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BOUNDEDNESS OF LARGE-TIME SOLUTIONS

TO A CHEMOTAXIS MODEL

WITH NONLOCAL AND SEMILINEAR FLUX

Jan Burczak — Rafael Granero-Belinchón

Abstract. A semilinear version of parabolic-elliptic Keller–Segel system

with the critical nonlocal diffusion is considered in one space dimension. We
show boundedness of weak solutions under very general conditions on our

semilinearity. It can degenerate, but has to provide a stronger dissipation

for large values of a solution than in the critical linear case or we need
to assume certain (explicit) data smallness. Moreover, when one considers

a logistic term with a parameter r, we obtain our results even for diffusions

slightly weaker than the critical linear one and for arbitrarily large initial
datum, provided r > 1. For a mild logistic dampening, we can improve the

smallness condition on the initial datum up to ∼ 1/(1− r).

1. Introduction

In this paper we study the following model:

∂tu = ∂x(−µ(u)Hu+ u∂xv) + ru(1− u), x ∈ T, t ∈ R+,(1.1)

∂2
xv = u− 〈u〉, x ∈ T, t ∈ R+,(1.2)
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where u = u(x, t), v = v(x, t), H stands for the (periodic) Hilbert transform, i.e.

Ĥu(ξ) = −i ξ
|ξ|

û(ξ).

T = [−π, π], r ≥ 0 and µ is a certain function (semilinearity), precised in what

follows. Before formulating our results let us explain our motivations to study

system (1.1)–(1.2).

1.1. Motivation. (a) Mathematical biology. One of the basic systems stud-

ied in the context of chemotaxis is the parabolic–elliptic Keller–Segel system

(also known as the Smoluchowski–Poisson system)

(1.3) ∂tu = ∇ · (µ∇u− u∇φ), x ∈ T, t ∈ R+,

where d ≥ 1 denotes the spatial dimension, Td = [−π, π]d, µ > 0 is a constant

and φ is recovered from u through some operator, i.e. φ(x, t) = T (u(x, t)). In

many cases φ satisfies the Poisson equation

(1.4) −∆φ = u− 〈u〉, x ∈ Td, t ∈ R+.

In this notation, u represents the concentration of cells, 〈u〉 its space average

and φ gives us the concentration of a chemical substance that attracts cells. It

is biologically justified to enrich equation (1.3) with the logistic term, obtaining

(1.5) ∂tu = ∇ · (µ∇u− u∇φ) + ru(1− u), x ∈ Td, t ∈ R+,

where r ≥ 0. Model (1.5)–(1.4) is related to the parabolic-elliptic simplification

of the cell kinetics model M8 in [28], that describes a bacterial pattern formation

or cell movement and growth during angiogenesis.

Another application of model (1.5)–(1.4) occurs in tumor growth. In particu-

lar, this model is related to the three-component urokinase plasminogen invasion

model (see [29]). There is a huge literature on the mathematical study of a nu-

merous versions of (1.5)–(1.4) in the context of mathematical biology, see [5],

[7], [9], [10], [16], [25], [30] and the references therein.

(b) Natural sciences. Let us take in (1.5)–(1.4), v := −φ. The resulting

system

∂tu = ∇ · (µ∇u+ u∇v) + ru(1− u), x ∈ Td, t ∈ R+,(1.6)

∆v = u− 〈u〉, x ∈ Td, t ∈ R+,(1.7)

in the case r = 0 is important in mathematical cosmology and gravitation theory.

It is very similar in spirit to the Zel’dovich approximation used in cosmology to

study the formation of large-scale structure in the primordial universe, see also

[1], [4]. It is also connected with the Chandrasekhar equation for the gravitational

equilibrium of polytropic stars, statistical mechanics and the Debye system for

electrolytes, see [6].



Chemotaxis Model with Nonlocal and Semilinear Flux 371

Remark 1.1. In what follows, we consider a system with the sign “+” in front

of terms u∇v and ∆v, compare motivation (b), remembering that letting φ := −v
we get the equations studied in mathematical biology (see motivation (a)).

1.2. Central problem. The focal point in the studies of solutions to (1.6)–

(1.7) is the matter of distinguishing between the blowup and global-in-time

regimes in correlation with the dimension d, initial data and parameters of the

system. Roughly speaking, it turns out that with µ = 1, r = 0 there is a 8π

criticality of the initial mass ‖u0‖L1 in two dimensions. Below this threshold one

can have the global existence of bounded solutions and above it there is a finite

time blowup (see for instance [11]). In the one-dimensional case, the diffusion

∇ · (∇u) is strong enough to give the global existence. On the other hand, for

d > 2 it is too weak (let us remark here that the logistic term ru(1−u) generally

helps the global existence, compare [35]). In this context it is mathematically

interesting to find, for a fixed dimension d, a “critical” diffusive operator that

sits on the borderline of the blowup and global-in-time regimes. There are at

least two approaches to this problem, both justified also from the point of view

of applications. One is to consider semilinear diffusion ∇ · (µ(u)∇u), see for

instance [3], [8], [23], [13], [22], [32]. Another one is to replace the standard

diffusion with the fractional one. We focus on this case. Let us consider

∂tu = −µΛαu+∇ · (u∇v) + ru(1− u), x ∈ Td, t ∈ R+,(1.8)

∆v = u− 〈u〉, x ∈ Td, t ∈ R+,(1.9)

where µ > 0 is a constant and the operator Λα is defined using the Fourier

transform

Λ̂αu(ξ) = |ξ|αû(ξ).

