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Abstract. We examine a logistic equation with local and non-local reac-

tion terms both for time dependent and steady-state problems. Mainly, we

use bifurcation and monotonicity methods to prove the existence of posi-
tive solutions for the steady-state equation and sub-supersolution method

for the long time behavior for the time dependent problem. The results

depend strongly on the size and sign of the parameters on the local and
non-local terms.

1. Introduction

In this paper we study the non-local parabolic problem

(1.1)


ut −∆u = u

(
λ+ b

∫
Ω

ur dx− u
)

in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x) ≥ 0 in Ω,
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and the corresponding steady-state problem

(1.2)

−∆u = u(λ+ b

∫
Ω

urdx− u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded and smooth domain, λ, b ∈ R, r > 0 and u0 is

a regular positive function. In (1.1), u(x, t) represents the density of a species in

time t > 0 and a habitat surrounded by inhospitable areas at the point x ∈ Ω.

Here, λ is the growth rate of species, the term −u describes the limiting effect

of crowding in the population, that is, the competition of individuals of species

for resources of the environment. In (1.1) we have included a non-local term

with different meanings. When b < 0 we are assuming that this limiting effect

depends not only on the value of u at the point x, but on the value of u in the

whole domain. When b > 0 individuals cooperate globally to survive. When

b = 0, (1.1) is the classical logistic equation.

Observe that when b > 0, problem (1.1) can be regarded as a superlinear

indefinite problem with non-local superlinear term, similar to the classical su-

perlinear problem

(1.3)


ut −∆u = u(λ+ ba+ur − a−ur) in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x) ≥ 0 in Ω,

where a ∈ C1(Ω), a+ := max{a(x), 0}, a− := max{−a(x), 0}. The latter has

been studied in detail in [14], [15], [17], see also references therein. This class

of local problems has been considered also with other boundary conditions, for

example, non-homogeneous Dirichlet boundary conditions, see [9] and [18], where

multiplicity results are shown. We do not consider the non-local counterpart in

this paper.

The introduction of non-local terms in the equation and in the boundary con-

ditions has shown to be useful for modelling a number of processes in different

fields such as mathematical physics, mechanics of deformable solids, mathemat-

ical biology and many others. For examples of its application in population

dynamics, see, for instance, [8], [7] and [11].

Let us summarize our main results. Denote by λ1 the principal eigenvalue of

the Laplacian subject to homogeneous Dirichlet boundary conditions and by ϕ1

the positive eigenfunction associated to λ1 such that ‖ϕ1‖∞ = 1.

Regarding parabolic problem (1.1), first we prove the existence and unique-

ness of positive local in time solution. Next, we analyze the long time behaviour

of the solution. In particular:

(1) If b < 0 the solution of (1.1) is global in time and bounded. Moreover,

the solution goes to zero as λ < λ1.



Logistic with Local and Non-Local Terms 695

(2) Assume now b > 0.

(a) The trivial solution is locally exponentially stable for λ < λ1, that

is, for small enough u0 the solution goes to zero if t→∞.

(b) If r < 1 or r = 1 and b is small enough, the solution of (1.1) is

global in time and bounded. Moreover, the solution goes to zero if

λ is small enough.

(c) If r > 1 or r = 1 and b is large enough, the solution of (1.1) blows

up in finite time for λ or u0 large enough.

We refer to Section 6 for more specific results. We would like to remark that

similar results have been obtained in [21], [22] and [19], see also references therein,

for the problem

ut −∆u =

∫
Ω

ur(x, t) dx− kup, for r, p ≥ 1 and k ≥ 0.

Regarding problem (1.2). The case b < 0 and r = 1 has been analyzed in [23],

where the existence and uniqueness of positive solution of (1.2) were established.

We improve these results considering all the cases for r > 0. The case b = 0 (the

pure local model) is well-known, see Proposition 2.1. The equation

−∆u = u

(
λ+ b

∫
Ω

u dx+ u

)
with b < 0 has been analyzed in [8].

In order to prove our results, we use mainly the bifurcation method, applied

previously in this context by [1], [5] and [12].

First, we show that from the trivial solution u = 0 an unbounded continuum

of positive solutions of (1.2) emanates at λ = λ1. Next, we study the local and

global behaviour of this continuum. In particular, when b ≤ 0 the behaviour

does not depend on r and we show the following result (see Figure 1 (a)).

Theorem 1.1. Assume b ≤ 0. Then a positive solution exists if and only if

λ > λ1. Moreover, if it exists it is unique (denote it by øλ,b) and

lim
b→−∞

‖øλ,b‖∞ = 0.

When b > 0 the behaviour depends on the size of r. When r < 1 we obtain

(see Figure 1 (c)) the following result.

Theorem 1.2. Assume b > 0 and r < 1. There exists λ∗ < λ1 such that

(1.2) possesses at least one positive solution if and only if λ ≥ λ∗. Moreover,

(1.4) lim
b→0+

λ∗(b) = λ1 and lim
b→+∞

λ∗(b) = −∞.

When r > 1 (see Figure 1 (d)) we have
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Figure 1. Bifurcation diagrams for equation (1.2).

Theorem 1.3. Assume b > 0 and r > 1. There exists λ∗ > λ1 such that

(1.2) possesses at least one positive solution if and only if λ ≤ λ∗. Moreover,

(1.5) lim
b→0+

λ∗(b) = +∞ and lim
b→+∞

λ∗(b) = λ1.

