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FILIPPOV–WAŻEWSKI THEOREM

FOR CERTAIN SECOND ORDER DIFFERENTIAL INCLUSIONS

Grzegorz Bartuzel — Andrzej Fryszkowski

Abstract. In the paper we give a generalization of the Filippov–Ważewski
Theorem to the second order differential inclusions

(∗) Dy = y′′ −A2y ∈ F (t, y),

with the initial conditions

(∗∗) y(0) = α, y′(0) = β,

where A ∈ Rd×d and F : [0, T ] × Rd  c(Rd) is a multifunction satisfying

for each t ∈ [0, T ] the Lipschitz condition in y

dH(F (t, y1), F (t, y2)) ≤ l(t)|y1 − y2|,

where l( · ) is integrable. The main result is the following:

Theorem 5.1. Assume that F : [0, T ] × Rd  c(Rd) is measurable in t,
Lipschitz continuous in x ∈ Rd (with integrable constant) and integrably

bounded. Let r ∈W 2,1 be a solution of the relaxed problem

(∗∗∗) Dy = y′′ −A2y ∈ cl coF (t, y),

with (∗∗). Then, for each ε > 0, there exists a solution y ∈ W 2,1 of (∗)
with (∗∗) such that

‖y − r‖C1[0,T ] < ε.

The proof goes via a version of the Fillipov Lemma (Theorem 4.4) for

inclusions (∗).
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1. Introduction

In the differential inclusion theory one of seminal results is the Filippov–

Ważewski Theorem. In the classical statement it concerns the set of all absolutely

continuous solutions of differential inclusions of the first order

(1.1) y′ ∈ F (t, y), y(0) = y0,

where F : [0, T ] × Rd  Rd is a Lipschitzean in y multifunction. It states that

the solution set is dense in the uniform convergence topology on [0, T ] in the

solution set of the so-called relaxed differential inclusion

(1.2) y′ ∈ cl coF (t, y), y(0) = y0,

where cl coA means the closed convex hull of a set A ⊂ Rd.

The importance of the Filippov–Ważewski Theorem follows not only from

its purely mathematical elegance. The celebrated theorem also gives the wide

spectrum of applications in optimal control theory and differential inclusions (see

cf. [1], [2], [4]–[13], [15]–[19], [21]–[24] and many others). It can be generalized

in many ways. In particular, lately there is observed increase of interest in the

field of ordinary differential inclusions of higher order in the form

(1.3) Dy ∈ F (t, y),

where D is an ordinary differential operator. For example there have been ex-

amined initial value problems for certain evolution inclusions [8], [9], [17], [3],

[20] and n-th order of the form y(n) − λy ∈ F (t, y) in [7].

In this paper our attention is focused on the differential inclusions in the

form

(1.4) Dy = y′′ −A2y ∈ F (t, y),

where F : [0, T ] × Rd  Rd is a multifunction and Dy = y′′ − A2y is a matrix

differential operator with a nonsigular matrix A ∈ Rd×d. For (1.4) we impose

initial conditions

(1.5) y(a) = α, y′(a) = β,

where a ∈ [0, T ] and α, β ∈ Rd. By a solution of (1.4) with initial conditions (1.5)

we mean a function y ∈ W 2,1[0, T ] satisfying (1.4) almost everywhere in [0, T ]

and (1.5). Our considerations are based on the convolution form of solutions of

the differential equation Dy = f , where f ∈ L1([0, T ],Rd). We present them in

Section 2, while in Section 3 we give a Gronwall type inequality for a sequence

of iterations. In Section 4 we present (Theorem 4.4) an analogue of the Filippov

Lemma for (1.4) with an arbitrary initial condition (1.5). It usually plays the

crucial role in the proofs of relaxation results (see cf. [1]–[3], [5]–[10], [13], [15],

[17]–[19], [21], [22], [24]). That result generalizes Theorem 3 from [3], where
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conditions concerning the multifunction F : [0, T ] × Rd  Rd were stronger.