It turns out that with r = 0 and d = 1 there are global-in-time solutions for

α > 1 and blowups for α < 1, compare [12] and [26] (see also [1]). The case

α = 1 seems critical and, to the best of our knowledge, the sharpest result up

to now is the global boundedness for small data. In particular, it is shown in

[12] that there exists a constant K, such that ‖u0‖L1 ≤ K implies the global

existence of solutions. Later on, in [1], the authors proved that ‖u0‖L1 ≤ 1/(2π)

implies global existence and the convergence towards the homogeneous steady

state. In this context we refer also to [31].

In this paper we propose a slight semilinear strengthening of the diffusion

in (1.8) that provides bounded solutions for any r ≥ 0. We also study the

regularization due the logistic dampening for the diffusions equal to that of (1.8)

or slightly weaker, compare example (2.9).

The case of (1.1)–(1.2) with α = 1, r = 0 and µ(s) = s + ν appears in [27],

where the authors address the local/global existence and the qualitative behavior
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of the solutions. Similar equations have been studied in [2], [17], [19]–[21] in the

context of fluid dynamics. In particular, the equation

(1.10) ∂tu = ∂x(−[u+ ν]Hu)

has been proposed as a one-dimensional model of the 2D Vortex Sheet problem

or the 2D surface quasi-geostrophic equation. Notice that (1.1) reduces to (1.10)

when v ≡ 0, r = 0 and µ(x) = x+ ν.

1.3. Basic notation and plan of the paper. We write Hs(T) for the

usual L2-based Sobolev spaces with norm

‖f‖2Hs := ‖f‖2L2 + ‖f‖2
Ḣs , ‖f‖Ḣs := ‖Λsf‖L2 ,

and

〈u〉 :=
1

2π

∫
T
u(x) dx.

For a given initial data u0, we introduce the following notation:

(1.11) N1 := max{2π, ‖u0‖L1}.

Notice that for periodic functions, the half-laplacian in one dimension has the

following kernel representation:

Λf(x) =
p.v.

2π

∫
T

f(x)− f(y)

sin2((x− y)/2)
dy.

The remainder of this paper is organized as follows: In Section 2 we present the

statement of our results. In Section 3 we prove Theorem 2.4. In Section 4 we

prove Theorem 2.6. Finally, in Section 6 we present our proof of Theorem 2.9.

2. Statement of results

Given the initial data u0(x) ≥ 0, we have the following definition of a weak

solution to system (1.1)–(1.2):

Definition 2.1. Choose u0 ∈ L2(T). Fix arbitrary T ∈ (0,∞). The couple

(u, v) ∈ L∞(0, T ;L2(T))× L∞(0, T ;H1(T))

is a solution of (1.1)–(1.2) if and only if∫ T

0

∫
T
−∂tφu+ ∂xφ (−µ(u)Hu+ u∂xv)− φ ru(1− u) dx dt

−
∫
T
φ(x, 0)u0 dx = 0,∫ T

0

∫
T
∂xϕ∂xv + ϕ (u− 〈u〉) dx dt = 0,

for every test function φ(x, t), ϕ(x, t) ∈ C∞((−1, T )×T) with a compact support

in time and periodic in space.
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Definition 2.2. If a solution (u, v) verifies Definition 2.1 for any T < ∞,

we call it a large-time weak solution.

We will use the following entropy (or free energy) functional:

(2.1) F(u(t)) =

∫
T
u(t) log(u(t))− u(t) + 1.

2.1. Case of linearly degenerating µ and any r ≥ 0. The results pre-

sented in this section do not use extra information in estimates that follows from

the logistic term ru(1 − u). Hence they hold for any value of r ≥ 0, includ-

ing small ones. The semilinearity µ of our diffusion will be generated here by

a function γ as follows

(2.2) µ(s) := γ(s)s.

Let us introduce also

Γ(s) :=

∫ s

0

γ(y) dy.

We work within

Assumption 2.3. The semilinearity µ is differentiable and its derivative µ′

is bounded for bounded arguments, i.e. there exists a finite function C such that

µ′(s) ≤ C(s) for any s ∈ [0,∞). Moreover, γ of (2.2) satisfies, for any y ∈ [0,∞),

(2.3) γ(y) ≥ δ > 0

for a fixed δ > 0 and there exists 0 ≤ y0 <∞ such that

(2.4) γ(y) ≥ 1 for y ≥ y0.

The fact that µ is linearly degenerating is understood in the sense of condition

(2.3), as it allows for µ(s) = δs for small s.