Let us remark that, unlike in the local case, we do not need to impose any

restrictions on r in order to get the a priori bounds. Indeed, if we were considering

the local case

−∆u = u(λ+ bur − u),

then in order to obtain a priori bounds, we require r+ 1 < (N + 2)/(N − 2), see

[10].

Finally, in the case r = 1, the behaviour depends of the size of b:

Theorem 1.4. Assume b > 0 and r = 1.

(a) Assume that b < 1/|Ω|. Then, there exists a positive solution for λ > λ1.
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(b) Assume that b > 1/
∫

Ω
ϕ1dx. Then, there exists a positive solution if and

only if λ < λ1.

Here |Ω| stands for the measure of Ω. When b is small enough, the bifurcation

is similar to the case b ≤ 0 (see Figure 1 (a)), whereas when b is large enough we

have a positive solution for λ < λ1 (see Figure 1 (b)).

There exists a gap in our results for b ∈ (1/|Ω|, 1/
∫

Ω
ϕ1). In this case, we

know that there exists an unbounded continuum of positive solutions bifurcating

from (λ, u) = (λ1, 0), moreover, we know its local bifurcation direction (see The-

orem 2.2), but we are not able to assure the global behaviour of the continuum.

Observe, that this does not occur in the homogeneous Neumann case. Indeed,

in this case λ1 = 0 and ϕ1 = 1. Hence, 1/|Ω| = 1/
∫

Ω
ϕ1 and for b = 1/|Ω| there

exist infinite positive solutions for λ = λ1 = 0.

a)                                                                                 b)

c)                                                                                d)

|| || || ||

|| ||
|| ||

(a) (b)
a)                                                                                 b)

c)                                                                                d)

|| || || ||

|| ||
|| ||

(c) (d)

Figure 2. Bifurcation diagrams for equation (1.2) moving b.

Look now at Figure 2, where we have presented different bifurcation diagrams

moving the parameter b. Figures 2 (a) and (b) depict the bifurcation diagrams
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when b → 0 in the cases r < 1 and r > 1, respectively. Figures 2 (c) and (d)

correspond to the case b→ +∞ for r < 1 and r > 1.

The paper is organized as follows. In Section 2 we prove the existence of

an unbounded continuum of positive solutions of (1.2). Section 3 is devoted to

proving the non-existence results and a priori bounds of positive solutions of

(1.2). In Section 4 we show the stability of solutions in some cases. Section 5

is dedicated to proving Theorems 1.1, 1.2, 1.3 and 1.4. Finally, in Section 6 we

study parabolic problem (1.1).

2. Bifurcation results

We shall prove that from the trivial solution u ≡ 0 an unbounded continuum

of positive solutions of (1.2) bifurcates at λ = λ1.

First recall the principal results for the classical logistic equation (see Lemma

7.8 in [6] for (2.2))

(2.1)

−∆u = u(µ− u) in Ω,

u = 0 on ∂Ω.

Proposition 2.1. There exists a positive solution of (2.1) if and only if

µ > λ1. Moreover, it is unique if it exists (denote it by θµ) and the following

inequalities hold:

(a)

(2.2) (µ− λ1)ϕ1 ≤ θµ ≤ min{µ,K(µ− λ1)}

for some K ≥
∫

Ω
ϕ2

1 dx/
∫

Ω
ϕ3

1 dx independent of µ.

(b) If u > 0 is a subsolution of (2.1), then u ≤ θµ.

(c) If u > 0 is a supersolution of (2.1), then θµ ≤ u.

Consider the Banach space X := C0(Ω) and denote Bρ := {u ∈ X : ‖u‖∞ <

ρ}. Define

f(u) := u+

(
λ+ b

∫
Ω

(u+)r dx− u
)
,

and the mapKλ : X 7→ X byKλ(u) := u−(−∆)−1(f(u)), where u+ := max{u, 0}
and (−∆)−1 is the inverse of the operator −∆ under homogeneous Dirichlet

boundary conditions. Now, it is clear that u is a non-negative solution of (1.2)

if and only if u is a zero of the map Kλ.

The main result of this section is:

Theorem 2.2. The value λ = λ1 is the only bifurcation point from the triv-

ial solution for (1.2). Moreover, there exists a continuum C0 of non-negative

solutions of (1.2) unbounded in R×X emanating from (λ1, 0). Furthermore:

(a) If b ≤ 0, the direction of bifurcation is supercritical.
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(b) Assume b > 0.

• If r < 1, the direction of bifurcation is subcritical.

• If r > 1, the direction of bifurcation is supercritical.

• Assume that r = 1 and denote

b0 :=

∫
Ω

ϕ3
1 dx∫

Ω

ϕ1 dx

∫
Ω

ϕ2
1 dx

.

If b > b0 (resp. b < b0) the direction of bifurcation is subcritical

(resp. supercritical).

Recall that we say that the direction of bifurcation is subcritical (resp. su-

percritical) if there exists a neighborhood V of (λ1, 0) such that every solution

(λ, u) ∈ V satisfies λ < λ1 (resp. λ > λ1).

In order to prove this result we use the Leray–Schauder degree of Kλ on Bρ
with respect to zero, denoted by deg(Kλ, Bρ), and the index of the isolated zero

u of Kλ, denoted by i(Kλ, u).

Lemma 2.3. If λ < λ1, then i(Kλ, 0) = 1.