Section 5 is devoted to the proof of our relaxation result:

Theorem 5.1. Assume that F : [0, T ]× Rd  c(Rd) is:

(a) for each y ∈ Rd measurable in t,

(b) for each t ∈ [0, T ] Lipschitz continuous in x ∈ Rd with a constant l(t)

and l ∈ L1([0, T ],R+),

(c) integrably bounded by γ ∈ L1([0, T ],R+), i.e.

sup{|z| : z ∈ (t, y)} ≤ γ(t) a.e. in [0, T ].

Let r ∈W 2,1 be a solution of the relaxed problem

Dy = y′′ −A2y ∈ cl coF (t, y) with y(0) = α, y′(0) = β.

Then, for each ε > 0, there exists a solution y ∈ W 2,1 of (1.4) with y(0) = α,

y′(0) = β such that ‖y − r‖C1[0,T ] < ε.

2. An IVP for matrix second order ODE

Let (Rd, | · |) be a Euclidean space. By L1([a, b],Rd) we mean the Banach

space of Lebesgue integrable functions u : [a, b] → Rd with the norm ‖u‖1 =∫
[a,b]
|u(t)| dt and by V = V [a, b] = {y ∈W 2,1([a, b],Rd) : y(a) = y′(a) = 0} with

the norm ‖y‖V = ‖y′′‖1.

For a given function f ∈ L1([a, b],Rd) and a nonsingular matrix A ∈ Rd×d

we shall consider the differential equation

(2.1) Dy = y′′ −A2y = f,

with initial conditions

(2.2) y(a) = 0, y′(a) = 0.

By a solution of (2.1) with (2.2) we mean a function y ∈ V satisfying (2.1) almost

everywhere (a.e.) in [a, b].

Let us observe first that the solution of (2.1) has the convolution form

y(t) = (RAf)(t) = (A−1 sinh(Ax) ∗a f)(t),

where (ϕ∗af)(t) =
∫ t

a
ϕ(t−x)f(x) dx. Indeed, for each function ϕ ∈ C1(R,Rd×d)

we have

(2.3) (ϕ ∗a f)′(t) = (ϕ′ ∗a f)(t) + ϕ(0)f(t).

Thus evaluating the derivatives, we obtain

y′(t) = (cosh(Ax) ∗a f)(t) and y′′(t) = (A sinh(Ax) ∗a f)(t) + f(t).

Hence we get y′′(t) = (A sinh(Ax) ∗ f)(t) + f(t) = A2y(t) + f(t). Checking the

IC is straightforward.
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Denote

(2.4) z0(t) = A−1 sinh(A(t− a))β + cosh(A(t− a))α.

Then the function y(t) = (RAf)(t) + z0(t) is the unique solution of (2.1) with

initial conditions (2.2). Note that y ∈W = z0 + V .

Let us recall that by the norm ‖A‖ of the matrix A = [aij ] ∈ Rd×d we

mean the number ‖A‖ = max
i

[
d∑

j=1

|aij |
]
. We shall need the following pointwise

inequalities:

(2.5) ‖An‖ ≤ ‖A‖n,, ‖ sinh(At)‖ ≤ sinh(‖A‖t),

‖A−1 sinh(At)‖ =

∥∥∥∥ ∞∑
n=0

A2nt2n+1

(2n+ 1)!

∥∥∥∥ ≤ ∞∑
n=0

‖A‖2nt2n+1

(2n+ 1)!
=

sinh(‖A‖t)
‖A‖

,

which hold for all t ≥ 0.

In what follows we shall assume that [a, b] ⊂ [0, T ]. Observe that for any

f ∈ L1([a, b],Rd), for all t ∈ [a, b] we have the inequality

(2.6) |A−1(sinh(Ax) ∗a f)(t)| ≤
(

sinh(‖A‖x)

‖A‖
∗a |f |

)
(t).

As a consequence of the later estimate we have for all t ∈ [a, T ]

|RAu−RAv|(t) ≤ (R‖A‖|u− v|)(t).

3. A Gronwall type lemma

In the case d = 1 take p0, l ∈ L1([0, T ],R+) and ω > 0 and consider the

sequence (pn)n≥0 ⊂ L1([a, b],R+) satisfying for n = 0, 1, . . . the inequalities

(3.1) pn+1(t) ≤ l(t)
(

sinh(ωx)

ω
∗a pn

)
(t),

where [a, b] ⊂ [0, T ]. Let

(3.2) ϕ(t) =

∞∑
n=0

pn(t).