Theorem 2.4. Let 0 ≤ u0 ∈ L∞ be the initial data for (1.1)–(1.2) under

Assumption 2.3. Then there exists at least one large-time weak solution to (1.1)–

(1.2) (in the sense of Definitions 2.1, 2.2). Furthermore, this solution enjoys

additionally the following regularity:

u ∈ L∞(0, T ;L∞(T)) ∩ L2(0, T ;H1/2(T)) for all T <∞,

where the L∞ bound is T -independent.

2.2. Results using the logistic dampening. Now we formulate a result

that allows for the the critical linear nonlocal diffusion (i.e. µ ≡ c) at the cost

of using a relation between the lower bound on µ, the initial mass 〈u0〉 and r.

Moreover, for strictly positive data it generalizes Theorem 2.4 over any µ(s) that

is positive for s > 0. Particularly, we do not need to assume here the sublinear

profile of degeneration of µ.

Now we assume the following hypothesis on the semilinearity.
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Assumption 2.5. The semilinearity µ is differentiable and its derivative µ′

is bounded for bounded arguments, i.e. there exists a finite function C such that

µ′(s) ≤ C(s) for any s ∈ [0,∞). Moreover, µ is positive for positive arguments,

i.e. if µ(x0) = 0 then x0 = 0, and there exists δ ≥ 0 such that µ(s) ≥ δ.

Observe that above we allow δ = 0 (then the condition of positivity for

positive arguments prevails). In the following result δ ≥ 0 comes from Assump-

tion 2.5 and r is the parameter of the logistic term.

Theorem 2.6. Let 0 ≤ u0 ∈ L∞. If, in addition to Assumption 2.5 we have

(2.5) r + δ(4π2 max{〈u0〉, 1})−1 > 1,

and either

(2.6) δ > 0

or

(2.7) ess min
x

u0 > 0,

then there exists at least one large-time weak solution to (1.1)–(1.2) (in the sense

of Definitions 2.1, 2.2). This solution enjoys additionally the following regularity:

u ∈ L∞(0, T ;L∞(T)) ∩ L2(0, T ;H1/2(T)) for all T <∞,

where the L∞ bound is T -independent.

In the case r = 0 we can provide a simpler condition, according to

Corollary 2.7. In the case r = 0 Theorem 2.6 is valid with condition (2.5)

replaced with

(2.8)
δ

4π2〈u0〉
> 1.

2.3. Remarks. The weakest semilinear diffusion allowed by Theorem 2.4

is µ(s) = δ(s)s with: δ(s) ≥ 1 for large s and being arbitrary positive constant

otherwise. This is the previously mentioned semilinear strengthening of the

critical nonlocal linear diffusion −µΛu with constant µ.

On the other hand, in Theorem 2.6 this critical diffusion is admissible with

any µ ≡ c for arbitrary c > 0, provided the logistic parameter r ≥ 1. What is

more, for r > 1 and strictly positive data we can allow for

(2.9) µ(s)

= 0 for s = 0,

> 0 for s > 0,

hence we do not assume any precise profile of degeneracy at 0 of our semilinear-

ity µ and it can be slightly weaker than the linear µ ≡ c > 0. From the proof

of Theorem 2.6 one sees that even a diffusion that vanishes outside a certain
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interval of arguments is allowed, compare Remark 4.1. Finally, for r ∈ [0, 1)

we need in Theorem 2.6 to mitigate the weaker logistic dampening with larger

diffusion, namely such that

δ > (1− r)(4π2 max{〈u0〉, 1}).

Observe that the bigger the initial mean value, the stronger diffusions we need.

See also Corollary 2.7.

Let us now compare Theorems 2.4, 2.6 with known results.

(a) In order to get the system considered in [27] we take r = 0 and γ(x) =

1 + ν/x. This falls under our assumption (2.4). We see now that our Theo-

rem 2.4 recovers the result of Theorem 5.2 in [27] and sharpens it with respect

to the admissible initial data. Namely, we have removed the H1/2 smoothness

requirement and, more importantly, the smallness assumption ‖u0‖L1 ≤ 2ν/3

of [27].

(b) We allow in Theorem 2.4 for much more general semilinear diffusions µ

than in [27] and for the logistic term.

(c) When restricted to linear case, i.e. µ ≡ c, Corollary 2.7 is inline with

results in [1], [12]. Moreover, our condition (2.8) is explicit and says that the

threshold mass for a (debatable) blowup is at least δ/(2π).

2.4. Results for a nonlocal porous medium type equation. If we take

v ≡ 0 and r = 0 in (1.1) we get

(2.10) ∂tu = ∂x(−µ(u)Hu), x ∈ T, t ∈ R+.

We have the following result:

Theorem 2.8. Let 0 ≤ u0 ∈ L∞ be the initial data for (2.10) with µ(s)

following Assumption 2.3. Then there exists at least one large-time weak solution

u of (2.10). Furthermore, this solution is

u ∈ L∞(0, T ;L∞(T)) ∩ L2(0, T ;H1/2(T)) for all T <∞,

where the L∞ bound is T -independent.

