‖pW0
)]p−1[Bun(un − u)−Bu(un − u)] + o(1),

that is

lim
n→∞

[M(‖u‖pW0
)]p−1[Bun

(un − u)−Bu(un − u)] = 0.

Since [M(‖un‖pW0
)]p−1[Bun(un−u)−Bu(un−u)] ≥ 0 for all n ∈ N by convexity

and (M), we have in particular

(3.8) lim
n→∞

[Bun
(un − u)−Bu(un − u)] = 0.

Let us now recall the well-known Simon inequalities,

|ξ − η|p ≤

Cp(|ξ|p−2ξ − |η|p−2η)(ξ − η) for p ≥ 2,

C
′

p[(|ξ|p−2ξ − |η|p−2η)(ξ − η)]p/2(|ξ|p + |η|p)(2−p)/2 for 1 < p < 2,

for all ξ, η ∈ RN , where Cp and C
′

p are positive constants depending only on p.
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Assume first that p ≥ 2. Then by the Simon inequality and (3.8) as n→∞

[un − u]ps,p =

∫∫
R2N

|un(x)− un(y)− u(x) + u(y))|p|x− y|−(N+ps) dx dy

≤Cp
∫∫

R2N

[
|un(x)−un(y)|p−2(un(x)−un(y))−|u(x)− u(y)|p−2(u(x)− u(y))

]
× (un(x)− u(x)− un(y) + u(y))|x− y|−(N+ps) dx dy

=Cp [Bun(un − u)−Bu(un − u)] = o(1).

In conclusion, ‖un − u‖W0
→ 0 as n→∞, as required.

Finally, it remains to consider the case when 1 < p < 2. By (3.5) there exists

κ > 0 such that [un]s,p ≤ κ for all n ∈ N. Now by the Simon inequality, the

Hölder inequality and (3.8) as n→∞

[un − u]ps,p ≤ C
′

p [Bun
(un − u)−Bu(un − u)]p/2([un]ps,p + [u]ps,p)

(2−p)/2(3.9)

≤ C
′

p [Bun(un − u)−Bu(un − u)]p/2([un]p(2−p)/2s,p + [u]p(2−p)/2s,p )

≤ C
′′

p [Bun
(un − u)−Bu(un − u)]p/2 = o(1),

where C
′′

p = 2C
′

pκ
p(2−p)/2 and where we have applied the following elementary

inequality:

(a+ b)(2−p)/2 ≤ a(2−p)/2 + b(2−p)/2 for all a, b ≥ 0 and 1 < p < 2.

Hence, ‖un − u‖W0 → 0 as n→∞ also in this second case. �

Theorem 3.5. Suppose that (M), (f1) and (f3) are fulfilled. Then the func-

tional I is coercive and then satisfies the (PS) condition.

Proof. From Lemma 3.4, it suffices to verify the boundedness of (PS) se-

quences. It follows from (f1) and (f3) that for some δ > 0 small, there exists

a constant Cδ > 0 such that

|F (x, t)| ≤ a0
p−1

p
(λ1 − δ)|t|p + Cδ for all t ∈ R, a.e. x ∈ Ω.

Thus, by (M) we obtain for u ∈W0

I(u) =
1

p
M̃(‖u‖pW0

)−
∫

Ω

F (x, u(x)) dx

≥ a0
p−1

p
‖u‖pW0

− a0
p−1

p
(λ1 − δ)‖u‖pLp(Ω) − Cδ|Ω|

≥ a0
p−1

p

(
1− λ1 − δ

λ1

)
‖u‖pW0

− Cδ|Ω| → +∞

as ‖u‖W0
→ ∞. That is to say, I is coercive on W0. Hence, we get the desired

assertion. �

Theorem 3.6. Suppose (M), (f1), (f4) and (f5) are fulfilled. Then the func-

tional I is coercive and then satisfies the (PS) condition.
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Proof. Similar to the proof of Proposition 3.2 in [20], and for the reader’s

convenience, we will give the detailed treatment of the proof. We will show

that the functional I is coercive on W0. Hence the (PS) sequence of I must be

bounded. Denote

A(x, t) =
ap−1

0

p
λ1|t|p − F (x, t).