Then we have the following estimates:

Lemma 3.1. Assume that the sequence (pn)n≥0 ⊂ L1([a, b],R+) satisfies for

n = 0, 1, . . . inequality (3.1). Then:

(a) For n ≥ 1

(3.3) pn(t) ≤ l(t)
∫ t

a

(
sinhω(t− z)

ω

)n
(m(t)−m(z))n−1

(n− 1)!
p0(z) dz,

where m(t) =
∫ t

0
l(z) dz.
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(b) The function ϕ, given by (3.2), is integrable and for almost all t ∈ [a, b]

we have

ϕ(t) ≤ p0(t) + l(t)

t∫
a

sinhω(t− z)
ω

K(t, z)p0(z)dz,

where K(t, z) = exp(sinhω(t− z)(m(t)−m(z))/ω). Then,

sinh(ωx)

ω
∗a ϕ ≤

∫ t

a

sinhω(t− z)
ω

K(t, z)p0(z) dz,(3.4)

cosh(ωx) ∗a ϕ ≤
∫ t

a

cosh(ω(t− z))K(t, z)p0(z) dz.(3.5)

(c) If for l > 0 and n ≥ 0 we have

pn+1(t) = l(t)

(
sinh(ωx)

ω
∗a pn

)
(t).

Moreover, ψ = (ϕ− p0)/l is the solution of the IVP

ψ′′ − (ω2 + l)ψ = p0, ψ(0) = ψ′(0) = 0.

Proof. (a) We shall use the induction argument. For n = 1 the statement

is obvious. Assume that (3.3) holds for n. Then for n+ 1 we proceed as follows:

pn+1(t) ≤ l(t)
(

sinh(ωx)

ω
∗a pn

)
(t) = l(t)

∫ t

a

sinh(ω(t− z))
ω

pn(z) dz

≤ l(t)
∫ t

a

sinh(ω(t− z))
ω

l(z)

·
(∫ z

a

(
sinh(ω(z − x))

ω

)n
(m(z)−m(x))n−1

(n− 1)!
p0(x) dx

)
dz.

Applying the Fubini Theorem, we get

pn+1(t) ≤ l(t)

ωn+1

·
∫ t

a

(∫ t

x

sinh(ω(t− z))l(z)(sinh(ω(z − x)))n
(m(z)−m(x))n−1

(n− 1)!
dz

)
p0(x) dx.

But d(m(z)−m(x))/dz = l(z) and sinh(ωt) is increasing. Hence for all 0 ≤ x ≤
z ≤ t ≤ T we have

sinh(ω(t− z)) ≤ sinh(ω(t− x)) and sinh(ω(z − x)) ≤ sinh(ω(t− x)).
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Thus

pn+1(t) ≤ l(t)

ωn+1

∫ t

a

(∫ t

x

d

dz
(m(z)−m(x))

(m(z)−m(x))n−1

(n− 1)!
dz

)
· sinhn+1(ω(t− x))p0(x) dx

=
l(t)

ωn+1

∫ t

a

(∫ t

x

d

dz

(
(m(z)−m(x))n

n!

)
dz

)
sinhn+1(ω(t− x))p0(x) dx

= l(t)

∫ t

a

(
sinh(ω(t− x))

ω

)n+1
(m(t)−m(x))n

n!
p0(x) dx,

what ends the induction step and the proof of (a).

(b) By (a) we have

ϕ(t) ≤ p0(t) +

∞∑
n=1

l(t)

∫ t

a

(
sinhω(t− z)

ω

)n
(m(t)−m(z))n−1

(n− 1)!
p0(z) dz

= p0(t) + l(t)

∫ t

a

(
sinhω(t− z)

ω
exp

(
sinhω(t− z)(m(t)−m(z))

ω

))
p0(z) dz

= p0(t) + l(t)

∫ t

a

sinhω(t− z)
ω

K(t, z)p0(z) dz.