The proof of this theorem is similar to the proof of Theorem 2.4, so we omit it.

Finally, we provide also the following result on asymptotics of solutions to

a special case of (2.10).

Theorem 2.9. Let the initial data for (2.10) with µ(x) = x be u0 ∈ L∞ such

that ess min
x

u0 > 0 with µ(x) = x and assume that 〈u0〉 = 1. Then the large-

time solution u(x, t) of (2.10) tends to the homogeneous steady state u∞ ≡ 1

and satisfies

F(u(t)) ≤ C(u0)e
−2(ess inf

x
u0) t

.
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In particular this theorem covers the case λ = 0, s = 1/2 in [18] for periodic

and positive initial data.

3. Proof of Theorem 2.4

3.1. Approximate problems. Let us consider a family of Friedrichs mol-

lifiers Jε. We define the regularized initial data

uε(x, 0) = uε0(x) = Jε ∗ u0(x) ≥ 0

and consider the approximate problems

∂tu
ε = ∂x(−µ(uε)Huε + uε∂xv

ε) + ruε(1− uε) + ε∂2
xu

ε,(3.1)

∂2
xv
ε = uε − 〈uε〉.(3.2)

Each of these problems has a local-in-time smooth solution with the maximal

time of existence Tε. This can be shown via a fixed point argument (basically,

Picard’s Theorem in Banach spaces). For the time being we will work within

this local time of existence.

3.2. L1 bound. Integrating equation (3.1) and using Jensen’s inequality,

we have

(3.3) ‖uε(t)‖L1 ≤ N1 = max{‖u0‖L1 , 2π}.

3.3. Pointwise bounds. Let us denote the point where min
x
uε(t) is at-

tained as xt. Similarly, we write xt for the point where the maximum is reached.

In other words,

(3.4) min
x∈T

uε(t) = uε(xt, t), max
x∈T

uε(t) = uε(xt, t).

Then, using the same arguments as in [1], [2], [27], we prove

(3.5) min
x∈T

uε(t) ≥ min
x∈T

uε0e
∫ t
0
−γ(uε(xs))Λuε(xs)+uε(xs)−〈uε(s)〉+r(1−uε(xs)) ds ≥ 0

and, using Λuε(xt, t) ≥ uε(xt, t) − 〈uε(t)〉, for X(t) := ‖uε(t)‖L∞ , we get the

following ODI:

(3.6) Ẋ ≤ X
(
(X − 〈uε〉)(1− γ(X)) + r(1−X)

)
=: XI.

Before proceeding with analysis of (3.6), let us explain why X is differentiable

(almost-everywhere). Take two t ≤ s and to fix ideas, let us assume that X(t) ≥
X(s), then

|X(t)−X(s)| = X(t)−X(s) = uε(xt, t)− uε(xs, s) ≤ uε(xt, t)− uε(xt, s),

where the inequality follows from the definition of X(s). Consequently, smooth-

ness of uε gives Lipschitz continuity of X. The Rademacher Theorem provides

now almost everywhere differentiability of X.
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Let us come back to considering (3.6). First, consider the case r > 0. Recall-

ing Assumption 2.3 (in particular condition (2.4)), we can ensure the existence

of s0 ∈ R+ such that γ(s) ≥ 1 if s ≥ s0. We can always choose s0 such that

s0 ≥ 1 and X(0) ≤ u0 < s0. Then, we have the alternative:

(i) either X(t) ≤ s0 for all times, or

(ii) there exists t0 > 0 such X(t0) = s0 and X crosses s0 for the first time

at t0.

Let us focus on the case (ii). Here, in view of the above choices of s0 and

continuity of X, we see that there exists δ > 0 such that for τ ∈ [t0, t0 + δ] we

have 1− γ(X(τ)) ≤ 0 and r(1−X(τ)) ≤ 0. This in tandem with X(t) ≥ 〈uε(t)〉
implies that in (3.6), I(τ) ≤ 0.

Applying integration to our ODI (3.6), we get

(3.7) X(t) ≤ X(t0)e
∫ t
t0
I(τ) dτ

= s0e
∫ t
t0
I(τ) dτ

for t ∈ [t0, t0 + δ],

but then X(t) ≤ s0 for t ∈ [t0, t0 + δ], because the exponential function has

nonpositive exponent I. Hence we have falsified (ii). As a consequence, we

have (i), i.e. X(t) ≤ s0 for every time.

In the case r = 0, we have 〈uε(t)〉 = 〈u0〉 and an analogous argument follows.

Consequently we have the bound

(3.8) ‖uε(t)‖L∞ ≤ s0(‖u0‖L∞ , r, γ).

3.4. Ḣ1 bound. For the time being, we have worked within the local time

of existence Tε. Now we fix any T ∈ (0,∞) and prove that Tε ≥ T for any ε.