Then (f5) implies that

lim
|t|→∞

A(x, t) = +∞, uniformly in x ∈ Ω.(3.10)

Assume I is not coercive on W0, then there exist a sequence {un} ⊂ W0 and

a constant C0 > 0 such that

(3.11) ‖un‖W0
→∞, as n→∞, but I(un) ≤ C0.

Let vn = ‖un‖−1
W0
un, then ||vn||W0 = 1. Up to a subsequence, we have

vn ⇀ v in W0, vn → v in Lq(Ω), vn → v a.e. x ∈ Ω.(3.12)

Therefore, from (M), (3.10)–(3.12) we obtain

C0

||un||pW0

≥ I(un)

||un||pW0

=
1

p||un||pW0

M̃(‖un‖pW0
)(3.13)

− ap−1
0

p
λ1

∫
Ω

|vn|p dx+
1

||un||pW0

∫
Ω

A(x, un) dx

≥ ap−1
0

p

(
‖vn‖pW0

− λ1

∫
Ω

|vn|p dx
)
− C1

||un||pW0

for some C1 > 0. It follows from (3.11)–(3.13) that

lim sup
n→∞

‖vn‖pW0
≤ λ1||v||pLp(Ω).(3.14)

On the other hand, by the lower semicontinuity of the norm, we have

λ1||v||pLp(Ω) ≤ ‖vn‖
p
W0
≤ lim inf

n→∞
‖vn‖pW0

.(3.15)

In view of (3.14), (3.15) and the uniform convexity of W0, we obtain (see [5,

Proposition 3.32])

vn → v in W0, ‖v‖pW0
= λ1||v||pLp(Ω).(3.16)

Thus ||v||W0 = 1 and hence v = ±φ1, where φ1 > 0 is the first eigenfunction for

the fractional p-Laplacian operator (−∆)sp with homogeneous Dirichlet boundary

data by Lemma 2.1 (c). Take v = φ1, then un → +∞ almost everywhere in Ω.
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By the variational characterization of λ1, (M), (3.10) and the Fatou Lemma we

have

C0 ≥ I(un) =
1

p
M̃(‖un‖pW0

)− 1

p
λ1

∫
Ω

|un|p dx+

∫
Ω

A(x, un) dx

≥ ap−1
0

p

(
‖un‖pW0

− λ1

∫
Ω

|un|p dx
)

+

∫
Ω

A(x, un) dx

≥
∫

Ω

A(x, un) dx→ +∞, asn→∞,

which is a contradiction. Therefore, I is coercive on W0 and hence satisfies the

(PS) condition by Lemma 3.4. �

4. Proofs of main results

In this section, we first recall some related concepts and results about critical

groups.

Let Y be a real Banach space and J ∈ C1(Y,R), K = {u ∈ Y : J ′(u) = 0},
then the qth critical group of J at an isolated critical point u ∈ K with J (u) = c

is defined by

Cq(J , u) := Hq(J c ∩ U,J c ∩ U \ {u}), q ∈ N := {0, 1, . . .},

where J c = {u ∈ Y : J (u) ≤ c}, U is any neighbourhood of u, containing

the unique critical point, Hq is the qth singular relative homology with integer

coefficients in an Abelian group G. Finally, let Θ be the trivial homological

group.

We say that u ∈ K is a homologically nontrivial critical point of J if at least

one of its critical groups is nontrivial. Now we first present the following critical

point theorem which will be used later.

Proposition 4.1 (see [29, Theorem 2.1]). Let X be a real Banach space and

let J ∈ C1(X,R) satisfy the (PS) condition and be bounded from below. If J
has a critical point that is homologically nontrivial and is not a minimizer of J ,

then J has at least three critical points.