To see the next inequalities we can proceed as follows:

• for (3.4)

l(t)

(
sinh(ωx)

ω
∗a ϕ

)
(t) =

∞∑
n=0

l(t)

(
sinh(ωx)

ω
∗a pn

)
(t)

≤
∞∑

n=0

pn+1(t) = ϕ(t)− p0(t) ≤ l(t)
∫ t

a

sinhω(t− z)
ω

K(t, z)p0(z) dz;

• for (3.5)

(cosh(ωx) ∗a ϕ)(t) =

∞∑
n=0

∫ t

a

cosh(ω(t− z))pn(z) dz ≤
t∫

a

cosh(ω(t− z))p0(z) dz

+

∞∑
n=1

∫ t

a

cosh(ω(t− z))l(z)
∫ z

a

(
sinhω(z − x)

ω

)n
(m(z)−m(x))n−1

(n− 1)!
p0(x) dx dz.

Now the same Fubini Theorem argument yields∫ t

a

cosh(ω(t− z))l(z)
∫ z

a

(
sinhω(z − x)

ω

)n
(m(z)−m(x))n−1

(n− 1)!
p0(x) dx dz

=

∫ t

a

(∫ t

x

cosh(ω(t−z))
(

sinhω(z − x)

ω

)n(
(m(z)−m(x))n

n!

)′
dz

)
p0(x) dx.

But for all 0 ≤ x ≤ z ≤ t ≤ T we have

cosh(ω(t− z)) ≤ cosh(ω(t− x)) and sinh(ω(z − x)) ≤ sinh(ω(t− x)).
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Therefore

(cosh(ωx) ∗a ϕ)(t) ≤
∫ t

a

cosh(ω(t− z))p0(z) dz

+

∞∑
n=1

∫ t

a

(∫ t

x

(
(m(z)−m(x))n

n!

)′
dz

)
·
(

sinhω(t− x)

ω

)n

cosh(ω(t− x))p0(x) dx

=

∞∑
n=0

∫ t

a

(m(t)−m(x))n

n!

(
sinhω(t− x)

ω

)n

cosh(ω(t− x)p0(x) dx

=

∫ t

a

exp
sinhω(t− x)(m(t)−m(x))

ω
cosh(ω(t− x))p0(x) dx,

what gives (3.5).

(c) For almost all t ∈ [a, b] we have

ϕ(t) = p0(t) +

∞∑
n=0

pn+1(t)

= p0(t) +

∞∑
n=0

l(t)

(
sinh(ωx)

ω
∗a pn

)
(t) = p0(t) + l(t)

(
sinh(ωx)

ω
∗a ϕ

)
(t).

Hence ((ϕ− p0)/l)′′ − ω2(ϕ− p0)/l = ϕ, what gives the claim. �

4. A Filippov Lemma on [a, b]

Consider an IVP problem

Dy ∈ F (t, y),(4.1)

y(a) = α, y′(a) = β,(4.2)

where α, β ∈ Rd are arbitrary but fixed. By a solution of (1.4) with initial

conditions (4.2) we mean a function y ∈ W = z0 + V satisfying (4.1), where z0
is given by (2.4).

We shall pose the following assumptions on F : [0, T ] × Rd  c(Rd), where

c(Rd) stands for the family of all nonempty compact subsets of Rd:

Condition 4.1. For every y ∈ Rd the multifunction F ( · , y) is Lebesgue

measurable in t.

Condition 4.2. The multifunction F (t, · ) is Lipschitz continuous in y with

an integrable function l( · ), i.e. for every y1, y2 ∈ Rd the inequality

dH(F (t, y1), F (t, y2)) ≤ l(t) |y1 − y2|

holds for almost all t ∈ [0, T ], where dH(K,L) stands for the Hausdorff distance

between sets K,L ∈ c(Rd).
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Condition 4.3. The multivalued mapping t 7→ F (t, y) is integrably bounded

by some γ ∈ L1[0, T ], i.e. for each y ∈ Rd

sup{|z| : z ∈ F (t, y)} ≤ γ(t) a.e. in [0, T ].