We test (3.1) against − ∂2
xu

ε. We get

1

2

d

dt
‖uε‖2

Ḣ1 = I1 + I2 + I3 + I4 + I5 + I6,

with

I1 =

∫
T
µ(uε)Λuε∂2

xu
ε dx, I2 =

∫
T
(µ′(uε))∂xu

εHuε∂2
xu

ε dx,

I3 = −
∫
T
uε(uε − 〈uε(t)〉)∂2

xu
ε dx, I4 = −

∫
T
∂xu

ε∂xv
ε∂2
xu

ε dx,

I5 = −
∫
T
ruε(1− uε)∂2

xu
εdx, I6 = − ε‖∂2

xu
ε‖2L2 .

As we have the bound (3.8), using Assumption 2.3m we get

|µ(uε)|+ |µ′(uε)| ≤ C(s0).

Recall the following property of the Hilbert transform: ‖Hf‖Lp ≤ cp‖f‖Lp , for

1 < p <∞.
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As a consequence, we find the bounds:

I1 ≤ C(s0)‖uε‖Ḣ1‖∂2
xu

ε‖L2 ,

I2 ≤ C(s0)‖Huε‖L4‖∂xuε‖L4‖∂2
xu

ε‖L2 ≤ C(s0)c4‖uε‖L43‖uε‖0.5L∞‖∂2
xu

ε‖1.5L2 ,

I3 ≤ ‖∂2
xu

ε‖L2‖uε‖L2 [‖uε‖L∞ + 〈uε(t)〉],

I4 ≤
1

2
‖uε‖2

Ḣ1 [‖uε‖L∞ + 〈uε(t)〉],

I5 ≤ r‖∂2
xu

ε‖L2‖uε‖L2 [‖uε‖L∞ + 1].

Using Young’s inequality and the ε-dissipative term I6, we have

(3.9)
d

dt
‖uε‖2

Ḣ1 ≤ C1(ε) + C2(ε)‖uε‖2
Ḣ1 ,

where C1 and C2 depend also on N1, s0, r and γ.

Let us assume now that for a given ε it holds Tε < T . Using Gronwall’s and

Poincaré’s inequalities in (3.9), we obtain existence of an approximate solution

in H1 up to Tε. It is also bounded in view of (3.8). Hence it is smooth by boot-

strapping in (3.1). Therefore it can be continued beyond Tε, which consequently

cannot be the maximal time of existence. We have Tε ≥ T and (3.3), (3.8) hold

on [0, T ].

3.5. Uniform estimates. At this stage, we have ε-uniform estimates for

uε(x, t) in L∞t L
p
x with 1 ≤ p ≤ ∞ on [0, T ] (see (3.8)). Recalling (2.2), we have∫

T
∂tu

ε log(uε) dx = I7 + I8 + I9 + I10,

with

I7 =

∫
T
∂xu

εγ(uε)Huεdx =

∫
T
∂xΓ(uε)Huε dx = −

∫
T

Γ(uε)Λuε dx,

I8 = −
∫
T
∂xu

ε∂xv
ε dx =

∫
T
uε(uε − 〈uε〉) dx,

I9 =

∫
T
ruε(1− uε) log(uε) dx ≤ 0,

I10 = −4ε

∫
T
|∂x(
√
uε)|2 dx.

Consequently, the evolution of the entropy functional (2.1) is given by

d

dt
F(uε(t)) +

∫
T

Γ(uε)Λuε dx+ 4ε

∫
T
|∂x(
√
uε)|2 dx

= ‖uε − 〈uε〉‖2L2 +

∫
T
ruε(1− uε) log(uε) dx.
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Symmetrizing the integral I7, we have

−I7 =
1

4π

∫
T

∫
T

uε(x)− uε(y)

sin2((x− y)/2)
(Γ(uε(x))− Γ(uε(y))) dx dy

=
1

4π

∫
T

∫
T

∫ 1

0

(uε(x)− uε(y))2

sin2((x− y)/2)
γ(suε(x) + (1− s)uε(y)) ds dx dy

≥ δ

4π

∫
T

∫
T

(uε(x)− uε(y))2

sin2((x− y)/2)
dx dy = δ

∫
T

Λuεuε dx = δ‖uε‖2
Ḣ0.5 ,

where we have used (2.3) of Assumption 2.3. Integrating in time, we get the

uniform bound

F(uε(t)) + δ

∫ t

0

‖uε(s)‖2
Ḣ0.5 ds ≤ C3(γ,N1, s0)t+ F(uε0),

so

(3.10) δ

∫ t

0

‖uε(s)‖2
Ḣ0.5 ds ≤ C4(γ,N1, s0)(t+ 1).

For the derivative ∂tu
ε, using the duality pairing, we obtain

(3.11) ‖∂tuε‖H−1.5 ≤ ε‖uε‖H1/2 + C(γ, s0),

where we have used that ‖uε‖L2 controls ‖∂xvε‖L∞ .

Let us sum up the obtained uniform bounds. Given a finite, arbitrary T ∈
(0,∞), we have now the ε-uniform bounds for

uε in L∞(0, T ;L∞(T)) ∩ L2(0, T ;H1/2(T)),

in view of (3.8) and (3.10) as well as for ∂tu
ε in L2(0, T ;H−1.5(T)) in view

of (3.11), provided ε ≤ 1.