For the proofs of our theorems, in what follows we may assume that Φ has

only finitely many critical points. In applications one often needs to computer the

critical groups Cq(I, 0) in order to find nontrivial critical points. Liu [28] showed

that under some local conditions near zero, zero is homologically nontrivial. In

the following, let us present this result which will be used in the sequel.

Lemma 4.2 (see [29, Proposition 2.1]). Assume that J has a critical point

u = 0 with J (0) = 0. Suppose that J has a local linking at 0 with respect to
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Y = V ⊕ Z, k = dimV <∞, that is, there exists ρ > 0 small such thatJ (u) ≤ 0 for u ∈ V, ||u|| ≤ ρ,
J (u) > 0 for u ∈ Z, 0 < ||u|| ≤ ρ.

Then Ck(J , 0) 6= Θ. Hence, 0 is a homologically nontrivial critical point of J .

Theorem 4.3. If (M), (f1) and (f2) are satisfied, then C1(J , 0) 6= Θ.

Proof. In view of Lemma 4.2, it suffices to verify that the functional I has

a local linking at 0 with respect to W0 = V ⊕ Z, where V and Z are implied in

Remark 2.2.

(a) Since V is one-dimensional, we have that for given r > 0, there exists

ρ ∈ (0, 1] small such that for u ∈ V , ||u||W0
≤ ρ implies |u(x)| ≤ r for almost

every x ∈ Ω. Let u ∈ V . Then by (M) and (f2), we obtain that for u ∈ V with

‖u‖W0
≤ ρ,

I(u) =
1

p
M̃(‖u‖pW0

)−
∫

Ω

F (x, u(x)) dx

=
1

p
M̃(‖u‖pW0

)−
∫
{|u(x)|≤r}

F (x, u(x)) dx

≤ 1

p

[
max

0≤t≤ρ
M(t)

]p−1

‖u‖pW0
−
∫
{|u(x)|≤r}

F (x, u(x)) dx

≤
∫
{|u(x)|≤r}

(
1

p
ap−1

1 λ1|u|p − F (x, u(x))

)
dx ≤ 0.

(b) For u ∈ Z, by (M), (f1) and (f2), together with the Sobolev embedding

theorem, it follows that

I(u) =
1

p
M̃(‖u‖pW0

)−
∫

Ω

F (x, u(x)) dx

≥ ap−1
0

p
(‖u‖pW0

− λ‖u‖pLp(Ω))

−
(∫
{|u(x)|≤r}

+

∫
{|u(x)|>r}

)[
F (x, u(x))− ap−1

0

p
λ|u|p

]
dx

≥ ap−1
0

p

(
1− λ

λ̂

)
‖u‖pW0

− C1

∫
{|u(x)|>r}

|u|q dx

≥ ap−1
0

p

(
1− λ

λ̂

)
‖u‖pW0

− C2

∫
{|u(x)|>r}

|u|m dx

≥ ap−1
0

p

(
1− λ

λ̂

)
‖u‖pW0

− C3‖u‖mW0
,

where max {q, p} < m < p∗s, C2 and C3 are positive constants. From which

we can deduce that I(u) > 0 as u ∈ Z and 0 < ‖u‖W0 < ρ with ρ > 0 small

enough. �
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Proof of Theorem 1.2. Due to Theorem 3.5, we know that I satisfies the

(PS) condition. From Lemmas 3.1 and 3.2 we know that I is weak lower semi-

continuous, and hence I is bounded from below because of Theorem 3.5. In view

of Theorem 4.3, it follows that 0 is not a minimizer of I and is homologically

nontrivial. Hence the desired conclusion follows from Proposition 4.1. �

Proof of Theorem 1.3. Due to Theorem 3.6, we know that I satisfies the

(PS) condition. From Lemmas 3.1 and 3.2 we know that I is weak lower semi-

continuous, and hence I is bounded from below because of Theorem 3.6. In terms

of Theorem 4.3, it follows that 0 is not a minimizer of I and is homologically

nontrivial. Hence the desired conclusion follows from Proposition 4.1. �
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