Below we present a version of the Filippov Lemma for (4.1) with (4.2). It

generalizes our result from [3], where in Condition 4.2 we have assumed that

there is a constant l > 0 such that

dH(F (t, y1), F (t, y2)) ≤ l|y1 − y2|

holds for almost all t ∈ [0, T ]. The main result of this section is the following:

Theorem 4.4. Assume that F : [0, T ]×Rd  c(Rd) satisfies Conditions 4.1–

4.3. Fix [a, b] ⊂ [0, T ] and let y0 ∈ W [a, b] = z0 + V [a, b] = W be an arbitrary

function with (4.2) such that:

2d(Dy0(t), F (t, y0(t))) ≤ p0(t) a.e. in [a, b],

where p0 ∈ L1[0, T ] and d(y,A) = inf{|y − x| : x ∈ A}. Then there exists

a solution y ∈W of (4.1) with (4.2) such that

|Dy(t)−Dy0(t)| ≤ l(t)
∫ t

a

sinh((t− z)‖A‖)
‖A‖

Φ(t, z)p0(z) dz + p0(t),

|y(t)− y0(t)| ≤
∫ t

a

sinh((t− z)‖A‖)
‖A‖

Φ(t, z)p0(z) dz

and

|y′(t)− y′0(t)| ≤
∫ t

a

cosh((t− z)‖A‖)Φ(t, z)p0(z) dz,

where Φ(t, z) = exp[((m(t)−m(z)) sinh((t− z)‖A‖))/‖A‖].

Proof. Observe first that for any y ∈ L∞([a, b],Rd) the multivalued map-

ping t 7→ F (t, y(t)) is measurable and, by Condition 3, integrably bounded by

γ(t), i.e.

(4.3) sup{|z| : z ∈ F (t, y(t))} ≤ γ(t) a.e. in [a, b].

For each u ∈ L1([a, b],Rd) denote

K(u) = {f ∈ L1([a, b],Rd) : f(t) ∈ F (t, (RAu)(t) + z0(t)) a.e. in [a, b]}.

Since RAu + z0 ∈ W ⊂ L∞([a, b],Rd) then, by (4.3), each K(u) is nonempty.

Observe now that for every u, v ∈ L1([a, b],Rd) and any f ∈ K(u) there is

g ∈ K(v) such that

(4.4) |f(t)− g(t)| ≤ l(t)(R‖A‖|u− v|)(t) a.e. in [a, b].

Indeed, let g ∈ K(v) be such that

|f(t)− g(t)| = d(f(t), F (t, (RAv)(t)) + z0(t)).
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But for such g, by Condition 4.2, we have

d(f(t), F (t, (RAv)(t)) + z0(t))

≤ dH(F (t, (RAu)(t) + z0(t)), F (t, (RAv)(t) + z0(t)))

≤ l(t)(|RAu−RAv|)(t) ≤ l(t)(R‖A‖|u− v|)(t)

almost everywhere in [a, b], what shows our claim.

In what follows we shall adopt the Filippov technique with some necessary

changes. Starting with y0 = RAu0 + z0 (Dy0 = u0), we may choose, by (4.4),

u1 ∈ K(u0) such that

|u1(t)− u0(t)| ≤ p0(t) a.e. in [a, b],

where y1 = RAu1 + z0. Hence for all t ∈ [a, b] we have

(4.5) |y1(t)− y0(t)| = |(RA(u1 − u0))(t)| ≤
(

sinh(x‖A‖)
‖A‖

∗a p0
)

(t)

and

|y′1(t)− y′0(t)| = |(cosh(xA) ∗a (u1 − u0))(t)| ≤ (cosh(x‖A‖) ∗a p0)(t).

Now (4.5) and Condition 4.2 yield

d((Dy1)(t), F (t, y1(t))) ≤ l(t)
(

sinh(x‖A‖)
‖A‖

∗a p0
)

(t) = p1(t) a.e. in [a, b].

Therefore, by (4.4), we may select y2 = Ru2 + z0 ∈ W such that u2 = Dy2 ∈
K(u1) and

|u2(t)− u1(t)| ≤ p1(t) a.e. in [a, b].

Observe that, for all t ∈ [a, b]

|y2(t)− y1(t)| = |(RA(u2 − u1))(t)|

= |A−1(sinh(Ax) ∗a (u2 − u1))(t)| ≤
(

sinh(x‖A‖)
‖A‖

∗a p1
)

(t)

and

|y′2(t)− y′1(t)| = |(cosh(Ax) ∗a (u2 − u1))(t)| ≤ (cosh(x‖A‖) ∗a p1).