For any T <∞, applying the sequential ∗-weak compactness of spaces with

a separable predual space, we have the existence of a limit function u in appro-

priate spaces. Equipped with this u we define v using (1.2).

3.6. Compactness. Applying Aubin–Lions’s Lemma, we have the strong

convergences (up to a subsequence εn → 0 as n→∞)

lim
n→∞

∫ T

0

‖uεn(s)− u(s)‖2L2 ds = 0.

Notice that

lim
n→∞

∫ T

0

|〈uεn〉 − 〈u〉|2 ds = 0.

Consequently, using ‖∂xvεn − ∂xv‖L2 ≤ ‖uεn − u+ 〈u〉 − 〈uεn〉‖L2 , we get

(3.12) lim
n→∞

∫ T

0

‖∂xvεn − ∂xv‖2L2 ds = 0.
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3.7. Passing to the limit. Here we show that (3.1) is (1.1) in the limit

n → ∞, in the sense of Definition 2.1. We have in view of Assumption 2.3

and (3.8)

|µ(uεn(x, t))− µ(u(x, t))| ≤ C(γ,N∞)|uεn(x, t)− u(x, t)|,

and, consequently,∣∣∣∣ ∫ T

0

∫
T
∂xφ[µ(uεn)− µ(u)]Huεn dx ds

∣∣∣∣
≤ ‖∂xφ‖L∞t L∞x

‖µ(uεn)− µ(u)‖L2
tL

2
x
‖Huεn‖L2

tL
2
x

n→∞−−−−→ 0.

Similarly we show∣∣∣∣ ∫ T

0

∫
T
∂xφµ(u)[Huεn −Hu] dx ds

∣∣∣∣ n→∞−−−−→ 0.

Using (3.12) we get∣∣∣∣ ∫ T

0

∫
T
∂xφ[uεn − u]∂xv

εn dx ds

∣∣∣∣ n→∞−−−−→ 0,∣∣∣∣ ∫ T

0

∫
T
∂xφu[∂xv

εn − ∂xv] dx ds

∣∣∣∣ n→∞−−−−→ 0.

We can pass to the limit in the logistic term with the same ideas. Dealing with

the term with laplacian is straightforward since it is linear. The only term left

is the one corresponding to the initial data. This term can be handled using the

properties of mollifiers. We have proved that (u, v) is a solution of (1.1)–(1.2)

according to Definition 2.1 and enjoys regularity properties from the statement

of Theorem 2.4.

4. Proof of Theorem 2.6

Several steps are similar to those in the proof of Theorem 2.4, so we omit

them. We consider the same approximate problems and we get the same L∞t L
1
x

bound (3.3). Furthermore, these approximate problems have the large-time so-

lution in H1. Consequently, we focus on the uniform estimates up to a fixed

(but otherwise arbitrary) 0 < T <∞.

4.1. Pointwise bounds. We use the same notation (3.4) as before and we

get that positivity is preserved. In particular, using

−Λuε(xt, t) ≥ −(uε(xt, t)− 〈uε(t)〉),
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we can sharpen our bound. In this case, we have the ODE

d

dt
min
x∈T

uε(t) = ∂tu
ε(xt, t)

≥ (1− γ(uε(xt)))u
ε(xt)(u

ε(xt)− 〈uε(t)〉) + ruε(xt)(1− uε(xt))

≥ −µ(uε(xt))(u
ε(xt)− 〈uε(t)〉) + uε(xt)(1− 〈uε(t)〉)

≥ −uε(xt) max{1, 〈u0〉},

so min
x∈T

uε(t) ≥ ess inf
x∈T

u0e
−max{1,〈u0〉}t ≥ 0 for all 0 ≤ t ≤ T <∞. In particular,

if the initial data is strictly positive,

(4.1) min
0≤t≤T

min
x∈T

uε(t) ≥ ess inf
x∈T

u0e
−max{1,〈u0〉}T > 0.

We have to deal with the bound for ‖uε(t)‖L∞ . To this end let us recall the

inequality (see Lemma 1 in [27])

(4.2) Λuε(xt) ≥
uε(xt)

2

4π2〈uε(t)〉
≥ uε(xt)

2

4π2 max{〈u0〉, 1}
,

that is valid provided uε(xt) ≥ 4〈uε(t)〉. The ODI for X(t) := uε(xt) reads

Ẋ ≤ −µ(X)ΛX +X(X − 〈uε(t)〉) + rX(1−X))

≤ X
((

1− r − µ(X)
ΛX

X2

)
X + r

)
= XI ′.

We proceed as before via a blowup alternative. Recall Assumption 2.5. In its

context, choose s0 ∈ R+ so large that µ(s) ≥ δ for s ≥ s0 and that

(4.3) s0 ≥
2

π
N1, s0 ≥

−2r

1− r − δ(4π2 max{〈u0〉, 1})−1
.