Proof. Fix λ < λ1. Define the map

H1 : [0, 1]×X 7→ X; H1(t, u) := (−∆)−1(tf(u)).

We claim that there exists δ > 0 such that

u 6= H1(t, u) for all u ∈ Bδ \ {0}, and t ∈ [0, 1].

Indeed, suppose that there exist sequences un ∈ X\{0} with ‖un‖∞ → 0 and

tn ∈ [0, 1] such that un = H1(tn, un), that is −∆un = tnf(un), and so un ≥ 0.

Define wn := un/‖un‖∞. Then,

−∆wn = tnwn

(
λ+ b

∫
Ω

urn dx− un
)
,

and then passing to the limit −∆w = t0λw, for some w ≥ 0, ‖w‖∞ = 1,

t0 ∈ [0, 1]. Hence, t0λ = λ1, a contradiction as λ < λ1.

Taking now ε ∈ (0, δ], the homotopy defined by H1 is admissible, hence

i(Kλ, 0) = deg(Kλ, Bε) = deg(I −H1(1 , · ), Bε)

= deg(I −H1(0, · ), Bε) = deg(I,Bε) = 1. �

Lemma 2.4. If λ > λ1, then i(Kλ, 0) = 0.

Proof. Fix λ > λ1 and φ ∈ X, φ > 0. First, it is clear that there exists

ε > 0 such that

(2.3) λ− ε > λ1.
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We define the map

H2 : [0, 1]×X 7→ X; H2(t, u) := (−∆)−1(f(u) + tφ).

We will show that there exists δ > 0 such that u 6= H2(t, u) for all u ∈ Bδ \ {0}
and t ∈ [0, 1]. Indeed, otherwise there would exist sequences un ∈ X \ {0} with

‖un‖∞ → 0 and tn ∈ [0, 1] such that un = H2(tn, un). Since tnφ ≥ 0, we have

that un > 0 and so

−∆un = un

(
λ+ b

∫
Ω

urn dx− un
)

+ tnφ > un(λ− ε) + tnφ ≥ un(λ− ε),

hence, λ1 ≥ λ − ε, a contradiction with (2.3). This proves that the homotopy

defined by H2 is admissible. Then, if we take ε ∈ (0, δ] we have

i(Kλ, 0) = deg(Kλ, Bε) = deg(I −H2(0, · ), Bε) = deg(I −H2(1, · ), Bε) = 0. �

Proof of Theorem 2.2. The fact that λ = λ1 is a bifurcation point

follows from Lemmas 2.3 and 2.4. Moreover, if there exists a sequence (λn, un) of

positive solutions of (1.2) such that ‖un‖∞ → 0, then, with a similar argument

as in Lemma 2.3, we can easily conclude that λn → λ1. This proves that λ1

is the only bifurcation point from the trivial solution. Hence, there exists an

unbounded continuum of solutions of (1.2), see [13].

Now, we study the bifurcation direction. Assume that b ≤ 0, then−∆u ≤ λu,

that is, λ ≥ λ1.

Assume now that b > 0, r < 1 and that there exists a sequence (λn, un) of

positive solutions of (1.2) such that λn ≥ λ1 and ‖un‖∞ → 0 as n → ∞. Take

M > 0 such that

1− bM
∫

Ω

ϕ1 dx < 0.

For n large enough we have that urn > Mun, and then

−∆un ≥ un
(
λn + bM

∫
Ω

un dx− un
)
,

so un is a supersolution of

−∆u = u

(
λn + bM

∫
Ω

un dx− u
)
.

Using Propositions 2.1 and (2.2), we get

un ≥
(
λn + bM

∫
Ω

un dx− λ1

)
ϕ1

and hence (
1− bM

∫
Ω

ϕ1 dx

)∫
Ω

un dx ≥ (λn − λ1)

∫
Ω

ϕ1 dx,

a contradiction.
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Assume now that b > 0, r > 1 and that there exists a sequence (λn, un) of

positive solutions of (1.2) such that λn ≤ λ1 and ‖un‖∞ → 0 as n → ∞. Take

ε > 0 such that 1− bKε|Ω| > 0, where K is defined in (2.2). For n large enough

we have urn < εun, and then

−∆un ≤ un
(
λn + bε

∫
Ω

un dx− un
)
.

So, using again (2.2), we have

un ≤
(
λn + bε

∫
Ω

un dx− λ1

)
K,

hence

(1− bKε|Ω|)
∫

Ω

un dx ≤ (λn − λ1)K|Ω|,

again a contradiction.

Finally, assume that b > 0 and r = 1. By the Crandall–Rabinowitz theorem

(see [2]), there exist ε > 0 and two regular functions λ(s), u(s), s ∈ (−ε, ε),
such that in a neighborhood of (λ1, 0) the unique positive solutions of (1.2) are

(λ(s), u(s)), s ∈ (0, ε). We can write

u(s) = sϕ1 + s2ϕ2 + o(s2), λ(s) = λ1 + sλ2 + o(s),

where λ2 ∈ R, ϕ2 ∈ C2(Ω). It is evident that the sign of λ2 determines the

bifurcation direction. Substituting these expansions into (1.2) and identifying

the terms of order one in s yields

−∆ϕ2 − λ1ϕ2 = λ2ϕ1 − ϕ2
1 + bϕ1

∫
Ω

ϕ1 dx.