The latter together with (4.4) yields

d((Dy2)(t), F (t, y2(t))) ≤ l(t)
(

sinh(x‖A‖)
‖A‖

∗a p1
)

(t) = p2(t) a.e. in [a, b].

Continuing this procedure we obtain, by mathematical induction, the sequences

(pn) ∈ L1([a, b]), (un) ∈ L1([a, b],Rd) and (yn) = (Run + z0) ∈ W such that for

n = 0, 1, . . .

pn+1(t) = l(t)

(
sinh(x‖A‖)
‖A‖

∗a pn
)

(t), un+1 ∈ K(un), yn = RAun + z0,
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and

|un+1(t)− un(t)| = |(Dyn+1)(t)− (Dyn)(t)| ≤ pn(t) a.e. in [a, b].

Then

|yn+1(t)− yn(t)| ≤
(

sinh(x‖A‖)
‖A‖

∗a pn
)

(t),

|y′n+1(t)− y′n(t)| ≤ (cosh(x‖A‖) ∗a pn)(t)

and thus almost everywhere in [a, b]

dH((Dyn+1)(t), F (t, yn+1(t))) ≤ l(t)(R‖A‖pn)(t) = pn+1(t).

We are going to show that (un) = (Dyn), (yn) and (y′n) are Cauchy sequences.

By Lemma 3.1 (a), for ω = ‖A‖ we conclude first that for n ≥ 1

(4.6) pn(t) ≤ l(t)
∫ t

a

(
sinh((t− z)‖A‖)

‖A‖

)n
(m(t)−m(z))n−1

(n− 1)!
p0(z) dz,

where m(t) =
∫ t

0
l(z) dz. Moreover, from Lemma 3.1 (b) we know that ϕ(t) =

∞∑
n=0

pn(t) is integrable and we have the estimate

ϕ(t) ≤ p0(t) + l(t)

∫ t

a

sinh(t− z)‖A‖
‖A‖

Φ(t, z)p0(z) dz,

where Φ(t, z) = exp(sinh((t− z)‖A‖)(m(t)−m(z))/‖A‖). Therefore ϕn(t) =
∞∑
i=n

pi(t), with ϕ0 = ϕ, are integrable and ϕn → 0 pointwisely in L1 as n → ∞.

Observe now that for n = 0, 1, . . . and k = 1, 2, . . . we have

(4.7) |Dyn+k(t)−Dyn(t)| ≤
n+k−1∑
i=n

pi(t) ≤ ϕn(t) a.e. in [a, b].

So, for almost all t ∈ [a, b]

(4.8) |yn+k(t)− yn(t)| ≤
∞∑
i=n

(
sinh(x‖A‖)
‖A‖

∗a pi
)

(t) =

(
sinh(x‖A‖)
‖A‖

∗a ϕn

)
(t)

and

(4.9) |y′n+k(t)− y′n(t)| ≤ (cosh(x‖A‖) ∗a ϕn)(t).

Therefore the sequences {un} ⊂ L1([a, b],Rd), {yn} = {RAun + z0} ⊂ W and

{y′n} ⊂ W 1,1
0 [a, b] + z′0 are convergent pointwisely and thus, by the Lebesgue

Dominated Convergence Theorem, strongly.

Denote limDyn = Dy. Thus lim yn = y and lim y′n = y′. Since, for each

n = 0, 1, . . ., (Dyn+1)(t) ∈ F (t, yn(t)) almost everywhere in [a, b] and each F (t, · )
is Lipschitz continuous, then y is a solution of (4.1). We shall check that it is



Filippov–Ważewski Theorem 399

the required one. Indeed, taking n = 0 in (4.8), (4.9) and passing to the limit

with k →∞, we have

|Dy(t)−Dy0(t)| ≤ ϕ(t) a.e. in [a, b].

So, for almost all t ∈ [a, b]

|y(t)− y0(t)| ≤
(

sinh(x‖A‖)
‖A‖

∗a ϕ
)

(t)

and

|y′(t)− y′0(t)| ≤ (cosh(x‖A‖) ∗a ϕ)(t).