N1 is given by (1.11). The second choice in (4.3) is possible thanks to r +

δ(4π2 max{〈u0〉, 1})−1 > 1 assumed for our theorem. We have the alternative:

(i) either X(t) ≤ s0 for all times, or

(ii) there exists t0 > 0 such X(t0) = s0 and X crosses s0 for the first time

at t0.

It the latter case, we can use (4.2) thanks to choice (4.3) and (3.3). Hence we

get from our ODI that Ẋ ≤ −rX, which excludes the case (ii) analogously to

the argument involving (3.7).

4.2. Uniform estimates. We define

(4.4) M(s) :=

∫ s

0

µ(y) dy.

We test equation (3.1) against uε and use (4.4). Hence

1

2

d

dt

∫
T
|uε(t)|2 =

∫
T
∂x(M(uε))Huε − 1

2
∂x(|uε|2)∂xv

ε + r|uε(t)|2 − r|uε(t)|3.



382 J. Burczak — R. Granero-Belinchón

After integration by parts and use of vεxx = uε − 〈uε〉 it yields

1

2

d

dt

∫
T
|uε(t)|2 +

∫
T
M(uε)Λuε +

(
r − 1

2

)
|uε(t)|3 =

(
r − 〈u

ε(t)〉
2

)∫
T
|uε(t)|2.

Hence we obtain

d

dt
‖uε(t)‖2L2 + 2

∫
T
M(uε)Λuε ≤

(
2r +

N1

2π

)
‖uε(t)‖2L2 +

(
1

2
− r
)
‖uε(t)|‖3L3 ,

where we have used bound (3.3) to control 〈uε(t)〉. For r ≥ 1/2 the last term

above provides extra dissipation, but for any r ≥ 0 we can use our pointwise

bounds to write

(4.5)
d

dt
‖uε(t)‖2L2 + 2

∫
T
M(uε)Λuε ≤ 1

2
s3

0 +

(
2r +

N1

2π

)
s2

0.

In order to extract H1/2 information from (4.5) we symmetrize its second term

analogously to I7 of Section 3, getting

2

∫
T
M(uε)Λuε =

1

2π

∫
T

∫
T

∫ 1

0

(uε(x)− uε(y))2

sin2((x− y)/2)
µ(suε(x)+(1−s)uε(y)) ds dx dy.

First, let us consider the case when µ verifies (2.7). Hence we have (4.1). To

simplify notation, we define

(4.6) 0 < s1(T ) = ess inf
x∈T

u0e
−max{1,〈u0〉}T ,

and µ
T

= min
s1≤s≤s0

µ(s), where s0 is the L∞ bound from the previous subsection.

We have

2

∫
T
M(uε)Λuε ≥

µ
T

2π

∫ 1

0

∫
T

∫
T

(uε(x)− uε(y))2

sin2((x− y)/2)
dx dy ds

=
µ
T

2π

∫
T

Λuεuε dx =
µ
T

2π
‖uε‖2

Ḣ0.5 .

Observe that µ
T
> 0 as µ is positive for positive arguments.

If instead of (2.7) we assume (2.6), we have for δ > 0

2

∫
T
M(uε)Λuε ≥ δ

2π
‖uε‖2

Ḣ0.5 .

In any case we obtain via (4.5) the ε-uniform bound for uε in L2(0, T ;H1/2(T))

for every fixed 0 < T <∞.

All in all, for every fixed 0 < T <∞, we have the uniform bounds

uε ∈ L∞(0, T ;L∞(T)) ∩ L2(0, T ;H1/2(T)).

With these uniform estimates, we can follow along the lines of the proof of

Theorem 2.4 and conclude the result.
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Remark 4.1. In fact, for Theorem 2.6 we need to impose assumptions on

our semilinearity µ(s) only within the interval of existence of u. More precisely,

this interval belongs to

I :=
[

ess inf
x∈T

u0e
−max{1,〈u0〉}T , s0

]
,

where s0, δ0 is a pair that satisfies

s0 ≥
2

π
N1, s0 ≥

−2r

1− r − δ0(4π2 max{〈u0〉, 1})−1
, µ(s0) > δ0 ≥ 0.

For the lower end of I see (4.6) and for the upper one – (4.3). In particular, µ

can vanish on Ic. As the above condition on s0 is implicit for δ0 > 0, we have

used in Theorem 2.6 a more traceable assumption. For δ0 = 0 we need r > 1,

but then

I :=

[
ess inf
x∈T

u0e
−max{1,〈u0〉}T ,

2r

r − 1

]
and in fact 2 above can be replaced with any k > 1.

5. Proof of Corollary 2.7

For r = 0 the conservation of mass in (3.1) gives ‖uε(t)‖L1 ≤ ‖u0‖L1 instead

of (3.3). Consequently, (4.2) reads now Λuε(xt) ≥ uε(xt)
2/4π2〈u0〉. Hence, to

follow the lines of proof of Theorem 2.6, it suffices to assume (2.8) instead of

(2.5). This gives Corollary 2.7.

6. Proof of Theorem 2.9

We consider the vanishing viscosity approximation of (2.10) with γ(x) ≡ 1

∂tu
ε = −∂x(uεHuε) + ε∂2

xu
ε, x ∈ T, t ∈ R+.