Multiplying by ϕ1, we conclude that

λ2 =

∫
Ω

ϕ3
1 dx− b

∫
Ω

ϕ2
1 dx

∫
Ω

ϕ1 dx∫
Ω

ϕ2
1 dx

. �

3. A priori bounds and non-existence results of (1.2)

In this section we obtain a priori bounds of solutions for b > 0 as well as

non-existence results of (1.2).

Proposition 3.1. Assume that b > 0, r < 1. Let (λ, uλ) be a positive

solution of (1.2) such that λ belongs to a compact set K ⊂ R. Then, ‖uλ‖∞ ≤ C
for a constant independent of λ. Moreover, if

λ ≤ λ :=

(
1

|Ω|br

)1/(r−1)(
1− 1

r

)
,

problem (1.2) does not possess any positive solution.
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Proof. Since uλ is a positive solution of (1.2) we have, using Proposition 2.1,

that

(3.1) uλ ≤ λ+ b

∫
Ω

urλ dx.

Using now that ‖u‖r ≤ |Ω|(1−r)/r‖u‖1, we have

(3.2)

∫
Ω

uλ dx− b|Ω|2−r
(∫

Ω

uλ dx

)r
≤ λ|Ω|.

From (3.2) we get that if λ ∈ K, then
∫

Ω
uλdx ≤ C, and so by (3.1) we get that

‖uλ‖∞ ≤ C, where by C we denote different positive constants. On the other

hand, the function

(3.3) f(s) := As−Bsq, A,B > 0, 0 < q < 1, s ≥ 0,

has a minimum at s = sm := (A/(qB))1/(q−1) and

f(sm) = Aq/(q−1)

(
1

Bq

)1/(q−1)(
1− 1

q

)
.

Hence, if

λ|Ω| ≤
(

1

b|Ω|2−rr

)1/(r−1)(
1− 1

r

)
then by (3.2), equation (1.2) does not have positive solutions. �

Proposition 3.2. Assume that b > 0, r > 1. Let (λ, uλ) be a positive

solution of (1.2) such that λ belongs to a compact set K ⊂ R. Then, ‖uλ‖∞ ≤ C
for a constant independent of λ. Moreover, if

λ ≥ λ := λ1 + b1/(1−r)
(∫

Ω

ϕ1 dx

)r/(1−r)
|Ω|rr/(1−r)(r − 1),

problem (1.2) does not possess any positive solution.

Proof. Using now the lower bound in Proposition 2.1, we get that(
λ− λ1 + b

∫
Ω

urλ dx

)
ϕ1 ≤ uλ

and then(
λ− λ1 + b

∫
Ω

urλ dx

)∫
Ω

ϕ1 dx ≤
∫

Ω

uλ dx ≤ |Ω|(r−1)/r

(∫
Ω

urλ dx

)1/r

,

hence

(3.4) b

∫
Ω

ϕ1 dx

∫
Ω

urλ dx− |Ω|(r−1)/r

(∫
Ω

urλ dx

)1/r

≤ (λ1 − λ)

∫
Ω

ϕ1 dx.

From (3.4) we get that if λ ∈ K, then
∫

Ω
urλ ≤ C, and hence by (3.1), ‖uλ‖∞ ≤ C.

On the other hand, applying again the results of (3.3) with

A = b

∫
Ω

ϕ1, B = |Ω|(r−1)/r, q = 1/r,
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we get that if

(λ1 − λ)

∫
Ω

ϕ1 dx ≤ b1/(1−r)
(∫

Ω

ϕ1 dx

)1/(1−r)

|Ω|rr/(1−r)(1− r)

then by (3.4), equation (1.2) does not have positive solutions. �

For the case r = 1, the bounds depend on the size of b.

Proposition 3.3. Assume that b > 0, r = 1. Assume that b < 1/|Ω| or

b
∫

Ω
ϕ1dx > 1, then there exist a priori bounds of the solution of (1.2). Moreover,

if b < 1/|Ω| and λ ≤ 0 or b
∫

Ω
ϕ1 dx > 1 and λ ≥ λ1, then (1.2) does not possess

any positive solution.

Proof. In this case, by (2.2) we get

(3.5)

(
λ+ b

∫
Ω

u dx− λ1

)
ϕ1 ≤ u ≤ λ+ b

∫
Ω

u dx,

and so

(3.6) (1− b|Ω|)
∫

Ω

u dx ≤ λ|Ω|,
(
b

∫
Ω

ϕ1 dx− 1

)∫
Ω

u dx ≤ (λ1−λ)

∫
Ω

ϕ1 dx.

From these inequalities we obtain the result. �

4. Stability and uniqueness results

In this section we study the stability of a positive solution u of (1.2) when

b > 0. In order to ascertain its stability we have to calculate the sign of the

principal eigenvalue of the linearized problem around u, that is,

(4.1)

−∆ξ +

(
2u− λ− b

∫
Ω

ur dx

)
ξ − bru

∫
Ω

ur−1ξ dx = σξ in Ω,

ξ = 0 on ∂Ω.