Using Lemma 3.1 (b) again, we obtain that almost everywhere in [a, b]

|Dy(t)−Dy0(t)| ≤ p0(t) + l(t)

∫ t

a

sinh(t− z)‖A‖
‖A‖

Φ(t, z)p0(z) dz,

|y(t)− y0(t)| ≤
∫ t

a

sinh((t− z)‖A‖)
‖A‖

Φ(t, z)p0(z) dz

and

|y′(t)− y′0(t)| ≤
∫ t

a

cosh((t− z)‖A‖)Φ(t, z)p0(z) dz.

This ends the proof. �

5. A Filippov–Ważewski Theorem on [0, T ]

We are going to give a version of the Filippov–Ważewski result concerning

the relation between the solution sets of the problem:

Dy ∈ F (t, y),(5.1)

Dy ∈ cl coF (t, y),(5.2)

with the same IC’s

(5.3) y(0) = α, y′(0) = β,

where F : [0, T ]×Rd  c(Rd) satisfies Conditions 4.1–4.3. Namely, we have the

following:

Theorem 5.1. Let r be a solution of (5.2) with (5.3). Then, for each ε > 0,

there exists a solution y of (5.1) with (5.3) such that ‖y − r‖C1[0,T ] < ε.

Proof. Fix ε > 0 and denote

M = 1 + sup
t∈[0,T ]

(∫ t

0

sinh((t− z)‖A‖)
‖A‖

Φ(t, z)l(z) dz,∫ t

0

cosh((t− z)‖A‖)Φ(t, z)l(z) dz

)
,

where Φ(t, z) = exp[sinh((t− z)‖A‖)(m(t)−m(z))/‖A‖].
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Take a partition 0 = t0 < t1 < . . . < tN+1 = T such that for each k =

0, . . . , N the following inequalities hold:∫
[tk,tk+1]

γ(x) dx <
ε

2M
,∫

[tk,tk+1]

sinh(‖A‖(tk+1 − x))

‖A‖
γ(x) dx <

ε

2M
,∫

[tk,tk+1]

cosh(‖A‖(tk+1 − x))γ(x) dx <
ε

2M
.

Let Dr = v, where v(t) ∈ cl coF (t, r(t)) almost everywhere in t. For t ∈ [tk, tk+1]

denote by zk = zk(t) the unique solution of

Dz = 0, with IC’s z(tk) = r(tk), z′(tk) = r′(tk).

Then, for t ∈ [tk, tk+1], we have[
r(t)− zk(t)

r′(t)− z′k(t)

]
=

∫ t

tk

[
A−1 sinh(A(t− x))

cosh(A(t− x))

]
v(x) dx.

Therefore[
r(tk+1)− zk(tk+1)

r′(tk+1)− z′k(tk+1)

]
∈
∫
[tk,tk+1]

[
A−1 sinh(A(tk+1 − x))

cosh(A(tk+1 − x))

]
cl coF (x, r(x)).

But by the properties of the Aumann integral (see cf. [12] and [15]) we have∫
[tk,tk+1]

Ψ(x)cl coF (x, r(x)) =

∫
[tk,tk+1]

Ψ(x)F (x, r(x)),

where Ψ(x) are n× d-matrices with essentially bounded entries. Thus[
r(tk+1)− zk(tk+1)

r′(tk+1)− z′k(tk+1)

]
∈
∫
[tk,tk+1]

[
A−1 sinh(A(tk+1 − x))

cosh(A(tk+1 − x))

]
F (x, r(x))

and this means that, for each k = 0, . . . , N , there exists an integrable selection

uk(t) ∈ F (t, r(t)) almost everywhere in [tk, tk+1] such that[
r(tk+1)− zk(tk+1)

r′(tk+1)− z′k(tk+1)

]
=

∫
[tk,tk+1]

[
A−1 sinh(A(tk+1 − x))

cosh(A(tk+1 − x))

]
uk(x) dx.