Notice that the solution to this equation verifies

min
x
uε(x, t) ≥ ess min

x
u0 > 0, max

x
uε(x, t) ≤ max

x
u0.

By a direct computation, we have

d

dt
F(uε(t)) + I(uε) + ε

∥∥∥∥∂xuε√
uε

∥∥∥∥2

L2

= 0,

where F is the entropy given by (2.1) and Fisher’s information I is I(uε) =

‖Λ0.5uε‖2L2 , and verifies

d

dt
I(uε(t)) + 2ε‖∂xΛ0.5uε‖2L2 = −‖

√
uεΛuε‖2L2 − ‖

√
uε∂xu

ε‖2L2

≤ −2 min
x
uε0 I(uε),

where the middle term follows from the Tricomi relation

H(H∂xu∂xu) =
1

2
((H∂xu)2 − (∂xu)2),
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compare with [27]. In particular, by the Gronwall inequality, we conclude that uε

tends to the homogeneous state 〈uε0〉 exponentially fast (recall that by assumption

ess minx u0 > 0). We also have

(6.1)
d

dt
F(uε(t)) + ε

∥∥∥∥∂xuε√
uε

∥∥∥∥2

L2

= −I(uε(t))

≥ 1

2 min
x
uε0

[
d

dt
I(uε(t)) + 2ε‖∂xΛ0.5uε‖2L2

]
and

d

dt
F(uε(t)) +

ε

min
x
uε0
‖∂xuε‖2L2 ≥

d

dt
F(uε(t)) + ε

∥∥∥∥∂xuε√
uε

∥∥∥∥2

L2

≥ 1

2 min
x
uε0

d

dt
I(uε(t)) +

ε

min
x
uε0
‖∂xΛ0.5uε‖2L2 .

Due to the Poincaré inequality, we get

d

dt
F(uε(t)) ≥ 1

2 min
x
uε0

d

dt
I(uε(t)).

Equivalently,∫ ∞
t

d

dt
(−F(uε(t))) ≤

∫ ∞
t

−1

2 min
x
uε0

d

dt
I(uε(t)),

−F(uε(∞)) + F(uε(t)) ≤ −1

2 min
x
uε0
I(uε(∞)) +

1

2 min
x
uε0
I(uε(t)).

As 〈uε0〉 = 〈u0〉 = 1, we have F(uε(∞)) = 0, and we obtain

F(uε(t)) ≤ 1

2 min
x
uε0
I(uε(t)).

Using (6.1),

−F(uε(t)) ≥ 1

2 min
x
uε0

[−I(uε(t))] =
1

2 min
x
uε0

[
d

dt
F(uε(t)) + ε

∥∥∥∥∂xuε√
uε

∥∥∥∥2

L2

]
we conclude that

−2 min
x
uε0F(uε(t)) ≥ d

dt
F(uε(t)) and F(uε(t)) ≤ F(uε0)e−2(ess minx u0) t.

Hence, via F(uε0) ≤ C(u0) we have a uniform bound. Theorem 3.20 in [24] used

for a = b = 0 implies that the functional

f 7→
∫
T
f log(f)− f + 1 dx

is weakly lower semicontinuous in L2. Hence

F(u(t)) ≤ lim inf
ε→0

F(uε(t)) ≤ F(uε0)e
−2(ess min

x
u0) t

.
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7. Concluding remarks

A preliminary computation (see the proofs of Theorem 2.4 and 2.8) suggests

that solutions of (1.8), (1.9) in the case of subcritical diffusion Λαu with α ∈ (0, 1)

should be bounded in L∞t L
∞
x , provided logistic dampening constant satisfies

r ≥ 1. For details on this and beyond, see [14].

In this paper, we have only marginally touched the matter of time-asympto-

tics of the considered systems, which is an interesting matter to study.

In the context of the critical diffusion Λu and lack of the logistic term, the

conjecture in [12] (see also [1]) says that there should be a threshold mass that

divides the global existence/blowup regimes. We are rather inclined against this

hypothesis, along lack of the one-dimensional critical diffusion (i.e. with threshold

mass phenomenon) for the Smoluchowski–Poisson system with semilinear diffu-

sion, compare [22]. The authors show there that there is no one-dimensional

analogue to the multidimensional phenomenon of the critical diffusion in the

setting of semilinear, but not fractional diffusion. More precisely, for d = 1 the

system

∂tu = ∂x((1 + u)(d−2)/d∂xu+ u∂xv), ∂2
xv = u− 〈u〉,

has bounded solutions for any initial mass. For lack of blowup in the critical

case, see our recent [15].
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[3] J. Bedrossian, N. Rodŕıguez and A.L. Bertozzi, Local and global well-posedness for

aggregation equations and Patlak–Keller–Segel models with degenerate diffusion, Nonlin-

earity 24 (2011), 1683–1714.

[4] P. Biler, Growth and accretion of mass in an astrophysical model, Appl. Math. (Warsaw)

23 (1995), 179–189.
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