This problem is a non-local and singular (when r < 1) eigenvalue problem

which has been analyzed in other papers (see [4] and Section 5 in [12]) and it is

included in the general problem

(4.2)

−∆ξ +m(x)ξ − a1(x)

∫
Ω

a2(x)ξ dx = σξ in Ω,

ξ = 0 on ∂Ω,

where m, a1 ∈ C1(Ω), a2 ∈ C(Ω), a1, a2 > 0 and a2(x) ≤ Kd(x, ∂Ω)−β , β < 1,

K > 0. The existence of a principal eigenvalue of (4.2), denoted by λ1(−∆ +

m; a1; a2), has been established. If no confusion arises, we write λ1(−∆ + m)

when a1 or a2 vanishes (observe that λ1(−∆ + m) is the classical principal

eigenvalue of a local eigenvalue problem).

In the following result we give criteria for the sign of λ1(−∆+m; a1; a2). The

proof, an adaptation of the characterization theorem of the maximum principle

established in Theorem 7.10 of [16], can be found in [4].
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Proposition 4.1.

(a) Assume that there exists a positive function u ∈ C2(Ω) ∩ C1,δ
0 (Ω), δ ∈

(0, 1), such that

−∆u+m(x)u− a1(x)

∫
Ω

a2(x)u dx > 0 in Ω,

(we say that u is a supersolution of (4.2)). Then, λ1(−∆+m; a1; a2) > 0.

(b) Assume that there exists a positive function u ∈ C2(Ω) ∩ C1,δ
0 (Ω), δ ∈

(0, 1), such that

−∆u+m(x)u− a1(x)

∫
Ω

a2(x)u dx < 0 in Ω.

(we say that u is a subsolution of (4.2)). Then, λ1(−∆ +m; a1; a2) < 0.

In the following result, we study the sign of the principal eigenvalue in some

specific cases.

Proposition 4.2. Assume that b > 0.

(a) Assume r ≤ 1 and λ > λ1. There exists b1 > 0 such that for 0 < b < b1,

any positive solution is stable.

(b) Assume r ≥ 1 and λ ≤ 0. Then, any positive solution is unstable.

Proof. (a) Observe that in our case

m(x) = 2ub − λ− b
∫

Ω

urbdx, a1 = brub, a2 = ur−1
b ,

where ub is a positive solution of (1.2). By the strong maximum principle, ub
is strongly positive. Hence, there exist 0 < k1 < k2 such that k1d(x, ∂Ω) ≤
ub ≤ k2d(x, ∂Ω), and then a2 verifies the hypothesis a2(x) ≤ Kd(x, ∂Ω)−β for

β = 1− r.
On the other hand, since ub is a positive solution of (1.2), then

λ1

(
−∆ + ub − λ− b

∫
Ω

urb dx

)
= 0,

and so, by the monotonicity of the principal eigenvalue with respect to the zero

order term, λ1(−∆ + 2ub − λ − b
∫

Ω
urb dx) > 0. Consider eb > 0 the unique

positive solution of the linear equation

(4.3)

−∆eb +

(
2ub − λ− b

∫
Ω

urb dx

)
eb = rub in Ω,

eb = 0 on ∂Ω.

Now, we apply Proposition 4.1. It is clear that eb is a supersolution of (4.1) if

(4.4)
1

b
>

∫
Ω

ur−1
b eb dx.
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We claim that

(4.5) ub → θλ in C2(Ω) as b→ 0.

Observe that (4.5) implies that eb → eλ in C2(Ω) as b → 0, where eλ is the

unique positive solution of

−∆eλ + (2θλ − λ)eλ = rθλ in Ω, eλ = 0 on ∂Ω.

Hence, we conclude that (4.4) holds for small b, then ub is stable.

We prove (4.5). Assume r < 1, then using (3.2) and (3.1) we get that

(4.6) ‖ub‖∞ ≤ C(λ, b),

where C is a constant bounded when b→ 0. Hence,

b

∫
Ω

urbdx→ 0 as b→ 0,

and we conclude with (4.5). Assume now that r = 1, in this case by (3.5) and

(3.6), we conclude that

(4.7) ‖ub‖∞ ≤
λ

1− b|Ω|
.

We can repeat the above reasoning to conclude with (4.5).

(b) In a similar way, ub is a subsolution of (4.1) provided that

(4.8) ub ≤ br
∫

Ω

urb dx.

Since ub ≤ λ+ b
∫

Ω
urb dx, it follows that (4.8) holds for λ ≤ 0 and r ≥ 1. �

Corollary 4.3. Assume 0 < b < b1, r ≤ 1 and λ > λ1, where b1 is from

Proposition 4.2. Then, there exists a unique positive solution of (1.2).

Proof. We use the fixed point index in cones. Define P := {u ∈X : u≥
0 in Ω}. Assume that r ≤ 1 and b < b1, then using (4.6) and (4.7) there exists

R1 independent of b such that ‖u‖L∞(Ω) ≤ R1, for all positive solutions u of

(1.2).

Finally, take M > 0 large enough and consider the operator K : X 7→ X

defined by

K(u) := (−∆ +M)−1

(
u

(
λ+M − u+ b

∫
Ω

ur dx

))
.

It is clear that K is a positive operator whose fixed points are non-negative

solutions of (1.2). Hence, the fixed point index of K over B with respect to the

cone P is well-defined, where B := {u ∈ P : ‖u‖L∞(Ω) ≤ R1 + 1}.
Now, we are going to compute this index in particular cases. We claim that,

if λ > λ1, then

(I.1) iP (K,B) = 1,
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(I.2) iP (K, 0) = 0,

(I.3) iP (K, ub) = 1,

for any positive solution ub of (1.2). Of course, we conclude the uniqueness of

positive solution of (1.2).