Take u =
N∑

k=0

uk · χ[tk,tk+1] and let y0 be a solution of Dy = u with (5.3). Then,

for t ∈ [0, t1], we have[
r(t1)− z1(t1)

r′(t1)− z′1(t1)

]
=

∫
[0,t1]

[
A−1 sinh(A(t1 − x))

cosh(A(t1 − x))

]
u0(x) dx

=

[
y0(t1)− z1(t1)

y′0(t1)− z′1(t1)

]
.
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So y0(t1) = r(t1), y′0(t1) = r′(t1). Moreover,

|r(t)− y0(t)| ≤
∫
[0,t1]

‖A−1 sinh((t1 − x)A)‖|v(x)− u0(x)| dx

≤
∫
[0,t1]

2 sinh(‖A‖(t1 − x))

‖A‖
γ(x) dx ≤ ε

M

and

|r′(t)− y′0(t)| ≤
∫
[0,t1]

cosh(‖A‖(tk+1 − x))|v(x)− u0(x)| dx

≤
∫
[0,t1]

2 cosh(‖A‖(tk+1 − x))γ(x) dx ≤ ε

M
.

Hence, for almost all t ∈ [0, t1]

d((Dy0)(t), F (t, y0(t))) = d(u(t), F (t, y0(t))) ≤ l(t)|r(t)− y0(t)| ≤ εl(t)

M
.

Similarly, for t ∈ [t1, t2], we conclude that[
r(t)− z2(t)

r′(t)− z′2(t)

]
=

∫ t

t1

[
A−1 sinh(A(t− x))

cosh(A(t− x))

]
u1(x) dx,

where u1(t) ∈ F (t, r(t)) almost everywhere in [t1, t2]. Hence[
r(t2)− z2(t2)

r′(t2)− z′2(t2)

]
=

∫ t2

t1

[
A−1 sinh(A(t2 − x))

cosh(A(t2 − x))

]
u1(x) dx

=

[
y(t2)− z1(t2)

y′(t2)− z′1(t2)

]
.

Thus r(t2) = y0(t2) and r′(t2) = y′0(t2). Moreover, for almost all t ∈ [t1, t2]

|r(t)− y0(t)| ≤
∫
[t1,t2]

‖A−1 sinh((t2 − x)A)‖|v(x)− u1(x)| dx

≤
∫
[t1,t2]

2
sinh(‖A‖(t2 − x))

‖A‖
γ(x) dx ≤ ε

M

and

|r′(t)− y′0(t)| ≤
∫
[t1,t2]

cosh(‖A‖(t2 − x))|v(x)− u0(x)| dx

≤
∫
[t1,t2]

2 cosh(‖A‖(t2 − x))γ(x) dx ≤ ε

M
.

Hence, for almost all t ∈ [t1, t2], d((Dy0)(t), F (t, y0(t))) ≤ εl(t)M .

Continuing this procedure from [tk, tk+1] to [tk+1, tk+2], we conclude that for

the function y0 we have, for all t ∈ [0, T ]

|r(t)− y0(t)| ≤ ε

M
, |r′(t)− y′0(t)| ≤ ε

M
, d((Dy0)(t), F (t, y0(t))) ≤ εl(t)

M

and, for k = 1, . . . , N + 1 r(tk) = y0(tk) and r′(tk) = y′0(tk).
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Now from Theorem 4.4 for p0(t) = εl(t)/M we conclude the existence of the

solution y of (5.1) with (5.3) such that

|Dy(t)−Dy0(t)| ≤ εl(t)

M

∫ t

0

sinh((t− z)‖A‖)
‖A‖

Φ(t, z)l(z) dz +
εl(t)

M
,

|y(t)− y0(t)| ≤ ε

M

∫ t

0

sinh((t− z)‖A‖)
‖A‖

Φ(t, z)l(z) dz

and

|y′(t)− y′0(t)| ≤ ε

M

∫ t

0

cosh((t− z)‖A‖)Φ(t, z)l(z) dz.

Hence

|y′(t)− r′(t)| ≤ ε

M

(
1 +

∫ t

0

cosh((t− z)‖A‖)(Φ(t, z))l(z) dz

)
≤ ε,

|y(t)− r(t)| ≤ ε

M

(
1 +

1

‖A‖

∫ t

0

sinh((t− z)‖A‖)
‖A‖

Φ(t, z)l(z) dz

)
≤ ε.

This ends the proof. �
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