(I.2) follows by a similar argument as the one used in the proof of Lemma

2.4. Proposition 4.2 implies (I.3). Finally, we show (I.1). Consider the operator

H1 : [0, 1]×X 7→ X defined by

H1(t, u) := (−∆ +M)−1

(
u

(
λ+M − u+ tb

∫
Ω

ur dx

))
.

By the a priori bounds, H1 has no fixed points on ∂B for t ∈ [0, 1]. Thus, it

follows by homotopy invariance that

iP (K,B) = iP (H1(1, · ),B) = iP (H1(0, · ),B) = 1.

This last inequality follows because u = H1(0, u) is equivalent to the classical

equation (2.1), and for this equation it is well-known that the fixed point index

is equal to one. �

5. Proofs of Theorems 1.1–1.4

Proof of Theorem 1.1. By Theorem 2.2, we know the existence of an

unbounded continuum of positive solutions bifurcating from the trivial solution

at λ = λ1. Since −∆u ≤ u(λ− u), we know that positive solutions do not exist

for λ ≤ λ1 and that for any solution u ≤ θλ. Hence we conclude the existence of

positive solution for λ > λ1.

We show now the uniqueness. Assume that there exist two positive solutions

u 6= v. If
∫

Ω
ur dx =

∫
Ω
vr dx then we conclude easily that u = v. So, assume

that for instance
∫

Ω
ur dx >

∫
Ω
vr dx. Then,

−∆u = u

(
λ+ b

∫
Ω

ur dx− u
)
< u

(
λ+ b

∫
Ω

vr dx− u
)
,

and then by Proposition 2.1 we get u < v, a contradiction.

On the other hand, we have

u ≤ λ+ b

∫
Ω

ur dx,

then u ≤ λ. So, as b→ −∞ we get∫
Ω

ur dx→ 0.

Moreover, as(
λ+ b

∫
Ω

ur dx− λ1

)
ϕ1 ≤ u and λ+ b

∫
Ω

ur dx− λ1 > 0

we conclude that b
∫

Ω
ur dx→ λ1 − λ. This implies that ‖u‖∞ → 0. �
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Proof of Theorem 1.2. Assume b > 0 and r < 1. Define

λ∗ := inf{λ ∈ R : (1.2) possesses at least one positive solution}.

We know by Theorem 2.2 and Proposition 3.1 that −∞ < λ∗ < λ1. We prove

now that there exists a positive solution for all λ > λ∗, for which we are going to

use the sub-supersolution method, see for instance [3]. Indeed, take λ > λ∗, then

there exists µ ∈ [λ∗, λ) such that (1.2) possesses at least one positive solution,

denote it by uµ. Now, it is clear that (u, u) = (uµ,K) is a sub-supersolution of

(1.2) for K large enough, specifically for K verifying K− bKr|Ω| ≥ λ. Enlarging

if necessary K so that uµ ≤ K we conclude the existence of a positive solution

for λ.

Finally, take a sequence of positive solutions (λn, un) of (1.2) such that λn ≥
λ∗ and λn → λ∗. Thanks to the bounds of Proposition 3.1 we have that un →
u∗ ≥ 0, u∗ is a solution for λ = λ∗. Since λ∗ < λ1 and λ1 is the unique bifurcation

point from the trivial solution, we conclude that u∗ > 0.

On the other hand, since u is bounded and

λ+ b

∫
Ω

ur dx > λ1,

and then taking b→ 0 we have that λ ≥ λ1, that is limb→0 λ∗(b) = λ1.

Finally, we prove that lim
b→∞

λ∗(b) = −∞, for that it suffices to show that for

any λ < λ1 there exists b > 0 large enough such that (1.2) possesses at least

one positive solution. Fix λ < λ1, there exists b > 0 large enough (see (3.3))

such that the function f(s) = s − srb
∫

Ω
ϕr1 dx has a minimum sm such that

f(sm) < λ − λ1. Fixing such b, take ε > 0 such that f(ε) < λ − λ1. Then,

(u, u) = (εϕ1,K) is sub-supersolution of (1.2) for K large enough. Indeed, u is

a subsolution if

εϕ1 − bεr
∫

Ω

ϕr1 dx ≤ λ− λ1,

that is, taking into account that ‖ϕ1‖∞ = 1, f(ε) < λ− λ1. �

Proof of Theorem 1.3. Assume that b > 0 and r > 1. Define now

λ∗ := sup{λ ∈ R : (1.2) possesses at least one positive solution}.

We know by Theorem 2.2 and Proposition 3.2 that λ1 < λ∗ < +∞. We prove

now that there exists a positive solution for all λ ∈ [λ1, λ
∗) and observe that for

λ ≤ λ1 positive solutions exist. Indeed, take λ < λ∗, then there exists µ ∈ (λ, λ∗]

such that (1.2) possesses at least one positive solution, denote it by uµ. Now,

it is clear that (u, u) = (εϕ1, uµ) is a sub-supersolution of (1.2) for ε > 0 small

enough, specifically for ε verifying

ε− bεr
∫

Ω

ϕr1 dx ≤ λ− λ1 and εϕ1 ≤ uµ.



708 M. Delgado — G.M. Figueiredo — M.T.O. Pimenta — A. Suárez

Finally, taking a sequence of solutions (λn, un) with λn ≤ λ∗, λn → λ∗ and

thanks to the bounds of Proposition 3.2, we have that un → u∗ > 0, where u∗ is

the unique positive solution for λ = λ∗. Observe that since λ1 < λ∗ ≤ λ, where λ

is defined in Proposition 3.2 and lim
b→∞

λ(b) = λ1 we conclude that lim
b→∞

λ∗(b)=λ1.

Finally, we prove that lim
b→0

λ∗(b) = +∞, for that it suffices to show that for

any λ > λ1, there exists b > 0 small enough such that (1.2) possesses at least

one positive solution. Let us fix λ > λ1, take Ω̃ ⊃ Ω and consider ϕ̃1 and λ̃1 the

positive eigenfunction and eigenvalue associated to Ω̃. Consider the function

g(s) := s(ϕ̃1)L − bsr
∫

Ω

ϕr1 dx,

where (ϕ̃1)L := min
x∈Ω

ϕ1(x). This function attains its maximum at

s = sM =

(
(ϕ̃1)L

/(
b

∫
Ω

ϕr1 dx

))1/(r−1)

and

g(sM ) = (ϕ̃1)
r/(r−1)
L

(
1

/(
b

∫
Ω

ϕr1 dx

))1/(r−1)(
1− 1

r

)
.

Hence for b small enough we get g(sM ) > λ − λ̃1. Take K > 0 such that

g(K) > λ − λ̃1. Fixing such b and K, we have that (u, u) = (εϕ1,Kϕ̃1) is

a sub-supersolution of (1.2) for small ε. �

Proof of Theorem 1.4. By Theorem 2.2, there exists an unbounded con-

tinuum of positive solutions bifurcating from the trivial solution at λ = λ1.

Assume b < 1/|Ω|, then by Proposition 3.3 there does not exist any positive

solution for λ ≤ 0 and the positive solutions are bounded. Hence the existence

of positive solution for λ > λ1 is obtained.

Assume now that b > 1/
∫

Ω
ϕ1 dx. In this case by Proposition 3.3 we know

that for λ ≥ λ1 there does not exist any positive solution and that the positive

solutions are bounded for λ ≤ λ1. Hence the existence of positive solution for

λ < λ1 is obtained. �

6. The parabolic problem

Consider now the time dependent problem (1.1). The existence and unique-

ness of the local positive solution follows from the classical theory, see for instance

Example 51.13 in [19]. Moreover, the solution can be extended in time if the

L∞-norm remains finite. First, we show that in the case b < 0 the solution is

global and bounded.

Lemma 6.1. Assume b ≤ 0. Then, the positive solution u of (1.1) is global

in time and bounded. Moreover, if λ < λ1 we get ‖u(x, t)‖∞ → 0 as t→∞.
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Proof. If b < 0, the solution u of (1.1) is a subsolution of the local logistic

equation

Ut −∆U = U(λ− U), U(x, 0) = u0(x).

It is well-known, see for instance [20], that the above equation is global and

bounded and that u ≤ U . Finally, ‖U(x, t)‖∞ → 0 as t → ∞ for λ < λ1 and

this completes the proof. �

Now, we consider the case b > 0. In this case, thanks to the maximum

principle (see again [20] or [22]) we can assume that u0(x) > 0 for x ∈ Ω and

u0(x) = 0 on ∂Ω.

Theorem 6.2 (Global existence results). Assume b > 0.

(a) If r < 1, the solution exists globally in time for all λ ∈ R.

(b) If r = 1 and b|Ω| < 1, the solution exists globally in time for all λ ∈ R.

(c) If r = 1 and b|Ω| ≥ 1, the solution exists globally in time for all λ < 0 if

u0(x) ≤ λ

1− b|Ω|
for all x ∈ Ω.

(d) Assume r = 1. Let e be the unique positive solution of

(6.1)

−∆e = 1 in Ω,

e = 0 on ∂Ω.

Then, there exists a small number a1 > 0 such that, if u0(x) ≤ a1e(x) for

x ∈ Ω, the solution exists globally in time for all λ ∈
(
−∞, 1

/
max
x∈Ω

e(x)
)
.

(e) Assume r > 1, then, there exists a2 > 0 (which can be computed expli-

citly) such that the solution exists globally in time, for all

λ ∈
(
−∞,

(
1

b|Ω|r

)1/(r−1)
r − 1

r

)
provided that u0(x) ≤ a2.

Proof. For the first three paragraphs, use u(x, t) = M as a supersolution,

where M is a positive constant. Indeed, u is a supersolution of (1.1) if

M ≥ λ+ b|Ω|Mr, M ≥ u0(x).

For (e), observe that the function g(M) = λ + b|Ω|Mr − M goes to +∞ as

M → +∞ if r > 1 and attains a minimum at Mm = (1/(b|Ω|r))1/(r−1). It is

enough to impose that g(Mm) ≤ 0 and a2 will be defined by g(a2) = 0. Finally,

for (d), take u(x, t) = a1e(x). It is clear that u is supersolution if

1 > λe+ a1e

(
b

∫
Ω

e(x) dx− e
)
, a1e(x) ≥ u0(x).

If 1 > λe we can take a1 small enough. �
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The next result studies the case when the solution goes to zero:

Proposition 6.3. Assume b > 0.

(a) If r > 0, the trivial solution is locally exponentially stable if λ < λ1.

(b) If r < 1, there exists λ such that for all λ < λ and initial datum u0, we

have ‖u(x, t)‖∞ → 0 as t→∞.

(c) If r = 1 and b small enough, then for λ < λ1 and for all initial datum

u0, we have ‖u(x, t)‖∞ → 0 as t→∞.

(d) If r > 1, then for all u0 there exists λ(u0) such that for λ < λ(u0), we

have ‖u(x, t)‖∞ → 0 as t→∞.

Proof. First, take a domain Ω1 ⊃ Ω such that, if necessary,

(6.2) λ < µ1 < λ1

where µ1 is the principal eigenvalue associated to −∆ in Ω1 and denote by ψ1

the positive eigenfunction associated to µ1 such that ‖ψ1‖∞ = 1.

In all cases, we take u(x, t) = Me−σtψ1 as a supersolution, with M > 0 and

σ > 0 to be chosen. It is clear that u is a supersolution of (1.1) if

(6.3) Mψ1(x) ≥ u0(x), x ∈ Ω and −σ+µ1−λ ≥ −Me−σtR+bMre−rσtB,

where R := min
x∈Ω

ψ1(x) and B :=
∫

Ω
ψr1 dx.

For the first paragraph, take M small enough, then it suffices to take 0 <

σ < µ1−λ what is possible thanks to (6.2). For the second one (r < 1), observe

that

−Me−σtR+ bMre−rσtB ≤ C
for some positive constant C independent of t and M . It suffices to take λ

negative. When r = 1, then

−Me−σtR+ bMe−σtB = Me−σt(−R+ bB) < 0

for b small enough. Fixing this value of b, take λ < λ1 and σ > 0.

For the last paragraph (r > 1), for a given u0 take M such that u0 ≤ Mψ1.

Fixed such M , take λ small enough such that (6.3) is verified. �

Theorem 6.4 (Blow-up in finite time). Assume b > 0.

(a) Assume r = 1 and define

A :=

∫
Ω

ϕ1 dx.

If bA = 1 and λ > λ1 the solution ‖u(x, t)‖∞ goes to ∞ as t → ∞. In

the case bA > 1 the solution blows up in finite time for λ > λ1 or for

any λ if u0 is large enough.

(b) Assume r > 1. Then, there exists λ such that for λ > λ the solution

blows up in finite time for any u0.
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(c) Assume r > 1. Then, there exists b2 > 0 such that the solution blows up

in finite time if u0(x) ≥ b2ϕ1(x).

Proof. (a) Take u(x, t) = q(t)ϕ1(x) with q(t) and q(0) > 0 to be chosen.

Observe that u is a subsolution of (1.1) if

q′(t) ≤ (λ− λ1)q − q2ϕ1 + bqr+1B and q(0)ϕ1(x) ≤ u0(x),

with B :=
∫

Ω
ϕr1dx. Since ‖ϕ1‖∞ = 1, we can take q such that

q′(t) = (λ− λ1)q − q2 + bqr+1B.

If r = 1 the results follow easily. Indeed, in this case the above equation can be

written as

q′(t) = (λ− λ1)q + q2(−1 + bA).

(b) Assume that r > 1. It can be proved that for 1 < p < r + 1, there exists

µ ∈ R such that

(λ− λ1)q − q2 + bqr+1B ≥ µq + qp.

Indeed, this is equivalent to λ− λ1 − µ ≥ q− bBqr + qp−1, and observe that the

function h(q) = q − bqr + qp−1 is bounded. Taking µ = 0, the above inequality

for λ large enough, and hence q′ ≥ qp and so q blows up in finite time.

(c) We take µ < 0 with |µ| large enough, and hence in this case q′ ≥ µq+ qp.

In this case, q blows up in finite time for q(0) > 0 large enough, that is, for u0

large enough. �

Remark 6.5. (a) Remember that for r ≤ 1 and b small enough the steady-

state problem (1.2) has a unique positive solution. Then, using arguments of [20]

(see for instance Theorem 5.4.4) the solution of (1.1) converges to the unique

positive solution of (1.2).

(b) The blow-up in finite time of problem (1.3) has been studied in [15]. In

order to compare the results of [15] with ours, let us assume that r = 1 and

fix the function a. In [15] it was proved that that there exists a value λ∗ > 0

(related with some eigenvalue problem associated to a+) such that:

• If λ1 < λ < λ∗, then the solution of (1.3) blows up if

(6.4) b > A(λ, u0),

for some specific positive constant A depending on λ and u0. Moreover,

the maps λ 7→ A(λ, u0) and u0 7→ A(λ, u0) are decreasing.

• If λ ≥ λ∗, the solution of (1.3) blows up for any u0.

Hence, as a consequence, the solution of (1.3) blows up for any b if λ is large

enough or any λ and u0 large enough. However, in our results we need to require

that b is large enough to obtain that the solution of (1.1) blows up.
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[9] J. Garćıa-Melián, Multiplicity of positive solutions to boundary blow-up elliptic problems

with signchanging weights, J. Funct. Anal. 261 (2011), 1775–1798.

[10] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic

equations, Comm. Partial Differential Equations 6 (1981), 883–901.
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[18] J. López-Gómez, A. Tellini and F. Zanolin, High multiplicity and complexity of the

bifurcation diagrams of large solutions for a class of superlinear indefinite problems, Com-

mun. Pure Appl. Anal. 13 (2014), 1–73.

[19] P. Quittner, and P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Ex-
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